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GUIDE FOR THE INSTRUCTOR

Number of Lectures

The Syllabus Guide below provides for a 29-lecture core and
a 35-lecture core. The 29-lecture core is for schools with
time constraints, as with abbreviated summer courses. Both
core programs can be supplemented by starred topics as time
permits. The omission of starred topics does not affect the
readability or continuity of the core topics.

Pace

The core program is based on covering one section per lec-
ture, but whether you can do this in every instance will depend
on your teaching style and the capabilities of your particular
students. For lon'ger sections we recommend that you just
highlight the main points in class and leave the details for the
students to read. Since the reviews of this text have praised
the clarity of the exposition, you should find this workable. If,
in certain cases, you want to devote more than one lecture to

a core topic, you can do so by adjusting the number of starred
topics that you cover.

By the end of Lecture 15 the following concepts will have
been covered in a basic form: linear combination, spanning,
subspace, dimension, eigenvalues, and eigenvectors. Thus,
even with a relatively slow pace you will have no trouble
touching on all of the main ideas in the course.

Organization

It is our feeling that the most effective way to teach abstract
vector spaces is to place that material at the end (Chapter 9),
at which point it occurs as a “natural generalization™ of the
earlier material, and the student has developed the “linear al-
gebra maturity” to understand its purpose. However, we rec-
ognize that not everybody shares that philosophy, so we have
designed that chapter so it can be moved forward, if desired.
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