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PREFACE 

Principle of Computer Hardware is aimed at students taking 
an introductory course in electronics, computer science, or 
information technology. The approach is one of breadth 
before depth and we cover a wide range of topics under the 
general umbrella of computer hardware. 

I have written Principles of Computer Hardware to achieve 
two goals. The first is to teach students the basic concepts on 
which the stored-program digital computer is founded. 
These include the representation and manipulation of infor
mation in binary form, the structure or architecture of a com
puter, the flow of information within a computer, and the 
exchange of information between its various peripherals. We 
answer the questions, 'How does a computer work', and 'How 
is it organized?' The second goal is to provide students with a 
foundation for further study. In particular, the elementary 
treatment of gates and Boolean algebra provides a basis for 
a second-level course in digital design, and the introduction 
to the CPU and assembly-language programming provides a 
basis for advanced courses on computer architecture/organi
zation or microprocessor systems design. 

This book is written for those with no previous knowledge 
of computer architecture. The only background information 
needed by the reader is an understanding of elementary alge
bra. Because students following a course in computer science 
or computer technology will also be studying a high-level 
language, we assume that the reader is familiar with the con
cepts underlying a high-level language. 

When writing this book, I set myself three objectives. By 
adopting an informal style, I hope to increase the enthusiasm 
of students who may be put off by the formal approach of 
more traditional books. I have also tried to give students an 
insight into computer hardware by explaining why things are 
as they are, instead of presenting them with information to be 
learned and accepted without question. I have included sub
jects that would seem out of place in an elementary first-level 

course. Topics like advanced computer arithmetic, timing 
diagrams, and reliability have been included to show how the 
computer hardware of the real world often differs from that 
of the first-level course in which only the basics are taught. 
I've also broadened the range of topics normally found in 
first-level courses in computer hardware and provided sec
tions introducing operating systems and local area networks, 
as these two topics are so intimately related to the hardware of 
the computer. Finally, I have discovered that stating a formula 
or a theory is not enough—many students like to see an 
actual application of the formula. Wherever possible I have 
provided examples. 

Like most introductory books on computer architecture, 
I have chosen a specific microprocessor as a vehicle to illustrate 
some of the important concepts in computer architecture. The 
ideal computer architecture is rich in features and yet easy to 
understand without exposing the student to a steep learning 
curve. Some microprocessors have very complicated architec
tures that confront the students with too much fine detail early 
in their course. We use Motorola's 68K microprocessor because 
it is easy to understand and incorporates many of the most 
important features of a high-performance architecture. This 
book isn't designed to provide a practical assembly language 
programming course. It is intended only to illustrate the oper
ation of a central processing unit by means of a typical assem
bly language. We also take a brief look at other microprocessors 
to show the range of computer architectures available. 

You will see the words computer, CPU, processor, micro
processor, and microcomputer in this and other texts. The part 
of a computer that actually executes a program is called a 
CPU (central processing unit) or more simply a processor. 
A microprocessor is a CPU fabricated on a single chip of sili
con. A computer that is constructed around a microprocessor 
can be called a microcomputer. To a certain extent, these terms 
are frequendy used interchangeably. 
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We've already said that this book provides a traditional 
introductory course in computer architecture plus additional 
material to broaden its scope and fill in some of the gaps left 
in such courses. To help students distinguish between fore
ground and background material, the following guide will 
help to indicate the more fundamental components of the 
course. 

Chapter 2 introduces the logic of computers and deals with 
essential topics such as gates, Boolean algebra, and Karnaugh 
maps. Therefore this chapter is essential reading. 

Chapter 3 introduces sequential circuits such as the counter 
that steps through the instructions of a program and demon
strates how sequential circuits are designed. We first intro
duce fiie bistable (flip-flop) used to construct sequential 
circuits such as registers and counters. We don't provide a 
comprehensive introduction to the design of sequential cir
cuits; we show how gates and flip-flops can be used to create 
a computer. 

Chapter 4 deals with the representation of numbers and 
shows how arithmetic operations are implemented. Apart 
from some of the coding theory and details of multiplication 
and division, almost all this chapter is essential reading. 
Multiplication and division can be omitted if the student is 
not interested in how these operations are implemented. 

Chapter 5 is the heart of the book and is concerned with the 
structure and operation of the computer itself. We examine 
the instruction set of a processor with a sophisticated 
architecture. 

Chapter 6 provides an overview of assembly language pro
gramming and the design of simple 68K assembly language 
programs. This chapter relies heavily on the 68K cross-
assembler and simulator provided with the book. You can use 
this software to investigate the behavior of the 68K on a PC. 

Chapter 7 begins with a description of the functional units 
that make up a computer and the flow of data during the exe
cution of an instruction. We then describe the operation of 
the computer's control unit, which decodes and executes 
instructions. The control unit may be omitted on a first read
ing. Although the control unit is normally encountered in a 
second- or third-level course, we've included it here for the 
purpose of completeness and to show how the computer 
turns a binary-coded instruction into the sequence of events 
that carry out the instruction. 

Chapter 8 is concerned with the quest for performance. We 
look at how performance is measured and describe three 
techniques used to accelerate processors. All students should 
read about the first two acceleration techniques, pipelining 
and cache memory, but may omit parallel processing. 

Chapter 9 describes two contrasting computer architectures. 
Introductory texts on computer architecture are forced to 
concentrate on one processor because students do not have 
the time to plow through several different instruction sets. 
However, if we don't cover other architectures, students can 
end the course with a rather unbalanced view of processors. 
In this chapter we provide a very brief overview of several 
contrasting processors. We do not expect students to learn 
the fine details of these processors. The purpose of this chap
ter is to expose students to the range of processors that are 
available to the designer. 

Chapter 10 deals with input/output techniques. We are inter
ested in the way in which information is transferred between 
a computer and peripherals. We also examine the buses, or 
data highways, along which data flows. This chapter is essen
tial reading. 

Chapter 11 introduces some of the basic peripherals you'd 
find in a typical PC such as the keyboard, display, printer, and 
mouse, as well as some of the more unusual peripherals that, 
for example, can measure how fast a body is rotating. 
Although these topics are often omitted from courses in com
puter hardware, students should scan this chapter to get some 
insight into how computers control the outside world. 

Chapter 12 looks at the memory devices used to store data in 
a computer. Information isn't stored in a computer in just 
one type of storage device. It's stored in DRAM and on disk, 
CD-ROM, DVD, and tape. This chapter examines the operat
ing principles and characteristics of the storage devices found 
in a computer. There's a lot of detail in this chapter. Some 
readers may wish to omit the design of memory systems (for 
example, address decoding and interfacing) and just concen
trate on the reasons why computers have so many different 
types of memory. 

Chapter 13 deals with hardware topics that are closely related 
to the computer's operating system. The two most important 
elements of a computer's hardware that concern the operating 
system are multiprogramming and memory management. 
These topics are intimately connected with interrupt handling 



Reading guide vii 

and data storage techniques and serve as practical examples of 
the use of the hardware described elsewhere. Those who 
require a basic introduction to computer hardware may omit 
this chapter, although it best illustrates how hardware and 
software come together in the operating system. 

Chapter 14 describes how computers can communicate with 
each other. The techniques used to link computers to create 

computer networks are not always covered by first-level texts 
on computer architecture. However, the growth of both local 
area networks and the Internet have propelled computer 
communications to the forefront of computing. For this rea
son we would expect students to read this chapter even if 
some of it falls outside the scope of their syllabus. 



THE HISTORY OF THIS BOOK 

Like people, books are born. Principles of Computer Hardware 
was conceived in December 1980. At the end of their first semes
ter our freshmen were given tests to monitor their progress. The 
results of the test in my'Principles of computer hardware' course 
were not as good as I'd hoped, so I decided to do something 
about it. I thought that detailed lecture notes written in a style 
accessible to the students would be the most effective solution. 

Having volunteered to give a course on computer commu
nications to the staff of die Computer Center during the 
Christmas vacation, I didn't have enough free time to produce 
me notes. By accident I found that the week before Christmas 
was the cheapest time of the year for vacations. So I went to 
one of the Canary Islands for a week, sat down by the pool, 
surrounded by folders full of reference material, with a bottle of 
Southern Comfort, and wrote the core of this book—number 
bases, gates, Boolean algebra, and binary arithmetic. Shortly 
afterwards I added the section on the structure of the CPU. 

These notes produced the desired improvement in the 
end-of-semester exam results and were well received by the 
students. In the next academic year my notes were transferred 
from paper to a mainframe computer and edited to include 
new material and to clean up the existing text. 

I decided to convert the notes into a book. The conversion 
process involved adding topics, not covered by our syllabus, 
to produce a more rounded text. While editing my notes, I 
discovered what might best be called the inkblot effect. Text 
stored in a computer tends to expand in all directions because 
it's so easy to add new material at any point; for example, you 
might write a section on disk drives. When you next edit the 
section on disks, you can add more depth or breadth. 

The final form of this book took a breadth before depth 
approach. That is, I covered a large number of topics rather 
man treating fewer topics in greater depdi. It was my intention 
to give students taking our introductory hardware/architecture 
course a reasonably complete picture of the computer system. 

The first edition of Principles of Computer Hardware 
proved successful and I was asked to write a second edition, 
which was published in 1990. The major change between the 
first and second editions was the adoption of the 68K micro
processors as a vehicle to teach computer architecture. I have 
retained this processor in the current edition. Although 
members of the Intel family have become the standard 

processors in the PC world, Motorola's 68K family of micro
processors is much better suited to teaching computer archi
tecture. In short, it supports most of the features that 
computer scientists wish to teach students, and just as impor
tantly, it's much easier to understand. The 68K family and its 
derivatives are widely used in embedded systems. 

By the mid-1990s the second edition was showing its age. 
The basic computer science and the underlying principles 
were still fine, but the actual hardware had changed dramati
cally over a very short time. The most spectacular progress 
was in the capacity of hard disks—by the late 1990s disk 
capacity was increasing by 60% per year. 

This third edition included a 68K cross-assembler and 
simulator allowing students to create and run 68K programs 
on any PC. It also added details of interesting microprocessor 
architecture, the ARM, which provides an interesting con
trast to the 68K. 

When I used the second edition to teach logic design to my 
students, they built simple circuits using logic trainers—boxes 
with power supplies and connectors that allow you to wire a 
handful of simple chips together. Dave Barker, one of my for
mer students, has constructed a logic simulator program as 
part of his senior year project called Digital Works, which 
runs under Windows on a PC. Digital Works allows you to 
place logic elements anywhere within a window and to wire 
the gates together. Inputs to the gates can be provided manu
ally (via the mouse) or from clocks and sequence generators. 
You can observe the outputs of the gates on synthesized LEDs 
or as a waveform or table. Moreover, Digital Works permits 
you to encapsulate a circuit in a macro and then use this 
macro in other circuits. In other words, you can take gates 
and build simple circuits, and take the simple circuits and 
build complex circuits, and so on. 

I began writing a fourth edition of this text in late 2003. 
The fundamental principles have changed little since the 
third edition, but processors had become faster by a factor of 
10 and the capacity of hard disks has grown enormously. This 
new edition is necessary to incorporate some of the advances. 
After consultation with those who adopt this book, we have 
decided to continue to use the 68K family to introduce the 
computer instruction set because this processor still has one 
of the most sophisticated of all instruction set architectures. 
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