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Preface

This book is entirely devoted to numerical algorithms for optimization, their
theoretical foundations and convergence properties, as well as their imple-
mentation, their use, and other practical aspects. The aim is to familiarize
the reader with these numerical algorithms: understanding their behaviour
in practice, properly using existing software libraries, adequately designing
and implementing “home-made” methods, correctly diagnosing the causes
of possible difficulties. Expected readers are engineers, Master or Ph.D. stu-
dents, confirmed researchers, in applied mathematics or from various other
disciplines where optimization is a need.

Our aim is therefore not to give most accurate results in optimization, nor
to detail the latest refinements of such and such method. First of all, little is
said concerning optimization theory itself (optimality conditions, constraint
qualification, stability theory). As for algorithms, we limit ourselves most of
the time to stable and well-established material. Throughout we keep as a
leading thread the actual practical value of optimization methods, in terms of
their efficiency to solve real-world problems. Nevertheless, serious attention is
paid to the theoretical properties of optimization methods: this book is mainly
based upon theorems. Besides, some new and promising results or approaches
could not be completely discarded; they are also presented, generally in the
form of special sections, mainly aimed at orienting the reader to the relevant
bibliography.

An introductory chapter gives some generalities on optimization and it-
erative algorithms. It contains in particular motivating examples, ranking
from meteorological forecast to power production management; they illus-
trate the large field of branches where optimization finds its applications.
Then come four parts, rather independent of each other. The first one is
devoted to algorithms for unconstrained optimization which, in addition to
their direct usefulness, are a basis for more complex problems. The second
part concerns rather special methods, applicable when the usual differentia-
bility assumptions are not satisfied. Such methods appear in the decompo-
sition of large-scale problems and the relaxation of combinatorial problems.
Nonlinearly constrained optimization forms the third part, substantially more
technical, as the subject is still in evolution. Finally, the fourth part gives a
deep account of the more recent interior point methods, originally designed
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for the simpler problems of linear and quadratic programming, and whose
application to more general situations is the subject of active research.

This book is a translated and improved version of the monograph [43],
written in French. The French monograph was used as the textbook of an
intensive two week course given several times by the authors, both in France
and abroad. Each topic was presented from a theoretical point of view in
morning lectures. The afternoons were devoted to implementation issues and
related computational work. The conception of such a course is due to J.-B.
Hiriart-Urruty, to whom the authors are deeply indebted.

Finally, three of the authors express their warm gratitude to Claude
Lemaréchal for having given the impetus to this new work by providing a
first English version.

Notes on this revised edition. Besides minor corrections, the present
version contains substantial changes with respect to the first edition. First
of all, (simplified but) nontrivial application problems have been inserted.
They involve the typical operations to be performed when one is faced with a
real-life application: modelling, choice of methodology and some theoretical
work to motivate it, computer implementation. Such computational exercises
help getting a better understanding of optimization methods beyond their
theoretical description, by addressing important features to be taken into
account when passing to implementation of any numerical algorithm.

In addition, the theoretical background in Part I now includes a discus-
sion on global convergence, and a section on the classical pivotal approach
to quadratic programming. Part II has been completely reorganized and ex-
panded. The introductory chapter, on basic subdifferential calculus and du-
ality theory, has two examples of nonsmooth functions that appear often in
practice and serve as motivation (pointwise maximum and dual functions).
A new section on convergence results for bundle methods has been added.
The chapter on applications of nonsmooth optimization, previously focusing
on decomposition of complex problems via Lagrangian duality, describes also
extensions of bundle methods for handling varying dimensions, for solving
constrained problems, and for solving generalized equations. Also, a brief
commented review of existing software for nonlinear optimization has been
added in Part III.

Finally, the reader will find additional information at http://www-rocq.
inria.fr/~gilbert/bgls. The page gathers the data for running the test
problems, various optimization codes, including an SQP solver (in Matlab),
and pieces of software that solve the computational exercises.

Paris, Grenoble, Rio de Janeiro, J. Frédéric Bonnans
May 2006 J. Charles Gilbert
Claude Lemaréchal

Claudia A. Sagastizdbal
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