
SOFTWARE MAINTENANCE
Concepts and Practice

SECOND Er ITION

Penn y Grub b (University of Hull, UK) &
Arms t ron g A Takan g (Software Systems Consultant, USA)

VJ>Worl d Scientifi cNew Jersey London Singapore Hong Kong

Acknowledgement s

To our families, especially

 George and Danny (and thanks for all that proof-reading)

 Ayem, Bessem and Nyente.

The authors would like to thank colleagues and friends in the various
health care facilities across the world whose software trials and
tribulations have been amalgamated into the Acme Health Clinic case
studies used in the book.

Thanks also to Steven Patt and his colleagues for editorial
assistance.

V

Prefac e

Aims and Objectives

The purpose of this book is to explore the key issues underpinning
software change and to discuss how these issues impact on the
implementation of changes to software systems. The motivation for the
book came from the need for texts dealing directly with challenges that
software engineers face when modifying complex software systems. The
extent of this challenge can be seen in the cost of modifying software.
This cost can reach 70% of the total life-cycle cost [4, 36, 176].
Software maintenance is recognised as a key area in software
engineering [9, 163]. Despite this, many mainstream software
engineering courses are biased towards the development of new software
systems at the expense of issues surrounding changes to these systems
after they become operational [70].

Our intention is to produce a text that presents:

 a coherent and comprehensive coverage of software change
concepts;

 a theoretical base for the skills required to effect, control and manage
changes to evolving software systems;

 a framework for understanding and applying current maintenance
techniques and methods to solve problems.

This is not a cookbook; there is no set of cut and dried rules for
dealing with the problems of software maintenance. An elegant and
workable solution in one situation may be completely inadequate for the
same problem in a different environment. Nonetheless, it is essential for
software engineers to have a sound understanding of software
maintenance for several reasons. Firstly, it is common wisdom that a
large part of finding a solution to a problem lies in understanding it.
Secondly, an insight into the issues underpinning software maintenance
can help in the formulation of an adequate framework that can be used to
guide the development of appropriate support tools. This framework also
enables researchers to identify potential research questions and compare
research findings.

vii

vii i Software Maintenance: Concepts and Practice

Target Audience

This book is aimed at students, academics and professionals who have an
interest in the development and maintenance of software systems.

It is intended as a reference text and also as a course book for
software maintenance, software evolution and general courses on
advanced software engineering. It can also serve as an introductory text
for those intending to engage in research into software maintenance.

For undergraduate study, the book aims to raise awareness of
software maintenance issues, for example the need to develop programs
that cater for the evolutionary tendency of software systems. This not
only provides a grounding in the discipline, but is also a preparation for
lif e in the commercial world. The first job of many graduates going into
the software industry involves the maintenance of existing systems rather
than the development of new systems [187, 282]. Additionally, the book
is intended to complement other undergraduate software engineering and
programming courses.

For software professionals, the text provides a collection of
definitions for some of the commonly used terms. This is important
because of the plethora of terms and jargon in use [211]. In addition, the
case studies and real world examples provided should help during in-
service training or refresher courses on software maintenance.

Structure and Organisation of this Book

The book is organised into five parts.

The first part looks at the context of software maintenance. It
introduces the basic concepts and the framework within which
maintenance operates. Underlying theory is introduced by looking at the
fundamentals of software change, but real world considerations are also
introduced at this stage. This part of the book concludes with a look at
how software development and maintenance life-cycles are modelled.

The second part of the book goes through the activities that take
place during maintenance, starting with understanding the system to be
changed, through the specifics of making the change and testing the
modified system, to the managerial issues and decision-making that
accompanies the process.

Preface ix

The third part looks at means of measurement and assessment,
both of the overall process and of the components of software and
software maintenance, showing how to keep track and provide objective
assessment.

These first three parts of the book look at what software
maintenance is and how to do it. In total they build the case for
maintainability in systems.

The fourth part looks at how these lessons can be used in the
building of better systems.

The fifth and final part looks at research areas and the future for
the discipline of software maintenance.

Each major section is preceded by a number of discussion points
aimed at provoking thought about some of the fundamental issues.

Exercises throughout the book vary from straightforward
questions on the details of the text, to more complex role-playing
projects where the reader is asked to put themselves into a particular
maintenance context and think through a specific problem.

Both minor and major case studies are used throughout to relate
the material to what is happening at the coal face of software
maintenance.

Contents
ACKNOWLEDGEMENT S V

PREFACE VI I

PART I: THE CONTEXT OF MAINTENANC E 1

OVERVIEW 1

DISCUSSION POINTS 2

1. INTRODUCTIO N TO THE BASIC CONCEPTS 5

1.1 INTRODUCTION 5

1.2 DEFINITIONS 6

1.3 THE BASICS 7

1.4 How NEW DEVELOPMENT AND MAINTENANCE ACTIVITIE S

DIFFER 9

1.5 WHY SOFTWARE MAINTENANCE is NEEDED 10

1.6 MAINTAININ G SYSTEMS EFFECTIVELY 11

1.7 CASE STUDY-A I R TRAFFIC CONTROL 12

1.8 CATEGORISING SOFTWARE CHANGE 14

1.9 SUMMARY 15

2. THE MAINTENANC E FRAMEWOR K 17

2.1 INTRODUCTION 17

2.2 DEFINITIONS 17

2.3 A SOFTWARE MAINTENANCE FRAMEWORK 18

2.3.1 Components of the Framework 20
2.3.1.1 User 20
2.3.1.2 Environment 20

Operating environment 20
Organisational Environment 21

2.3.1.3 Maintenance Process 23
2.3.1.4 Software Product 25
2.3.1.5 Maintenance Personnel 28

2.3.2 Relations Between the Maintenance Factors 29
2.4 SUMMARY 31

3. FUNDAMENTALS OF SOFTWARE CHANGE 33

3.1 INTRODUCTION 33

3.2 DEFINITIONS 33

3.3 SOFTWARE CHANGE 34

3.3.1 Classification of Changes 34
3.3.1.1 Corrective Change 35

xi

xii Software Maintenance: Concepts and Practice

3.3.1.2 Adaptive Change 36
3.3.1.3 Perfective Change 36
3.3.1.4 Preventive Change 39

3.3.2 The Importance of Categorising Software Changes 40
3.3.3 Case Study - The Need to Support an Obsolete

System 40
3.3.4 Incremental Release 41

3.4 ONGOING SUPPORT 42

3.5 LEHMAN'S LAWS 44

3.6 SUMMARY 46

4. LIMITATION S AND ECONOMI C IMPLICATION S TO
SOFTWARE CHANGE 47

4.1 INTRODUCTION 47

4.2 DEFINITIONS 47

4.3 ECONOMIC IMPLICATIONS OF MODIFYING SOFTWARE 48

4.4 LIMITATION S TO SOFTWARE CHANGE 50

4.4.1 Resource Limitations 50
4.4.2 Quality of the Existing System 51
4.4.3 Organisational Strategy 51
4.4.4 Inertia 51
4.4.5 Attracting and Retaining Skilled Staff 52

4.5 THE NOMENCLATURE AND IMAGE PROBLEMS 52
4.6 POTENTIAL SOLUTIONS TO MAINTENANCE PROBLEMS 54

4.6.1 Budget and Effort Reallocation 54
4.6.2 Complete Replacement of the System 55
4.6.3 Maintenance of the Existing System 56

4.7 SUMMARY 56

5. THE MAINTENANC E PROCESS 59

5.1 INTRODUCTION 59

5.2 DEFINITIONS 60

5.3 THE SOFTWARE PRODUCTION PROCESS 60

5.4 CRITICAL APPRAISAL OF TRADITIONAL PROCESS MODELS 65

5.4.1 Code-and-Fix Model 66
5.4.2 Waterfall Model 67
5.4.3 Spiral Model 69

5.5 MAINTENANCE PROCESS MODELS 71

5.5.1 Quick-Fix Model 76
5.5.1.1 Case Study - Storage of Chronological

Clinical Data 77
5.5.2 Boehm's Model 80
5.5.3 Osborne's Model 82
5.5.4 Iterative Enhancement Model 84

Contents xiii

5.5.5 Reuse-Oriented Model 85
5.6 WHEN TO MAK E A CHANGE 86

5.7 PROCESS MATURITY 87

5.7.1 Capability Maturity Model® for Software 88
5.7.2 Software Experience Bases 88

5.8 SUMMARY 89

PART II : WHAT TAKE S PLACE DURING MAINTENANC E 91

OVERVIEW 91

DISCUSSION POINTS 94

6. PROGRAM UNDERSTANDING 97

6.1 INTRODUCTION 98

6.2 DEFINITIONS 98

6.3 AIM S OF PROGRAM COMPREHENSION 100

6.3.1 Problem Domain 100
6.3.2 Execution Effect 101
6.3.3 Cause-Effect Relation 101
6.3.4 Product-Environment Relation 103
6.3.5 Decision-Support Features 103

6.4 MAINTAINER S AND THEIR INFORMATION NEEDS 103

6.4.1 Managers 104
6.4.2 Analysts 104
6.4.3 Designers 105
6.4.4 Programmers 105

6.5 COMPREHENSION PROCESS MODELS 107

6.6 MENTALMODEL S 109

6.7 PROGRAM COMPREHENSION STRATEGIES '. 110

6.7.1 Top-Down Model I l l
6.7.2 Bottom-Up / Chunking Model 113
6.7.3 Opportunistic Model 115

6.8 READING TECHNIQUES 115

6.9 FACTORS THAT AFFECT UNDERSTANDING 116

6.9.1 Expertise 118
6.9.2 Implementation Issues 118

6.9.2.1 Naming Style 118
6.9.2.2 Comments 120
6.9.2.3 Decomposition Mechanism 121

6.9.3 Documentation 122
6.9.4 Organisation and Presentation of Programs 122
6.9.5 Comprehension Support Tools 125

6.9.5.1 Book Paradigm 125
6.9.6 Evolving Requirements 126

xiv Software Maintenance: Concepts and Practice

6.10 IMPLICATIONS OF COMPREHENSION THEORIES AND STUDIES 128

6.10.1 Knowledge Acquisition and Performance 128
6.10.2 Education and Training 129
6.10.3 Design Principles 129
6.10.4 Guidelines and Recommendations 129

6.11 SUMMARY 130

7. REVERSE ENGINEERIN G 133

7.1 INTRODUCTION 133

7.2 DEFINITIONS 134

7.3 ABSTRACTION 134

7.3.1 Function Abstraction 135
7.3.2 Data Abstraction 135
7.3.3 Process Abstraction 135

7.4 PURPOSE AND OBJECTIVES OF REVERSE ENGINEERING 135

7.5 LEVELS OF REVERSE ENGINEERING 138

7.5.1 Redocumentation 139
7.5.2 Design Recovery 141
7.5.3 Specification Recovery 142
7.5.4 Conditions for Reverse Engineering 143

7.6 SUPPORTING TECHNIQUES 143

7.6.1 Forward Engineering 144
7.6.2 Restructuring 144
7.6.3 Reengineering 146

7.7 BENEFITS 146
7.7.1 Maintenance 146
7.7.2 Software Reuse 147
7.7.3 Reverse Engineering and Associated Techniques in

Practice 147
7.8 CASE STUDY: US DEPARTMENT OF DEFENSE INVENTORY 148

7.9 CURRENT PROBLEMS 149

7.10 SUMMARY ...: 151

8. REUSE AND REUSABILIT Y 153

8.1 INTRODUCTION 154

8.2 DEFINITIONS 154

8.3 THE TARGETS FOR REUSE 155

8.3.1 Process 155
8.3.2 Personnel 156
8.3.3 Product 156
8.3.4 Data 156

8.3.4.1 Design 156
8.3.4.2 Program 157

Contents xv

8.4 OBJECTIVES AND BENEFITS OF REUSE 158

8.5 APPROACHES TO REUSE 159

8.5.1 Composition-Based Reuse 160
8.5.2 Generation-Based Reuse 162

8.5.2.1 Application Generator Systems 162
8.5.2.2 Transformation-Based Systems 163
8.5.2.3 Evaluation of the Generator-Based Systems 164

8.6 DOMAI N ANALYSI S 164

8.7 COMPONENTS ENGINEERING 166

8.7.1 Design for Reuse 166
8.7.1.1 Characteristics of Reusable Components 166
8.7.1.2 Problems with Reuse Libraries 168

8.7.2 Reverse Engineering 169
8.7.2.1 Case Study-Patient Identification 170

8.7.3 Components-Based Processes 171
8.8 REUSE PROCESS MODEL 172

8.8.1 Generic Reuse/Reusability Model 173
8.8.2 Accommodating a Reuse Process Model 176

8.9 FACTORS THAT IMPACT UPON REUSE 177

8.9.1 Technical Factors 177
8.9.1.1 Programming Languages 177
8.9.1.2 Representation of Information 177
8.9.1.3 Reuse Library 178
8.9.1.4 Reuse-Maintenance Vicious Cycle 178

8.9.2 Non-Technical Factors 178
8.9.2.1 Initial Capital Outlay 178
8.9.2.2 Not Invented Here Factor 179
8.9.2.3 Commercial Interest .179
8.9.2.4 Education 179
8.9.2.5 Project Co-ordination 179
8.9.2.6 Legal Issues 179

8.10 SUMMARY 181

9. TESTING 183

9.1 INTRODUCTION 183

9.2 DEFINITIONS 183

9.3 WHY TEST SOFTWARE 184

9.4 WHAT is A SOFTWARE TESTER'S JOB 186

9.5 WHAT TO TEST AND How 187

9.5.1 Who Chooses Test Data 187
9.6 CATEGORISING TESTS 189

9.6.1 Testing Code 190
9.6.1.1 Black Box and White Box Testing 190
9.6.1.2 Structured Testing 190
9.6.1.3 Integration Testing 191

xvi Software Maintenance: Concepts and Practice

9.6.1.4 Regression Testing 191
9.7 VERIFICATION AND VALIDATIO N 192

9.8 TEST PLANS 192

9.8.1 Points to Note 193
9.9 CASE STUDY - T H E R AC 25 194

9.10 SUMMARY 201

10. MANAGEMEN T AND ORGANISATIONA L ISSUES 203

10.1 INTRODUCTION 204

10.2 DEFINITIONS 205

10.3 MANAGEMENT RESPONSIBILITIES 205

10.4 ENHANCING MAINTENANC E PRODUCTIVITY 206

10.4.1 Choosing the Right People 206
10.4.2 Motivating Maintenance Personnel 206
10.4.3 Communication 208

10.4.3.1 Adequate Resources 209
10.4.3.2 Domain Knowledge 209

10.5 MAINTENANC E TEAMS 210
10.5.1 Temporary Team 211
10.5.2 Permanent Team 211

10.6 PERSONNEL EDUCATION AND TRAINING 211

10.6.1 Objectives 212
10.6.1.1 To Raise the Level of Awareness 212
10.6.1.2 To Enhance Recognition 213

10.6.2 Education and Training Strategies 213
10.7 ORGANISATIONAL MODES 214

10.7.1 Combined Development and Maintenance 214
10.7.1.1 Module Ownership 214
10.7.1.2 Change Ownership 215
10.7.1.3 Work-Type 215
10.7.1.4 Application-Type 216

10.7.2 Separate Maintenance Department 216
10.8 SUMMARY 217

PART III : KEEPIN G TRACK OF THE MAINTENANC E PROCESS 219

OVERVIEW 219

DISCUSSION POINTS 220

11. CONFIGURATIO N MANAGEMEN T 223

11.1 INTRODUCTION 2 23

11.2 DEFINITIONS 225

11.3 CONFIGURATION MANAGEMENT 226

11.3.1 A Specific View of Software Configuration
Management 231

Contents xvii

11.3.1.1 Version Control 232
11.3.1.2 Building 234
11.3.1.3 Environment Management 234
11.3.1.4 Process Control 235

11.4 CHANGE CONTROL 235

11.4.1 The Responsibilities of Management in Change
Control 236

11.5 DOCUMENTATION 238

11.5.1 Categories of Software Documentation 238
11.5.2 Role of Software Documentation 241
11.5.3 Producing and Maintaining Quality Documentation 242

11.6 SUMMARY 245

12. MAINTENANC E MEASURES 247

12.1 INTRODUCTION 247

12.2 DEFINITIONS 248

12.3 THE IMPORTANCE OF INTEGRITY IN MEASUREMENT 249

12.3.1 Software Measurement 250
12.3.2 Software Measure and Software Metric 251

12.4 OBJECTIVES OF SOFTWARE MEASUREMENT 253

12.4.1 Evaluation 253
12.4.2 Control 253
12.4.3 Assessment 253
12.4.4 Improvement 254
12.4.5 Prediction 254

12.5 EXAMPLE MEASURES 254

12.5.1 Size 255
12.5.2 Complexity 255

12.5.2.1 McCabe's Cyclomatic Complexity 256
12.5.2.2 Halstead's Measures 257

12.5.3 Quality 259
12.5.3.1 Product Quality 259
12.5.3.2 Process Quality 259

12.5.4 Understandability 260
12.5.5 Maintainability 260
12.5.6 Cost Estimation 261

12.6 GUIDELINES FOR SELECTING MAINTENANCE MEASURES 2 61
12.7 SUMMARY 263

PART IV : BUILDIN G BETTER SYSTEMS 265

OVERVIEW 265

DISCUSSION POINTS 2 66

xviii Software Maintenance: Concepts and Practice

13. BUILDIN G AND SUSTAINING MAINTAINABILIT Y 269

13.1 INTRODUCTION 270

13.2 DEFINITIONS 270

13.3 IMPACT ANALYSI S 271

13.3.1 Models and Strategies 271
13.3.2 Impact Analysis in Creating Maintainable Systems 272

13.4 QUALITY ASSURANCE 272

13.4.1 Fitness for Purpose 273
13.4.2 Correctness 274
13.4.3 Portability 274
13.4.4 Testability 275
13.4.5 Usability 275

13.4.5.1 Case Study-Usability 275
13.4.6 Reliability 276
13.4.7 Efficiency 277
13.4.8 Integrity 277
13.4.9 Reusability 278
13.4.10 Interoperability 278

13.5 FOURTH-GENERATION LANGUAGES 279

13.5.1 Properties of Fourth-Generation Languages 281
13.5.2 Impact on Maintenance 282

13.5.2.1 Increased Productivity 282
13.5.2.2 Reduction in Cost 283
13.5.2.3 Ease of Understanding 283
13.5.2.4 Automatic Documentation 283
13.5.2.5 Reduction in Workload 283

13.5.3 Weaknesses of Fourth-Generation Languages 283
13.5.3.1 Application-Specific 284
13.5.3.2 Proprietary 284
13.5.3.3 Hyped Ease of Use 284
13.5.3.4 Poor Design 284

13.6 OBJECT-ORIENTED PARADIGMS 285

13.6.1 Decomposition to Aid Comprehension 286
13.6.2 Impact on Maintenance 288
13.6.3 Migration to Object-Oriented Platforms 290
13.6.4 Approaches 290
13.6.5 Retraining Personnel 291

13.7 OBJECT-ORIENTED TECHNIQUES IN SOFTWARE MAINTENANCE 292

13.7.1 Case Study -Mobile2OOO 292
13.7.2 Case Study - Insight II 293
13.7.3 Case Study - Image Filing System 295

13.8 SUMMARY 297

Contents xix

14. MAINTENANC E TOOLS 299

14.1 INTRODUCTION 299

14.2 DEFINITIONS 300

14.3 CRITERIA FOR SELECTING TOOLS 300

14.4 TAXONOMY OF TOOLS 302

14.5 TOOLS FOR COMPREHENSION AND REVERSE ENGINEERING 302

14.5.1 Program Slicer 303
14.5.2 Static Analyser 303
14.5.3 Dynamic Analyser 304
14.5.4 Data Flow Analyser 304
14.5.5 Cross-Referencer 304
14.5.6 Dependency Analyser 305
14.5.7 Transformation Tool 305

14.6 TOOLS TO SUPPORT TESTING 305

14.6.1 Simulator 305
14.6.2 Test Case Generator 306
14.6.3 Test Paths Generator 306

14.7 TOOLS TO SUPPORT CONFIGURATION MANAGEMENT 306

14.7.1 Source Code Control System 307
14.7.2 Other Utilities 308

14.8 OTHER TASKS 308

14.8.1 Documentation 308
14.8.2 Complexity Assessment 308

14.9 SUMMARY 309

PART V: LOOKIN G TO THE FUTURE 311

OVERVIEW 311

THE PAST AND PRESENT 312

RESEARCH AREAS 313

Classification 313
Software Experience Bases 313
Software Reuse 313
Support Tools 314
Software Measurement 314
Program Comprehension 314
The Software Maintenance Process 315
The Threesome Marriage 315

THE BEST OF BOTH WORLDS 316

REFERENCES 317

INDEX 341

