Hiển thị biểu ghi dạng vắn tắt

dc.contributor.authorSkansi, Sandro
dc.date.issued2018
dc.identifier.isbn978-3-319-73004-2
dc.identifier.urihttps://thuvienso.hoasen.edu.vn/handle/123456789/10508
dc.descriptionxiii, 191 p. : ill.
dc.description.abstractThis textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism.
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofseriesUndergraduate Topics in Computer Science
dc.subjectComputational learning theory
dc.titleIntroduction to deep learning : from logical calculus to artificial intelligence
dc.typeBook


Các tập tin trong tài liệu này

Thumbnail
Thumbnail

Tài liệu này xuất hiện trong Bộ sưu tập sau đây

Hiển thị biểu ghi dạng vắn tắt