Hiển thị biểu ghi dạng vắn tắt

dc.contributor.authorJames, Gareth
dc.contributor.authorWitten, Daniela
dc.contributor.authorHastie, Trevor
dc.contributor.authorTibshirani, Robert
dc.date.issued2017
dc.identifier.isbn978-1-4614-7138-7
dc.identifier.urihttps://thuvienso.hoasen.edu.vn/handle/123456789/10495
dc.descriptionxiv, 426 p. : ill.
dc.description.abstractThis book provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofseriesSpringer Texts in Statistics
dc.subjectStatistics
dc.subject.otherStatistical learning
dc.titleAn introduction to statistical learning : with applications in R
dc.typeBook


Các tập tin trong tài liệu này

Thumbnail
Thumbnail

Tài liệu này xuất hiện trong Bộ sưu tập sau đây

Hiển thị biểu ghi dạng vắn tắt