Predicting the Direction of US Stock Prices Using Effective Transfer Entropy and Machine Learning Techniques

dc.contributor.authorKim, Sondo
dc.contributor.authorKu, Seungmo
dc.contributor.authorChang, Woojin
dc.contributor.authorSong, Jae Wook
dc.date.accessioned2024-08-21T08:07:21Z
dc.date.available2024-08-21T08:07:21Z
dc.date.issued2020
dc.description.tableofcontentsIEEE Access, Vol.8, 2020; P. 111660-111682vi
dc.identifier.urihttps://thuvienso.hoasen.edu.vn/handle/123456789/15646
dc.language.isoenvi
dc.publisherIEEE Accessvi
dc.subjectPrediction algorithmsvi
dc.subjectStock marketsvi
dc.subjectTime series analysisvi
dc.titlePredicting the Direction of US Stock Prices Using Effective Transfer Entropy and Machine Learning Techniquesvi
dc.typeArticlevi

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Predicting_the_Direction_of_US_Stock_Prices_Using_Effective_Transfer_Entropy_and_Machine_Learning_Techniques.pdf
Size:
8.75 MB
Format:
Adobe Portable Document Format
Description:
Predicting the Direction of US Stock Prices Using Effective Transfer Entropy and Machine Learning Techniques
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections