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Prefac e

Aims  and Objectives

The purpose of this book is to explore the key issues underpinning
software change and to discuss how these issues impact on the
implementation of changes to software systems. The motivation for the
book came from the need for texts dealing directly with challenges that
software engineers face when modifying complex software systems. The
extent of this challenge can be seen in the cost of modifying software.
This cost can reach 70% of the total life-cycle cost [4, 36, 176].
Software maintenance is recognised as a key area in software
engineering [9, 163]. Despite this, many mainstream software
engineering courses are biased towards the development of new software
systems at the expense of issues surrounding changes to these systems
after they become operational [70].

Our intention is to produce a text that presents:

 a coherent and comprehensive coverage of software change
concepts;

 a theoretical base for the skills required to effect, control and manage
changes to evolving software systems;

 a framework for understanding and applying current maintenance
techniques and methods to solve problems.

This is not a cookbook; there is no set of cut and dried rules for
dealing with the problems of software maintenance. An elegant and
workable solution in one situation may be completely inadequate for the
same problem in a different environment. Nonetheless, it is essential for
software engineers to have a sound understanding of software
maintenance for several reasons. Firstly, it is common wisdom that a
large part of finding a solution to a problem lies in understanding it.
Secondly, an insight into the issues underpinning software maintenance
can help in the formulation of an adequate framework that can be used to
guide the development of appropriate support tools. This framework also
enables researchers to identify potential research questions and compare
research findings.
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vii i Software Maintenance: Concepts and Practice

Target  Audience

This book is aimed at students, academics and professionals who have an
interest in the development and maintenance of software systems.

It is intended as a reference text and also as a course book for
software maintenance, software evolution and general courses on
advanced software engineering. It can also serve as an introductory text
for those intending to engage in research into software maintenance.

For undergraduate study, the book aims to raise awareness of
software maintenance issues, for example the need to develop programs
that cater for the evolutionary tendency of software systems. This not
only provides a grounding in the discipline, but is also a preparation for
lif e in the commercial world. The first job of many graduates going into
the software industry involves the maintenance of existing systems rather
than the development of new systems [187, 282]. Additionally, the book
is intended to complement other undergraduate software engineering and
programming courses.

For software professionals, the text provides a collection of
definitions for some of the commonly used terms. This is important
because of the plethora of terms and jargon in use [211]. In addition, the
case studies and real world examples provided should help during in-
service training or refresher courses on software maintenance.

Structure  and Organisation  of  this  Book

The book is organised into five parts.

The first part looks at the context of software maintenance. It
introduces the basic concepts and the framework within which
maintenance operates. Underlying theory is introduced by looking at the
fundamentals of software change, but real world considerations are also
introduced at this stage. This part of the book concludes with a look at
how software development and maintenance life-cycles are modelled.

The second part of the book goes through the activities that take
place during maintenance, starting with understanding the system to be
changed, through the specifics of making the change and testing the
modified system, to the managerial issues and decision-making that
accompanies the process.
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The third part looks at means of measurement and assessment,
both of the overall process and of the components of software and
software maintenance, showing how to keep track and provide objective
assessment.

These first three parts of the book look at what software
maintenance is and how to do it. In total they build the case for
maintainability in systems.

The fourth part looks at how these lessons can be used in the
building of better systems.

The fifth and final part looks at research areas and the future for
the discipline of software maintenance.

Each major section is preceded by a number of discussion points
aimed at provoking thought about some of the fundamental issues.

Exercises throughout the book vary from straightforward
questions on the details of the text, to more complex role-playing
projects where the reader is asked to put themselves into a particular
maintenance context and think through a specific problem.

Both minor and major case studies are used throughout to relate
the material to what is happening at the coal face of software
maintenance.
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