Hiển thị biểu ghi dạng vắn tắt

dc.contributor.authorSchwarz, Jason S.
dc.contributor.authorChapman, Chris
dc.contributor.authorFeit, Elea McDonnell
dc.date.issued2020
dc.identifier.isbn978-3-030-49720-0
dc.identifier.urihttps://thuvienso.hoasen.edu.vn/handle/123456789/13007
dc.description.abstractThis book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.
dc.formatxi, 272 p. : ill.
dc.language.isoen
dc.publisherSpringer
dc.subjectPython (Computer program language)
dc.subjectComputer programming
dc.subjectMarketing
dc.subjectStatistics
dc.titlePython for marketing research and analytics
dc.typeBook


Các tập tin trong tài liệu này

Thumbnail
Thumbnail

Tài liệu này xuất hiện trong Bộ sưu tập sau đây

Hiển thị biểu ghi dạng vắn tắt