
P R I N C I P L E S OF 

C O M P U T E R 
H A R D W A R E 

Alan Clements 
School of Computing 
University of Teesside 

Fourth Edition 

OXFORD 
UNIVERSITY PRESS 



PREFACE 

Principle of Computer Hardware is aimed at students taking 
an introductory course in electronics, computer science, or 
information technology. The approach is one of breadth 
before depth and we cover a wide range of topics under the 
general umbrella of computer hardware. 

I have written Principles of Computer Hardware to achieve 
two goals. The first is to teach students the basic concepts on 
which the stored-program digital computer is founded. 
These include the representation and manipulation of infor
mation in binary form, the structure or architecture of a com
puter, the flow of information within a computer, and the 
exchange of information between its various peripherals. We 
answer the questions, 'How does a computer work', and 'How 
is it organized?' The second goal is to provide students with a 
foundation for further study. In particular, the elementary 
treatment of gates and Boolean algebra provides a basis for 
a second-level course in digital design, and the introduction 
to the CPU and assembly-language programming provides a 
basis for advanced courses on computer architecture/organi
zation or microprocessor systems design. 

This book is written for those with no previous knowledge 
of computer architecture. The only background information 
needed by the reader is an understanding of elementary alge
bra. Because students following a course in computer science 
or computer technology will also be studying a high-level 
language, we assume that the reader is familiar with the con
cepts underlying a high-level language. 

When writing this book, I set myself three objectives. By 
adopting an informal style, I hope to increase the enthusiasm 
of students who may be put off by the formal approach of 
more traditional books. I have also tried to give students an 
insight into computer hardware by explaining why things are 
as they are, instead of presenting them with information to be 
learned and accepted without question. I have included sub
jects that would seem out of place in an elementary first-level 

course. Topics like advanced computer arithmetic, timing 
diagrams, and reliability have been included to show how the 
computer hardware of the real world often differs from that 
of the first-level course in which only the basics are taught. 
I've also broadened the range of topics normally found in 
first-level courses in computer hardware and provided sec
tions introducing operating systems and local area networks, 
as these two topics are so intimately related to the hardware of 
the computer. Finally, I have discovered that stating a formula 
or a theory is not enough—many students like to see an 
actual application of the formula. Wherever possible I have 
provided examples. 

Like most introductory books on computer architecture, 
I have chosen a specific microprocessor as a vehicle to illustrate 
some of the important concepts in computer architecture. The 
ideal computer architecture is rich in features and yet easy to 
understand without exposing the student to a steep learning 
curve. Some microprocessors have very complicated architec
tures that confront the students with too much fine detail early 
in their course. We use Motorola's 68K microprocessor because 
it is easy to understand and incorporates many of the most 
important features of a high-performance architecture. This 
book isn't designed to provide a practical assembly language 
programming course. It is intended only to illustrate the oper
ation of a central processing unit by means of a typical assem
bly language. We also take a brief look at other microprocessors 
to show the range of computer architectures available. 

You will see the words computer, CPU, processor, micro
processor, and microcomputer in this and other texts. The part 
of a computer that actually executes a program is called a 
CPU (central processing unit) or more simply a processor. 
A microprocessor is a CPU fabricated on a single chip of sili
con. A computer that is constructed around a microprocessor 
can be called a microcomputer. To a certain extent, these terms 
are frequendy used interchangeably. 



READING GUIDE 

We've already said that this book provides a traditional 
introductory course in computer architecture plus additional 
material to broaden its scope and fill in some of the gaps left 
in such courses. To help students distinguish between fore
ground and background material, the following guide will 
help to indicate the more fundamental components of the 
course. 

Chapter 2 introduces the logic of computers and deals with 
essential topics such as gates, Boolean algebra, and Karnaugh 
maps. Therefore this chapter is essential reading. 

Chapter 3 introduces sequential circuits such as the counter 
that steps through the instructions of a program and demon
strates how sequential circuits are designed. We first intro
duce fiie bistable (flip-flop) used to construct sequential 
circuits such as registers and counters. We don't provide a 
comprehensive introduction to the design of sequential cir
cuits; we show how gates and flip-flops can be used to create 
a computer. 

Chapter 4 deals with the representation of numbers and 
shows how arithmetic operations are implemented. Apart 
from some of the coding theory and details of multiplication 
and division, almost all this chapter is essential reading. 
Multiplication and division can be omitted if the student is 
not interested in how these operations are implemented. 

Chapter 5 is the heart of the book and is concerned with the 
structure and operation of the computer itself. We examine 
the instruction set of a processor with a sophisticated 
architecture. 

Chapter 6 provides an overview of assembly language pro
gramming and the design of simple 68K assembly language 
programs. This chapter relies heavily on the 68K cross-
assembler and simulator provided with the book. You can use 
this software to investigate the behavior of the 68K on a PC. 

Chapter 7 begins with a description of the functional units 
that make up a computer and the flow of data during the exe
cution of an instruction. We then describe the operation of 
the computer's control unit, which decodes and executes 
instructions. The control unit may be omitted on a first read
ing. Although the control unit is normally encountered in a 
second- or third-level course, we've included it here for the 
purpose of completeness and to show how the computer 
turns a binary-coded instruction into the sequence of events 
that carry out the instruction. 

Chapter 8 is concerned with the quest for performance. We 
look at how performance is measured and describe three 
techniques used to accelerate processors. All students should 
read about the first two acceleration techniques, pipelining 
and cache memory, but may omit parallel processing. 

Chapter 9 describes two contrasting computer architectures. 
Introductory texts on computer architecture are forced to 
concentrate on one processor because students do not have 
the time to plow through several different instruction sets. 
However, if we don't cover other architectures, students can 
end the course with a rather unbalanced view of processors. 
In this chapter we provide a very brief overview of several 
contrasting processors. We do not expect students to learn 
the fine details of these processors. The purpose of this chap
ter is to expose students to the range of processors that are 
available to the designer. 

Chapter 10 deals with input/output techniques. We are inter
ested in the way in which information is transferred between 
a computer and peripherals. We also examine the buses, or 
data highways, along which data flows. This chapter is essen
tial reading. 

Chapter 11 introduces some of the basic peripherals you'd 
find in a typical PC such as the keyboard, display, printer, and 
mouse, as well as some of the more unusual peripherals that, 
for example, can measure how fast a body is rotating. 
Although these topics are often omitted from courses in com
puter hardware, students should scan this chapter to get some 
insight into how computers control the outside world. 

Chapter 12 looks at the memory devices used to store data in 
a computer. Information isn't stored in a computer in just 
one type of storage device. It's stored in DRAM and on disk, 
CD-ROM, DVD, and tape. This chapter examines the operat
ing principles and characteristics of the storage devices found 
in a computer. There's a lot of detail in this chapter. Some 
readers may wish to omit the design of memory systems (for 
example, address decoding and interfacing) and just concen
trate on the reasons why computers have so many different 
types of memory. 

Chapter 13 deals with hardware topics that are closely related 
to the computer's operating system. The two most important 
elements of a computer's hardware that concern the operating 
system are multiprogramming and memory management. 
These topics are intimately connected with interrupt handling 



Reading guide vii 

and data storage techniques and serve as practical examples of 
the use of the hardware described elsewhere. Those who 
require a basic introduction to computer hardware may omit 
this chapter, although it best illustrates how hardware and 
software come together in the operating system. 

Chapter 14 describes how computers can communicate with 
each other. The techniques used to link computers to create 

computer networks are not always covered by first-level texts 
on computer architecture. However, the growth of both local 
area networks and the Internet have propelled computer 
communications to the forefront of computing. For this rea
son we would expect students to read this chapter even if 
some of it falls outside the scope of their syllabus. 



THE HISTORY OF THIS BOOK 

Like people, books are born. Principles of Computer Hardware 
was conceived in December 1980. At the end of their first semes
ter our freshmen were given tests to monitor their progress. The 
results of the test in my'Principles of computer hardware' course 
were not as good as I'd hoped, so I decided to do something 
about it. I thought that detailed lecture notes written in a style 
accessible to the students would be the most effective solution. 

Having volunteered to give a course on computer commu
nications to the staff of die Computer Center during the 
Christmas vacation, I didn't have enough free time to produce 
me notes. By accident I found that the week before Christmas 
was the cheapest time of the year for vacations. So I went to 
one of the Canary Islands for a week, sat down by the pool, 
surrounded by folders full of reference material, with a bottle of 
Southern Comfort, and wrote the core of this book—number 
bases, gates, Boolean algebra, and binary arithmetic. Shortly 
afterwards I added the section on the structure of the CPU. 

These notes produced the desired improvement in the 
end-of-semester exam results and were well received by the 
students. In the next academic year my notes were transferred 
from paper to a mainframe computer and edited to include 
new material and to clean up the existing text. 

I decided to convert the notes into a book. The conversion 
process involved adding topics, not covered by our syllabus, 
to produce a more rounded text. While editing my notes, I 
discovered what might best be called the inkblot effect. Text 
stored in a computer tends to expand in all directions because 
it's so easy to add new material at any point; for example, you 
might write a section on disk drives. When you next edit the 
section on disks, you can add more depth or breadth. 

The final form of this book took a breadth before depth 
approach. That is, I covered a large number of topics rather 
man treating fewer topics in greater depdi. It was my intention 
to give students taking our introductory hardware/architecture 
course a reasonably complete picture of the computer system. 

The first edition of Principles of Computer Hardware 
proved successful and I was asked to write a second edition, 
which was published in 1990. The major change between the 
first and second editions was the adoption of the 68K micro
processors as a vehicle to teach computer architecture. I have 
retained this processor in the current edition. Although 
members of the Intel family have become the standard 

processors in the PC world, Motorola's 68K family of micro
processors is much better suited to teaching computer archi
tecture. In short, it supports most of the features that 
computer scientists wish to teach students, and just as impor
tantly, it's much easier to understand. The 68K family and its 
derivatives are widely used in embedded systems. 

By the mid-1990s the second edition was showing its age. 
The basic computer science and the underlying principles 
were still fine, but the actual hardware had changed dramati
cally over a very short time. The most spectacular progress 
was in the capacity of hard disks—by the late 1990s disk 
capacity was increasing by 60% per year. 

This third edition included a 68K cross-assembler and 
simulator allowing students to create and run 68K programs 
on any PC. It also added details of interesting microprocessor 
architecture, the ARM, which provides an interesting con
trast to the 68K. 

When I used the second edition to teach logic design to my 
students, they built simple circuits using logic trainers—boxes 
with power supplies and connectors that allow you to wire a 
handful of simple chips together. Dave Barker, one of my for
mer students, has constructed a logic simulator program as 
part of his senior year project called Digital Works, which 
runs under Windows on a PC. Digital Works allows you to 
place logic elements anywhere within a window and to wire 
the gates together. Inputs to the gates can be provided manu
ally (via the mouse) or from clocks and sequence generators. 
You can observe the outputs of the gates on synthesized LEDs 
or as a waveform or table. Moreover, Digital Works permits 
you to encapsulate a circuit in a macro and then use this 
macro in other circuits. In other words, you can take gates 
and build simple circuits, and take the simple circuits and 
build complex circuits, and so on. 

I began writing a fourth edition of this text in late 2003. 
The fundamental principles have changed little since the 
third edition, but processors had become faster by a factor of 
10 and the capacity of hard disks has grown enormously. This 
new edition is necessary to incorporate some of the advances. 
After consultation with those who adopt this book, we have 
decided to continue to use the 68K family to introduce the 
computer instruction set because this processor still has one 
of the most sophisticated of all instruction set architectures. 



ACKNOWLEDGEMENTS 

Few books are entirely the result of one person's unaided 
efforts and this is no exception. I would like to thank all those 
who wrote the books about computers on which my own 
understanding is founded. Some of these writers conveyed the 
sheer fascination of computer architecture that was to change 
the direction of my own academic career. It really is amazing 
how a large number of gates (a circuit element whose opera
tion is so simple as to be trivial) can be arranged in such a way 
as to perform all the feats we associate computers with today. 

I am grateful for all the comments and feedback I've 
received from my wife, colleagues, students, and reviewers 
over the years. Their feedback has helped me to improve the 
text and eliminate some of the errors I'd missed in editing. 
More importantly, their help and enthusiasm has made the 
whole project worthwhile. 

Although I owe a debt of gratitude to a lot of people, I would 
like to mention four people who have had a considerable 

impact. Alan Knowles of Manchester University read drafts of 
both the second and third editions with a precision well 
beyond that of the average reviewer. Paul Lambert, one of my 
colleagues at The University of Teesside, wrote the 68K cross-
assembler and simulator that I use in my teaching. In this 
edition we have used a Windows-based graphical 68K 
simulator kindly provided by Charles Kelly. 

Dave Barker, one of my former students and an excellent 
programmer, wrote the logic simulator called Digital Works 
that accompanies this book. I would particularly like to thank 
Dave for providing a tool that enables students to construct 
circuits and test them without having to connect wires 
together. 

One of the major changes to the third edition was the 
chapter on the ARM processor. I would like to thank Steve 
Furber of Manchester University (one of the ARM's design
ers) for encouraging me to use this very interesting device. 



CONTENTS 

1 In t roduc t ion t o compu te r hardware 

1.1 What is computer hardware? 

1.2 Why do we teach computer hardware? 

1.2.1 Should computer architecture remain in the 

CS curriculum? 

1.2.2 Supporting the CS curriculum 

1.3 An overview of the book 

1.4 History of computing 

1.4.1 Navigation and mathematics 

1.4.2 The era of mechanical computers 

1.4.3 Enabling technology—the telegraph 

1.4.4 The first electromechanical computers 

1.4.5 The first mainframes 

1.4.6 The birth of transistors, ICs, and microprocessors 

1.4.7 Mass computing and the rise of the Internet 

1.5 The digital computer 

1.5.1 The PC and workstation 

1.5.2 The computer as a data processor 

1.5.3 The computer as a numeric processor 

1.5.4 The computer in automatic control 

1.6 The stored program computer—an overview 

1.7 The PC—a naming of parts 

SUMMARY 

PROBLEMS 

2 Gates, c i rcui ts, and comb ina t i ona l logic 

6 

6 

6 

8 

10 

11 

12 

14 

15 

15 

15 

16 

17 

19 

22 

23 
23 

25 

2.1 Analog and digital systems 26 

2.2 Fundamental gates 28 

2.2.1 The AND gate 28 

2.2.2 The OR gate 30 

2.2.3 The NOT gate 31 

2.2.4 The NAND and NOR gates 31 

2.2.5 Positive, negative, and mixed logic 32 

2.3 Applications of gates 34 

2.4 Introduction to Digital Works 40 

2.4.1 Creating a circuit 41 

2.4.2 Running a simulation 45 

2.4.3 The clock and sequence generator 48 

2.4.4 Using Digital Works to create embedded circuits 50 

2.4.5 Using a macro 52 

2.5 An introduction to Boolean algebra 56 

2.5.1 Axioms and theorems of Boolean algebra 56 

2.5.2 De Morgan's theorem 63 

2.5.3 Implementing logic functions in NAND or NOR two 

logic only 65 

2.5.4 Karnaugh maps 67 

2.6 Special-purpose logic elements 83 

2.6.1 The multiplexer 84 

2.6.2 The demultiplexer 84 

2.7 Tri-state logic 87 

2.7.1 Buses 88 

2.8 Programmable logic 91 

2.8.1 The read-only memory as a logic element 91 

2.8.2 Programmable logic families 93 

2.8.3 Modern programmable logic 94 

2.8.4 Testing digital circuits 96 

SUMMARY 98 

PROBLEMS 98 

3 Sequential logic 

3.1 The RS flip-flop 

3.1.1 Analyzing a sequential circuit by assuming initial 

conditions 

3.1.2 Characteristic equation of an RS flip-flop 

3.1.3 Building an RS flip-flop from NAND gates 

3.1.4 Applications of the RS flip-flop 

3.1.5 The clocked RS flip-flop 

3.2 The D flip-flop 

3.2.1 Practical sequential logic elements 

3.2.2 Using D flip-flops to create a register 

3.2.3 Using Digital Works to create a register 

3.2.4 A typical register chip 

3.3 Clocked flip-flops 

3.3.1 Pipelining 

3.3.2 Ways of clocking flip-flops 

3.3.3 Edge-triggered flip-flops 

3.3.4 The master-slave flip-flop 

3.3.5 Bus arbitration—an example 

3.4 The JK flip-flop 

3.5 Summary of flip-flop types 

101 

103 

104 
105 
106 
106 
108 

109 

110 
110 
111 
112 

113 

114 

115 

116 

117 

118 

120 

121 

1 

1 

2 

3 

4 

5 



xii Contents 

3.6 Applications of sequential elements 

3.6.1 Shift register 

3.6.2 Asynchronous counters 

3.6.3 Synchronous counters 

3.7 An introduction to state machines 

3.7.1 Example of a state machine 

3.7.2 Constructing a circuit to implement 

the state table 

SUMMARy 

PROBLEMS 

4 Computer a r i thmet i c 

4.1 Bits, bytes, words, and characters 

4.2 Number bases 

4.3 Number base conversion 

4.3.1 Conversion of integers 

4.3.2 Conversion of fractions 

4.4 Special-purpose codes 

4.4.1 BCD codes 

4.4.2 Unweighted codes 

4.5 Error-detecting codes 

4.5.1 Parity EDCs 

4.5.2 Error-correcting codes 

4.5.3 Hamming codes 

4.5.4 Hadamard codes 

4.6 Data-compressing codes 

4.6.1 Huffman codes 

4.6.2 Quadtrees 

4.7 Binary arithmetic 

4.7.1 The half adder 

4.7.2 The full adder 

4.7.3 The addition of words 

4.8 Signed numbers 

4.8.1 Sign and magnitude representation 

4.8.2 Complementary arithmetic 

4.8.3 Two's complement representation 

4.8.4 One's complement representation 

4.9 Floating point numbers 

4.9.1 Representation of floating point numbers 

4.9.2 Normalization of floating point numbers 

4.9.3 Floating point arithmetic 

4.9.4 Examples of floating point calculations 

4.10 Multiplication and division 

4.10.1 Multiplication 

4.10.2 Division 

SUMMARY 

PROBLEMS 

122 

122 

128 

132 

134 

136 

138 

139 
140 

5 The ins t ruc t ion set arch i tec ture 203 

145 

146 

148 

150 

150 

152 

153 

153 

154 

156 

158 

158 

160 

161 

163 

164 

167 

169 

170 

171 

173 

175 

176 

176 

177 

180 

181 

182 

183 

186 

188 

189 

189 

194 

198 
198 

5.1 What is an instruction set architecture? 

5.2 Introduction to the CPU 

5.2.1 Memory and registers 

5.2.2 Register transfer language 

5.2.3 Structure of the CPU 

5.3 The 68K family 

5.3.1 The instruction 

5.3.2 Overview of addressing modes 

5.4 Overview of the 68K's instructions 

5.4.1 Status flags 

5.4.2 Data movement instructions 

5.4.3 Arithmetic instructions 

5.4.4 Compare instructions 

5.4.5 Logical instructions 

5.4.6 Bit instructions 

5.4.7 Shift instructions 

5.4.8 Branch instructions 

5UMMARY 

PROBLEMS 

6 Assembly language p rog ramming 

6.1 Structure of a 68K assembly language program 

6.1.1 Assembler directives 

6.1.2 Using the cross-assembler 

6.2 The 68K's registers 

6.2.1 Data registers 

6.2.2 Address registers 

6.3 Features of the 68K's instruction set 

6.3.1 Data movement instructions 

6.3.2 Using arithmetic operations 

6.3.3 Using shift and logical operations 

6.3.4 Using conditional branches 

6.4 Addressing modes 

6.4.1 Immediate addressing 

6.4.2 Address register indirect addressing 

6.4.3 Relative addressing 

6.5 The stack 

6.5.1 The 68K stack 

6.5.2 The stack and subroutines 

6.5.3 Subroutines, the stack, and parameter 

passing 

6.6 Examples of 68K programs 

6.6.1 A circular buffer 

SUMMARY 

PROBLEMS 

204 

206 

207 

208 

209 

210 

210 

215 

217 

217 

218 

218 

220 

220 

221 

221 

223 

226 
226 

228 

228 

229 

232 

234 

235 

236 

237 

237 

241 

244 

244 

249 

249 

250 

259 

262 

263 

266 

271 

280 

282 

287 
287 



Contents xiii 

7 Structure of the CPU 293 

7.1 The CPU 

7.1.1 The address path 

7.1.2 Reading the instruction 

7.1.3 The CPU's data paths 

7.1.4 Executing conditional instructions 

7.1.5 Dealing with literal operands 

7.2 Simulating a CPU 

7.2.1 CPU with an 8-bit instruction 

7.2.2 CPU with a 16-bit instruction 

7.3 The random logic control unit 

7.3.1 Implementing a primitive CPU 

7.3.2 From op-code to operation 

7.4 Microprogrammed control units 

7.4.1 The microprogram 

7.4.2 Microinstruction sequence control 

7.4.3 User-microprogrammed processors 

SUMMARY 

PROBLEMS 

8 Accelerat ing per formance 

8.1 Measuring performance 

8.1.1 Comparing computers 

8.2 The RISC revolution 

8.2.1 Instruction usage 

8.2.2 Characteristics of RISC architectures 

8.3 RISC architecture and pipelining 

8.3.1 Pipeline hazards 

8.3.2 Data dependency 

8.3.3 Reducing the branch penalty 

8.3.4 Implementing pipelining 

8.4 Cache memory 

8.4.1 Effect of cache memory on computer 

performance 

8.4.2 Cache organization 

8.4.3 Considerations in cache design 

8.5 Multiprocessor systems 

8.5.1 Topics in Multiprocessor Systems 

8.5.2 Multiprocessor organization 

8.5.3 MIMD architectures 

SUMMARY 

PROBLEMS 

9 Processor architectures 

294 

294 

295 

296 

298 

300 

300 

301 

304 

308 

308 

312 

315 

316 

319 

320 

322 
322 

325 

326 

326 

327 

328 

329 

335 

336 

338 

339 

341 

344 

345 

346 

350 

350 

352 

353 

356 

362 
362 

365 

9.1.2 Instruction formats 

9.1.3 Instruction types 

9.1.4 Addressing modes 

9.1.5 On-chip peripherals 

9.2 The microcontroller 

9.2.1 TheM68HC12 

9.3 The ARM—an elegant RISC processor 

9.3.1 ARM'S registers 

9.3.2 ARM instructions 

9.3.3 ARM branch instructions 

9.3.4 Immediate operands 

9.3.5 Sequence control 

9.3.6 Data movement and memory reference 

instructions 

9.3.7 Using the ARM 

SUMMARY 

PROBLEMS 

9.1 Instruction set architectures and their resources 365 

9.1.1 Register sets 365 

11.1 Simple input devices 

11.1.1 The keyboard 

11.1.2 Pointing devices 

11.2 CRT, LED, and plasma displays 

11.2.1 Raster-scan displays 

11.2.2 Generating a display 

11.2.3 Liquid crystal and plasma displays 

11.2.4 Drawing lines 

11.3 The printer 

11.3.1 Printing a character 

11.3.2 The Inkjet printer 

11.3.3 The laser printer 

366 

366 

367 

367 

367 

368 

375 

375 

377 

380 

381 

381 

382 

385 

397 
398 

10 Buses and i n p u t / o u t p u t mechanisms 399 

10.1 The bus 400 

10.1.1 Bus architecture 400 

10.1.2 Key bus concepts 400 

10.1.3 The PC bus 404 

10.1.4 The IEEE 488 bus 407 

10.1.5 The USB serial bus 411 

10.2 I/O fundamentals 412 

10.2.1 Programmed I/O 413 

10.2.2 Interrupt-driven I/O 415 

10.3 Direct memory access 422 

10.4 Parallel and serial interfaces 423 

10.4.1 The parallel interface 424 

10.4.2 The serial interface 428 

SUMMARY 433 
PROBLEMS 433 

11 Computer Peripherals 435 

436 

436 

440 

444 

445 

445 

447 

450 

452 

453 

453 

455 



xiv Contents 

11.4 Color displays and printers 

11.4.1 Theory of color 

11.4.2 Color CRTs 

11.4.3 Color printers 

11.5 Other peripherals 

11.5.1 Measuring position and movement 

11.5.2 Measuring temperature 

11.5.3 Measuring light 

11.5.4 Measuring pressure 

11.5.5 Rotation sensors 

11.5.6 Biosensors 

11.6 The analog interface 

11.6.1 Analog signals 

11.6.2 Signal acquisition 

11.6.3 Digital-to-analog conversion 

11.6.4 Analog-to-digital conversion 

11.7 Introduction to digital signal processing 

11.7.1 Control systems 

11.7.2 Digital signal processing 

SUMMARY 

PROBLEMS 

457 

457 

458 

460 

461 

461 

463 

464 

464 

464 

465 

466 

466 

467 

473 

477 

486 

486 

488 

491 
492 

12 Computer memory 493 

12.1 Memory hierarchy 493 

12.2 What is memory? 496 

12.3 Memory technology 496 

12.3.1 Structure modification 496 

12.3.2 Delay tines 496 

12.3.3 Feedback 496 

12.3.4 Charge storage 497 

12.3.5 Magnetism 498 

12.3.6 Optical 498 

12.4 Semiconductor memory 498 

12.4.1 Static semiconductor memory 498 

12.4.2 Accessing memory—timing diagrams 499 

12.4.3 Dynamic memory 501 

12.4.4 Read-only semiconductor memory devices 505 

12.5 Interfacing memory to a CPU 506 

12.5.1 Memory organization 507 

12.5.2 Address decoders 508 

12.6 Secondary storage 515 

12.6.1 Magnetic surface recording 515 

12.6.2 Data encoding techniques 521 

12.7 Disk drive principles 524 

12.7.1 Disk drive operational parameters 527 

12.7.2 High-performance drives 529 

12.7.3 RAID systems 

12.7.4 The floppy disk drive 

12.7.5 Organization of data on disks 

12.8 Optical memory technology 

12.8.1 Storing and reading information 

12.8.2 Writable CDs 

SUMMARY 

PROBLEMS 

13 The operating system 

13.1 The operating system 

13.1.1 Types of operating system 

13.2 Multitasking 

13.2.1 What is a process? 

13.2.2 Switching processes 

13.3 Operating system support from the CPU 

13.3.1 Switching states 

13.3.2 The 68K's two Stacks 

13.4 Memory management 

13.4.1 Virtual memory 

13.4.2 Virtual memory and the 68K family 

SUMMARY 

PROBLEMS 

14 Computer communications 

14.1 Background 

14.1.1 Local area networks 

14.1.2 LAN network topology 

14.1.3 History of computer communications 

14.2 Protocols and computer communications 

14.2.1 Standards bodies 

14.2.2 Open systems and standards 

14.3 The physical layer 

14.3.1 Serial data transmission 

14.4 The PSTN 

14.4.1 Channel characteristics 

14.4.2 Modulation and data transmission 

14.4.3 High-speed transmission over the PSTN 

14.5 Copper cable 

14.5.1 Ethernet 

14.6 Fiber optic links 

14.7 Wireless links 

14.7.1 Spread spectrum technology 

531 

532 

533 

536 

537 

540 

543 

543 

547 

547 

548 

550 

551 

551 

554 

555 

556 

561 

563 

565 

568 

568 

569 

570 

571 

572 

574 

576 

578 

578 

584 

584 

587 

587 

588 

591 

592 

593 

595 

596 

598 



Contents x v 

14.8 The data link layer 599 

14.8.1 Bit-oriented protocols 599 

14.8.2 The Ethernet data link layer 603 

14.9 Routing techniques 604 

14.9.1 Centralized routing 607 

14.9.2 Distributed routing 607 

14.9.3 IP (Internet protocol) 607 

SUMMARY 609 

PROBLEMS 610 

Appendix:The 68000 instruction set 611 

Bibliography 641 

Index 643 

Contents and installation instructions for the CD-Rom 653 




