Studies in Environmental Science 33

PRINCIPLES OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY

by S.E. JØRGENSEN

Langkaer Vaenge 9, 3500 Vaerløse, Copenhagen, Denmark

and

I. JOHNSEN

Institut for Økologisk Botanik, Københavns Universitet, Øster Farimagsgade 2D, 1353 Copenhagen, Denmark

ELSEVIER AMSTERDAM — OXFORD — NEW YORK — TOKYO 1989

This is the second edition of the book "Principles of Environmental Science and Technology". The first edition has been widely used as a textbook at university level for graduate courses in environmental management, environmental science and environmental technology (for non-engineers). As this second edition is significantly improved, it is our hope that it may find an even wider application than the first edition.

The second edition has been improved on the following points:

- 1) The section on ecotoxicology and effects on pollutants has been expanded considerably.
- 2) Chapter 4 on ecological principles and concepts has been expanded.
- 3) A section on ecological engineering the application of ecologically sound technology in the ecosystems has been added.
- 4) The problems of agricultural waste have been included in part B and in chapter 6 on waste water treatment several pages have been added about non-point sources and the application of "soft" technology.
- 5) More examples, questions and problems have been added.
- 6) An appendix on environmental examination of chemicals has been added.
- 7) All the principles have been shown in the text by use of bold letters.
- 8) Several figures and tables have been added to illustrate the text better.

The users of the first edition have given many useful advices, which have improved the text of the book. The author would also like to thank Judit Flesborg for a skilled transfer of the text to a Macintosh computer.

> S.E. Jørgensen Copenhagen, May 88.

CONTENTS

CHAPTER 1

INTRODUCTION		
1.1 ENVIRONMENTAL SCIENCE - A	AN INTERDISCIPLINARY FIELD 1	1
1.2 RELATION BETWEEN ENVIRON	MENTAL SCIENCE AND	
TECHNOLOGY MANAGEMENT, E	COLOGY AND MODELLING 1:	3
1.3 LEVELS OF ORGANIZATION	15	5
		_

1.4	THE ENVIRONMENTAL CRISIS	16
1.5	FOCUS ON PRINCIPLES OF ENVIRONMENTAL SCIENCE	20
1.6	PRINCIPLES OF ENVIRONMENTAL TECHNOLOGY	22
1.7	HOW TO SOLVE ENVIRONMENTAL PROBLEMS	24

13 15

PART A

PRINCIPLES OF ENVIRONMENTAL SCIENCE

CHAPTER 2

MASS CONSERVATION

2.1	EVERYTHING MUST GO SOMEWHERE	29
2.2	THRESHOLD LEVELS	34
2.3	BASIC CONCEPTS OF MASS BALANCE	40
2.4	LIFE CONDITIONS	47
2.5	THE GLOBAL ELEMENT CYCLES	58
2.6	OXYGEN BALANCE OF A RIVER	65
2.7	THE EUTROPHICATION PROBLEM	83
2.8	MASS CONSERVATION IN A FOOD CHAIN	95
2.9	MASS CONSERVATION IN A SOCIETY	98
2.10	THE HYDROLOGICAL CYCLE	104
2.11	PLUME DISPERSION	107
2.12	EFFECTS OF AIR POLLUTANTS	114
2.13	PRINCIPLES OF ECOTOXICOLOGY	118

CHAPTER 3

PRINCIPL	ES OF ENERGY BEHAVIOUR APPLIED TO ENVIRONMENTAL ISSUES	
3.1	FUNDAMENTAL CONCEPTS RELATED TO ENERGY	143
3.2	ENERGY USE AND ENERGY RESOURCES	148
3.3	PRODUCTIVITY	151

CHAPTER 3 (continued) 3.4 ENERGY IN ECOSYSTEMS 3.5 ENERGY CONSUMPTION AND THE GLOBAL ENERGY BALANCE 3.6 ENERGY BUDGETS OF ANIMALS AND PLANTS 181 CHAPTER 4 ECOLOGICAL PRINCIPLES AND CONCEPTS

0200.		
4.1	ECOSYSTEM CHARACTERISTICS	187
4.2	ADAPTATION	189
4.3	GROWTH AND SELF-REGULATION	193
4.4	INTERACTION BETWEEN TWO OR MORE SPECIES	201
4.5	ORGANIZATION OF ECOSYSTEMS	206
4.6	DEVELOPMENT AND EVOLUTION OF THE ECOSYSTEM	216
4.7	pH-BUFFERING CAPACITY IN ECOSYSTEMS	224
4.8	OTHER BUFFERING EFFECTS IN ECOSYSTEMS	243
4.9	THE ECOSPHERE	246
4.10	APPLICATION OF ECOLOGICAL ENGINEERING	250

CHAPTER 5

AN OVERVIEW OF THE MAJOR ENVIRONMENTAL PROBLEMS OF TODAY

5.1	APPLICATION OF PRINCIPLES TO ENVIRONMENTAL PROBLEMS	257
5.2	AIR POLLUTION	259
5.3	PESTICIDES, AND OTHER TOXIC COMPOUNDS	260
5.4	THE PROBLEM OF HEAVY METALS	262
5.5	WATER POLLUTION PROBLEMS	271
5.6	NOISE POLLUTION	272
5.7	SOLID WASTE POLLUTION	273
5.8	FOOD ADDITIVES	275
5.9	ALTERNATIVE ENERGY	277

PART B PRINCIPLES OF ENVIRONMENTAL TECHNOLOGY

CHAPTER 6

WATER AND WASTE WATER PROBLEMS

- 6.1 INTRODUCTION TO THE PROBLEMS OF WATER AND WASTE WATER 283
- 6.2 REDUCTION OF THE BIOLOGICAL OXYGEN DEMAND 287

CHAPTE	R 6 (co	ntinued)	
	6.2.1	The BOD ₅ -problem and its sources	287
	6.2.2	Mechanical treatment methods	289
	6.2.3	Biological treatment processes	298
	6.2.4	Mechanico-biological treatment systems	313
	6.2.5	Other methods used for BOD-removal	316
6.3	NUTRI	ENT REMOVAL	322
	6.3.1	The eutrophication problem and its sources	322
	6.3.2	Chemical precipitation of phosphorous compounds	325
	6.3.3	Nitrification and denitrification	341
	6.3.4	Stripping	345
	6.3.5	Chlorination and adsorption on activated carbon	349
	6.3.6	Application of ion exchange for removal of nutrients	352
6.4	REMO	VAL OF TOXIC ORGANIC COMPOUNDS	361
	6.4.1	The problem and source of toxic organic compounds	361
	6.4.2	Application of chemical precipitation for treatment	
		of industrial waste water	365
	6.4.3	Application of adsorption for treatment of	
		industrial waste water	366
	6.4.4	Application of chemical oxidation and reduction	
		for treatment of industrial waste water	374
6.5	REMO	VAL OF (HEAVY) METALS	380
	6.5.1	The problem of heavy metals	380
	6.5.2	The application of chemical precipitation for	
		removal of heavy metals	382
	6.5.3	The application of ion exchange for removal of	
		heavy metals	389
	6.5.4	The application of extraction for removal of	
2		heavy metals	391
	6.5.5	Application of membrane process for removal of	
		heavy metals	392
6.6	WATE	RRESOURCES	397
	6.6.1	Introduction	397
	6.6.2	Softening	400
	6.6.3	Disinfection processes	403
CHAPTER			
THE SOLI	D WAS	TE PROBLEMS	

7.1	SOUR	CES, MANAGEMENT AND METHODS	419
	7.1.1	Classification of solid waste	419
	7.1.2	Examination of mass flows	420

СНАРТЕ	R 7 (continued)	
	7.1.3 Methods for treatment of solid waste	422
7.2	TREATMENT OF SLUDGE	423
	7.2.1 Sludge handling	423
	7.2.2 Characteristics of sludge	423
	7.2.3 Conditioning of sludge	427
	7.2.4 Thickening of sludge	427
	7.2.5 Centrifugation of sludge	429
	7.2.6 Digestion of sludge	430
	7.2.7 Drying and combustion	433
7.3	DOMESTIC GARBAGE	436
	7.3.1 Characteristics of domestic garbage	436
	7.3.2 Separation methods	437
	7.3.3 Dumping ground (landfills)	438
	7.3.4 Composting	439
	7.3.5 Incineration of domestics garbage	441
	7.3.6 Pyrolysis	445
7.4	INDUSTRIAL, MINING AND HOSPITAL WASTE	445
	7.4.1 Characteristics of the waste	445
	7.4.2 Treatment methods	446
7.5	AGRICULTURAL WASTE	447
	7.5.1 Characteristics of agricultural waste	447
	7.5.2 Treatment methods	447

CHAPTER 8

AIR POLLUTION PROBLEMS

8.1	THE PROBLEMS OF AIR POLLUTION - AN OVERVIEW	449
8.2	PARTICULATE POLLUTION	450
	8.2.1 Sources of particulate pollution	450
	8.2.2 The particulate pollution problem	450
	8.2.3 Control methods applied to particulate pollution	452
	8.2.4 Modifying the distribution patterns	453
	8.2.5 Settling chambers	457
	8.2.6 Cyclones	459
	8.2.7 Filters	462
	8.2.8 Electrostatic precipitators	466
	8.2.9 Wet scrubbers	469
	8.2.10 Modification of particulate characteristics	473
8.3	THE AIR POLLUTION PROBLEMS OF CARBON DIOXIDE, CARBON	
	HYDRIDES AND CARBON MONOXIDE	475
	8.3.1 Sources of pollutants	475

CHAPTER 8 (continued)

	8.3.2	The pollution problem of carbon dioxide, carbon	
		hydrides and carbon monoxide	477
	8.3.3	Control methods applied to carbon dioxide,	
		carbon hydrides and carbon monoxide pollution	477
8.4	THE A	R POLLUTION PROBLEM OF SULPHUR DIOXIDE	480
	8.4.1	The sources of sulphur dioxide pollution	480
	8.4.2	The sulphur dioxide pollution problem	480
	8.4.3	Control methods applied to sulphur dioxide	481
	8.4.4	Flue gas cleaning of sulphur dioxide	482
8.5	THE A	R POLLUTION PROBLEM OF NITROGENOUS GASES	482
	8.5.1	The source of nitrogenous gases	482
	8.5.2	The nitrogenous gas pollution problem	483
	8.5.3	Control methods applied to nitrogenous gases	484
8.6	INDUS	TRIAL AIR POLLUTION	484
	8.6.1	Overview	484
	8.6.2	Control methods applied to industrial air pollution	485
	8.6.3	Gas absorption	486
	8.6.4	Gas adsorption	487
	8.6.5	Combustion	491

CHAPTER 9

EXAMINATION OF POLLUTION

9.1	INTRODUCTION	493
9.2	EXAMINATION OF WATER AND WASTE WATER	493
	9.2.1 Collection and preservation of samples	493
	9.2.2 Insoluble material	496
	9.2.3 Biological oxygen demand	497
	9.2.4 Chemical kinetics and dynamics in water systems	499
	9.2.5 Analysis of organic compounds in aqueous systems	500
	9.2.6 Analysis of inorganic compounds in aqueous systems	503
	9.2.7 Bacterial and viral analysis of water	506
	9.2.8 Toxicity of bioassay techniques	508
	9.2.9 Measurement of taste and smell	511
	9.2.10 Standards in quality control	511
9.3	EXAMINATION OF SOLIDS	513
	9.3.1 Pretreatment and digestion of solid material	513
	9.3.2 Examination of sludge	514
	9.3.3 Examination of sediments	515
9.4	EXAMINATION OF AIR POLLUTION	516
	9.4.1 Introduction	516

CHAPTER 9 (continued)

9.4.2	Meteorological conditions	519
9.4.3	Gaseous air pollutants	524
9.4.4	Particulate matter	528
9.4.5	Heavy metals	529
9.4.6	Hydrocarbons and carbon monoxide	530
9.4.7	Biological monitoring	533
APPENDIXES		541
REFERENCES		597
INDEX		617