MACHINE IMARNING

TOM M. MITCHELL

CONTENTS

	Pre	ace	XV	
		Acknowledgments	xvi	
1	Introduction			
	1.1	Well-Posed Learning Problems	2	
	1.2 Designing a Learning System		2 5	
	55000	1.2.1 Choosing the Training Experience		
		1.2.2 Choosing the Target Function	5	
		1.2.3 Choosing a Representation for the Target Function	8	
		1.2.4 Choosing a Function Approximation Algorithm	9	
		1.2.5 The Final Design	11	
	1.3	Perspectives and Issues in Machine Learning	14	
		1.3.1 Issues in Machine Learning	15	
	1.4	How to Read This Book	16	
	1.5 Summary and Further Reading		17	
		Exercises	18	
		References	19	
2	Concept Learning and the General-to-Specific Ordering 2			
	2.1	Introduction	20	
	2.2			
		2.2.1 Notation	21 22	
		2.2.2 The Inductive Learning Hypothesis	23	
	2.3	Concept Learning as Search	23	
		2.3.1 General-to-Specific Ordering of Hypotheses	24	
	2.4	FIND-S: Finding a Maximally Specific Hypothesis	26	
	2.5			
		Algorithm	29	
		2.5.1 Representation	29	
		2.5.2 The LIST-THEN-ELIMINATE Algorithm	30	
		2.5.3 A More Compact Representation for Version Space	es 30	

		2.5.4 CANDIDATE-ELIMINATION Learning Algorithm 2.5.5 An Illustrative Example	32 33
	2.6	2.5.5 An Illustrative Example Remarks on Version Spaces and CANDIDATE-ELIMINATION	37
	2.0	2.6.1 Will the Candidate-Elimination Algorithm	51
		Converge to the Correct Hypothesis?	37
		2.6.2 What Training Example Should the Learner Request	
		Next?	37
		2.6.3 How Can Partially Learned Concepts Be Used?	38
	2.7	Inductive Bias	39
		2.7.1 A Biased Hypothesis Space	40
		2.7.2 An Unbiased Learner	40
		2.7.3 The Futility of Bias-Free Learning	42
	2,8	Summary and Further Reading	45
		Exercises	47
		References	50
3	Decision Tree Learning		
	3.1	Introduction	52
	3.2	Decision Tree Representation	52
	3.3	Appropriate Problems for Decision Tree Learning	54
	3.4	The Basic Decision Tree Learning Algorithm	55
		3.4.1 Which Attribute Is the Best Classifier?	55
		3.4.2 An Illustrative Example	59
	3.5	Hypothesis Space Search in Decision Tree Learning	60
	3.6	Inductive Bias in Decision Tree Learning	63
		3.6.1 Restriction Biases and Preference Biases	63
		3.6.2 Why Prefer Short Hypotheses?	65
	3.7	Issues in Decision Tree Learning	66
		3.7.1 Avoiding Overfitting the Data	66
		3.7.2 Incorporating Continuous-Valued Attributes	72
		3.7.3 Alternative Measures for Selecting Attributes	73
		3.7.4 Handling Training Examples with Missing Attribute	
		Values	75
	2.0	3.7.5 Handling Attributes with Differing Costs	75
	3.8	Summary and Further Reading Exercises	76 77
		References	78
	A	C. IN IN IN	0.1
4		ficial Neural Networks	81
	4.1	Introduction	81
		4.1.1 Biological Motivation	82
	4.2	Neural Network Representations	82
	4.3	Appropriate Problems for Neural Network Learning	83
	4.4	Perceptrons 4.4.1 Representational Power of Perceptrons	86 86
		4.4.1 Representational Power of Perceptrons 4.4.2 The Perceptron Training Rule	88
		4.4.3 Gradient Descent and the Delta Rule	89
		4.4.4 Remarks	94
		11.11.1 1.40.11100.00	

			CONTENTS	ix		
	4.5	Multila	ayer Networks and the BACKPROPAGATION Algorithm	95		
		4.5.1	A Differentiable Threshold Unit	95		
		4.5.2	The BACKPROPAGATION Algorithm	97		
		4.5.3	Derivation of the BACKPROPAGATION Rule	101		
	4.6	Remar	ks on the BACKPROPAGATION Algorithm	104		
		4.6.1	Convergence and Local Minima	104		
		4.6.2		105		
		4.6.3		106		
		4.6.4	Hidden Layer Representations	106		
		4.6.5	Generalization, Overfitting, and Stopping Criterion	108		
	4.7	An Illi	ustrative Example: Face Recognition	112		
		4.7.1	The Task	112		
		4.7.2	Design Choices	113		
		4.7.3	Learned Hidden Representations	116		
	4.8	Advan	iced Topics in Artificial Neural Networks	117		
		4.8.1	Alternative Error Functions	117		
		4.8.2	Alternative Error Minimization Procedures	119		
		4.8.3	Recurrent Networks	119		
		4.8.4	Dynamically Modifying Network Structure	121		
	4.9	Summ	ary and Further Reading	122		
		Exerci	ses	124		
		Refere	ences	126		
5	Eva	Evaluating Hypotheses				
	5.1	Motivation				
5.2 Estimating Hypothesis Accur		Estima	ating Hypothesis Accuracy	129		
		5.2.1	Sample Error and True Error	130		
		5.2.2	Confidence Intervals for Discrete-Valued Hypotheses	131		
	5.3	Basics	of Sampling Theory	132		
		5.3.1	Error Estimation and Estimating Binomial Proportions	133		
		5.3.2	The Binomial Distribution	135		
		5,3,3	Mean and Variance	136		
		5.3.4	Estimators, Bias, and Variance	137		
		5.3.5	Confidence Intervals	138		
		5.3.6	Two-Sided and One-Sided Bounds	141		
	5.4	A Gen	neral Approach for Deriving Confidence Intervals	142		
		5.4.1	Central Limit Theorem	142		
	5.5	Differe	ence in Error of Two Hypotheses	143		
		5.5.1	Hypothesis Testing	144		
	5.6	Compa	aring Learning Algorithms	145		
		5.6.1	Paired t Tests	148		
		5.6.2	Practical Considerations	149		
	5.7	Summ	ary and Further Reading	150		
		Exerci	ses	152		
		Refere	ences	152		
5	Bay	esian l	Learning	154		
	6.1	Introde	uction	154		
	6.2	Bayes	Theorem	156		
		6.2.1	An Example	157		

	0.5	bayes Theorem and Concept Dearning	150
		6.3.1 Brute-Force Bayes Concept Learning	159
		6.3.2 MAP Hypotheses and Consistent Learners	162
	6.4	Maximum Likelihood and Least-Squared Error Hypotheses	164
	6.5	Maximum Likelihood Hypotheses for Predicting Probabilities	167
	drip.	6.5.1 Gradient Search to Maximize Likelihood in a Neural	
		Net	170
	6.6	Minimum Description Length Principle	171
	6.7	Bayes Optimal Classifier	174
	6.8	Gibbs Algorithm	176
	6.9	Naive Bayes Classifier	177
		6.9.1 An Illustrative Example	178
	6.10	An Example: Learning to Classify Text	180
	0.10	6.10.1 Experimental Results	182
	611		184
	6.11	Bayesian Belief Networks	
		6.11.1 Conditional Independence	185
		6.11.2 Representation	186
		6.11.3 Inference	187
		6.11.4 Learning Bayesian Belief Networks	188
		6.11.5 Gradient Ascent Training of Bayesian Networks	188
		6.11.6 Learning the Structure of Bayesian Networks	190
	6.12	The EM Algorithm	191
		6.12.1 Estimating Means of k Gaussians	191
		6.12.2 General Statement of EM Algorithm	194
		6.12.3 Derivation of the k Means Algorithm	195
	6.13	Summary and Further Reading	197
		Exercises	198
		References	199
7	Con	nputational Learning Theory	201
	7.1	Introduction	201
	7.2	Probably Learning an Approximately Correct Hypothesis	203
		7.2.1 The Problem Setting	203
		7.2.2 Error of a Hypothesis	204
		7.2.3 PAC Learnability	205
	7.3	Sample Complexity for Finite Hypothesis Spaces	207
		7.3.1 Agnostic Learning and Inconsistent Hypotheses	210
		7.3.2 Conjunctions of Boolean Literals Are PAC-Learnable	211
		7.3.3 PAC-Learnability of Other Concept Classes	212
	7.4	Sample Complexity for Infinite Hypothesis Spaces	214
	1.4		214
		[
		7.4.2 The Vapnik-Chervonenkis Dimension	215
		7.4.3 Sample Complexity and the VC Dimension	217
		7.4.4 VC Dimension for Neural Networks	218
	7.5	The Mistake Bound Model of Learning	220
		7.5.1 Mistake Bound for the FIND-S Algorithm	220
		7.5.2 Mistake Bound for the HALVING Algorithm	221
		7.5.3 Optimal Mistake Bounds	222
		7.5.4 WEIGHTED-MAJORITY Algorithm	223

		CONTENTS	xi
	7.6	Summary and Further Reading	225
		Exercises	227
		References	229
8	Instance-Based Learning		
	8.1	Introduction	230
	8.2	k-Nearest Neighbor Learning	231
		8.2.1 Distance-Weighted NEAREST NEIGHBOR Algorithm	233
		8.2.2 Remarks on k-NEAREST NEIGHBOR Algorithm	234
		8.2.3 A Note on Terminology	236
	8.3	Locally Weighted Regression	236
		8.3.1 Locally Weighted Linear Regression	237
		8.3.2 Remarks on Locally Weighted Regression	238
	8.4	Radial Basis Functions	238
	8.5	Case-Based Reasoning	240
	8.6	Remarks on Lazy and Eager Learning	244
	8.7	Summary and Further Reading	245
		Exercises	247
		References	247
9	Gen	etic Algorithms	249
	9.1	Motivation	249
	9.2	Genetic Algorithms	250
		9.2.1 Representing Hypotheses	252
		9.2.2 Genetic Operators	253
		9.2.3 Fitness Function and Selection	255
	9.3	An Illustrative Example	256
		9.3.1 Extensions	258
	9.4	Hypothesis Space Search	259
		9.4.1 Population Evolution and the Schema Theorem	260
	9.5	Genetic Programming	262
		9.5.1 Representing Programs	262
		9.5.2 Illustrative Example	263
		9.5.3 Remarks on Genetic Programming	265
	9.6	Models of Evolution and Learning	266
		9.6.1 Lamarckian Evolution	266
		9.6.2 Baldwin Effect	267
	9.7	Parallelizing Genetic Algorithms	268
	9.8	Summary and Further Reading	268
		Exercises	270
		References	270
10	Lear	ning Sets of Rules	274
	10.1	Introduction	274
	10.2	Sequential Covering Algorithms	275
		10.2.1 General to Specific Beam Search	277
		10.2.2 Variations	279
	10.3	Learning Rule Sets: Summary	280

	10.4	Learning First-Order Rules	283
		10.4.1 First-Order Horn Clauses	283
		10.4.2 Terminology	284
	10.5	Learning Sets of First-Order Rules: FOIL	285
		10.5.1 Generating Candidate Specializations in FOIL	287
		10.5.2 Guiding the Search in FOIL	288
		10.5.3 Learning Recursive Rule Sets	290
		10.5.4 Summary of FOIL	290
	10.6		291
	10.7		293
	470000	10.7.1 First-Order Resolution	296
		10.7.2 Inverting Resolution: First-Order Case	297
		10.7.3 Summary of Inverse Resolution	298
		10.7.4 Generalization, θ-Subsumption, and Entailment	299
		10.7.5 Progot.	300
	10.8	2000 To 1 2 90 To 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	301
	4.010	Exercises	303
		References	304
		(K) C45 C4500 (W)	-
11	Ana	lytical Learning	307
		Introduction	307
		11.1.1 Inductive and Analytical Learning Problems	310
	11.2	[2] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1	312
		11.2.1 An Illustrative Trace	313
	11.3		319
		11.3.1 Discovering New Features	320
		11.3.2 Deductive Learning	321
		11.3.3 Inductive Bias in Explanation-Based Learning	322
		11.3.4 Knowledge Level Learning	323
	11.4		325
	11.5		328
		Exercises	330
		References	331
SVEST			
12	Con	bining Inductive and Analytical Learning	334
	12.1	Motivation	334
	12.2	Inductive-Analytical Approaches to Learning	337
		12.2.1 The Learning Problem	337
		12.2.2 Hypothesis Space Search	339
	12.3	Using Prior Knowledge to Initialize the Hypothesis	340
		12.3.1 The KBANN Algorithm	340
		12.3.2 An Illustrative Example	341
		12.3.3 Remarks	344
	12.4	Using Prior Knowledge to Alter the Search Objective	346
		12.4.1 The TangentProp Algorithm	347
		12,4.2 An Illustrative Example	349
		12.4.3 Remarks	350
		12.4.4 The EBNN Algorithm	351
		12.4.5 Pamarks	255

		CONTENTS	xiii
	12.5 Using Prior Knowledge to Augment Search		
	Operators		357
	12.5.1 The FOCL Algorithm		357
	12.5.2 Remarks		360
	12.6 State of the Art		361
	12.7 Summary and Further Reading		362
	Exercises		363
	References		364
13	Reinforcement Learning		367
	13.1 Introduction		367
	13.2 The Learning Task		370
	13.3 Q Learning		373
	13.3.1 The Q Function		374
	13.3.2 An Algorithm for Learning Q		374
	13.3.3 An Illustrative Example		376
	13.3.4 Convergence		377
	13.3.5 Experimentation Strategies		379
	13.3.6 Updating Sequence		379
	13.4 Nondeterministic Rewards and Actions		381
	13.5 Temporal Difference Learning		383
	13.6 Generalizing from Examples		384
	13.7 Relationship to Dynamic Programming		385
	13.8 Summary and Further Reading		386
	Exercises		388
	References		388
Appendix	Notation		391
	Indexes		
	Author Index		394
	Subject Index		400