Predicting the Direction of US Stock Prices Using Effective Transfer Entropy and Machine Learning Techniques
dc.contributor.author | Kim, Sondo | |
dc.contributor.author | Ku, Seungmo | |
dc.contributor.author | Chang, Woojin | |
dc.contributor.author | Song, Jae Wook | |
dc.date.accessioned | 2024-08-21T08:07:21Z | |
dc.date.available | 2024-08-21T08:07:21Z | |
dc.date.issued | 2020 | |
dc.description.tableofcontents | IEEE Access, Vol.8, 2020; P. 111660-111682 | vi |
dc.identifier.uri | https://thuvienso.hoasen.edu.vn/handle/123456789/15646 | |
dc.language.iso | en | vi |
dc.publisher | IEEE Access | vi |
dc.subject | Prediction algorithms | vi |
dc.subject | Stock markets | vi |
dc.subject | Time series analysis | vi |
dc.title | Predicting the Direction of US Stock Prices Using Effective Transfer Entropy and Machine Learning Techniques | vi |
dc.type | Article | vi |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Predicting_the_Direction_of_US_Stock_Prices_Using_Effective_Transfer_Entropy_and_Machine_Learning_Techniques.pdf
- Size:
- 8.75 MB
- Format:
- Adobe Portable Document Format
- Description:
- Predicting the Direction of US Stock Prices Using Effective Transfer Entropy and Machine Learning Techniques
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: