
Software Engineering
A P R A C T I T I O N E R ’ S A P P R O A C H

SEVENTH EDITION

Roger S. Pressman, Ph.D.

pre75977_FM.qxd 11/27/08 6:38 PM Page iii

Roger S. Pressman is an internationally recognized authority in software process

improvement and software engineering technologies. For almost four decades,

he has worked as a software engineer, a manager, a professor, an author, and a con-

sultant, focusing on software engineering issues.

As an industry practitioner and manager, Dr. Pressman worked on the development

of CAD/CAM systems for advanced engineering and manufacturing applications. He

has also held positions with responsibility for scientific and systems programming.

After receiving a Ph.D. in engineering from the University of Connecticut,

Dr. Pressman moved to academia where he became Bullard Associate Professor of

Computer Engineering at the University of Bridgeport and director of the university’s

Computer-Aided Design and Manufacturing Center.

Dr. Pressman is currently president of R.S. Pressman & Associates, Inc., a consulting

firm specializing in software engineering methods and training. He serves as principal

consultant and has designed and developed Essential Software Engineering, a complete

video curriculum in software engineering, and Process Advisor, a self-directed system

for software process improvement. Both products are used by thousands of companies

worldwide. More recently, he has worked in collaboration with EdistaLearning in India

to develop comprehensive Internet-based training in software engineering.

Dr. Pressman has written many technical papers, is a regular contributor to

industry periodicals, and is author of seven technical books. In addition to Software

Engineering: A Practitioner’s Approach, he has co-authored Web Engineering

(McGraw-Hill), one of the first books to apply a tailored set of software engineering

principles and practices to the development of Web-based systems and applications.

He has also written the award-winning A Manager’s Guide to Software Engineering

(McGraw-Hill); Making Software Engineering Happen (Prentice Hall), the first book to

address the critical management problems associated with software process

improvement; and Software Shock (Dorset House), a treatment that focuses on soft-

ware and its impact on business and society. Dr. Pressman has been on the editorial

boards of a number of industry journals, and for many years, was editor of the

“Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry

conferences. He is a member of the IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa

Nu, and Pi Tau Sigma.

On the personal side, Dr. Pressman lives in South Florida with his wife, Barbara.

An athlete for most of his life, he remains a serious tennis player (NTRP 4.5) and a

single-digit handicap golfer. In his spare time, he has written two novels, The Aymara

Bridge and The Puppeteer, and plans to begin work on another.

ABOUT THE AUTHOR

vi

pre75977_FM.qxd 11/27/08 6:38 PM Page vi

CONTENTS AT A GLANCE

CHAPTER 1 Software and Software Engineering 1

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 2 Process Models 30

CHAPTER 3 Agile Development 65

PART TWO MODELING 95

CHAPTER 4 Principles that Guide Practice 96

CHAPTER 5 Understanding Requirements 119

CHAPTER 6 Requirements Modeling: Scenarios, Information, and Analysis Classes 148

CHAPTER 7 Requirements Modeling: Flow, Behavior, Patterns, and WebApps 186

CHAPTER 8 Design Concepts 215

CHAPTER 9 Architectural Design 242

CHAPTER 10 Component-Level Design 276

CHAPTER 11 User Interface Design 312

CHAPTER 12 Pattern-Based Design 347

CHAPTER 13 WebApp Design 373

PART THREE QUALITY MANAGEMENT 397

CHAPTER 14 Quality Concepts 398

CHAPTER 15 Review Techniques 416

CHAPTER 16 Software Quality Assurance 432

CHAPTER 17 Software Testing Strategies 449

CHAPTER 18 Testing Conventional Applications 481

CHAPTER 19 Testing Object-Oriented Applications 511

CHAPTER 20 Testing Web Applications 529

CHAPTER 21 Formal Modeling and Verification 557

CHAPTER 22 Software Configuration Management 584

CHAPTER 23 Product Metrics 613

PART FOUR MANAGING SOFTWARE PROJECTS 645

CHAPTER 24 Project Management Concepts 646

CHAPTER 25 Process and Project Metrics 666
vii

pre75977_FM.qxd 11/27/08 6:38 PM Page vii

CHAPTER 26 Estimation for Software Projects 691

CHAPTER 27 Project Scheduling 721

CHAPTER 28 Risk Management 744

CHAPTER 29 Maintenance and Reengineering 761

PART FIVE ADVANCED TOPICS 785

CHAPTER 30 Software Process Improvement 786

CHAPTER 31 Emerging Trends in Software Engineering 808

CHAPTER 32 Concluding Comments 833

APPENDIX 1 An Introduction to UML 841

APPENDIX 2 Object-Oriented Concepts 863

REFERENCES 871

INDEX 889

viii PART TWO CONTENTS AT A GLANCE

pre75977_FM.qxd 11/27/08 6:38 PM Page viii

TABLE OF CONTENTS

Preface xxv

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 1

1.1 The Nature of Software 3
1.1.1 Defining Software 4
1.1.2 Software Application Domains 7
1.1.3 Legacy Software 9

1.2 The Unique Nature of WebApps 10
1.3 Software Engineering 12
1.4 The Software Process 14
1.5 Software Engineering Practice 17

1.5.1 The Essence of Practice 17
1.5.2 General Principles 19

1.6 Software Myths 21
1.7 How It All Starts 24
1.8 Summary 25
PROBLEMS AND POINTS TO PONDER 25
FURTHER READINGS AND INFORMATION SOURCES 26

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 2 PROCESS MODELS 30

2.1 A Generic Process Model 31
2.1.1 Defining a Framework Activity 32
2.1.2 Identifying a Task Set 34
2.1.3 Process Patterns 35

2.2 Process Assessment and Improvement 37
2.3 Prescriptive Process Models 38

2.3.1 The Waterfall Model 39
2.3.2 Incremental Process Models 41
2.3.3 Evolutionary Process Models 42
2.3.4 Concurrent Models 48
2.3.5 A Final Word on Evolutionary Processes 49

2.4 Specialized Process Models 50
2.4.1 Component-Based Development 50
2.4.2 The Formal Methods Model 51
2.4.3 Aspect-Oriented Software Development 52

2.5 The Unified Process 53
2.5.1 A Brief History 54
2.5.2 Phases of the Unified Process 54

2.6 Personal and Team Process Models 56
2.6.1 Personal Software Process (PSP) 57
2.6.2 Team Software Process (TSP) 58

2.7 Process Technology 59
2.8 Product and Process 60 ix

pre75977_FM.qxd 11/27/08 6:38 PM Page ix

2.9 Summary 61
PROBLEMS AND POINTS TO PONDER 62
FURTHER READINGS AND INFORMATION SOURCES 63

CHAPTER 3 AGILE DEVELOPMENT 65

3.1 What Is Agility? 67
3.2 Agility and the Cost of Change 67
3.3 What Is an Agile Process? 68

3.3.1 Agility Principles 69
3.3.2 The Politics of Agile Development 70
3.3.3 Human Factors 71

3.4 Extreme Programming (XP) 72
3.4.1 XP Values 72
3.4.2 The XP Process 73
3.4.3 Industrial XP 77
3.4.4 The XP Debate 78

3.5 Other Agile Process Models 80
3.5.1 Adaptive Software Development (ASD) 81
3.5.2 Scrum 82
3.5.3 Dynamic Systems Development Method (DSDM) 84
3.5.4 Crystal 85
3.5.5 Feature Driven Development (FDD) 86
3.5.6 Lean Software Development (LSD) 87
3.5.7 Agile Modeling (AM) 88
3.5.8 Agile Unified Process (AUP) 89

3.6 A Tool Set for the Agile Process 91
3.7 Summary 91
PROBLEMS AND POINTS TO PONDER 92
FURTHER READINGS AND INFORMATION SOURCES 93

PART TWO MODELING 95

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 96

4.1 Software Engineering Knowledge 97
4.2 Core Principles 98

4.2.1 Principles That Guide Process 98
4.2.2 Principles That Guide Practice 99

4.3 Principles That Guide Each Framework Activity 101
4.3.1 Communication Principles 101
4.3.2 Planning Principles 103
4.3.3 Modeling Principles 105
4.3.4 Construction Principles 111
4.3.5 Deployment Principles 113

4.4 Summary 115
PROBLEMS AND POINTS TO PONDER 116
FURTHER READINGS AND INFORMATION SOURCES 116

CHAPTER 5 UNDERSTANDING REQUIREMENTS 119

5.1 Requirements Engineering 120
5.2 Establishing the Groundwork 125

5.2.1 Identifying Stakeholders 125

x TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page x

5.2.2 Recognizing Multiple Viewpoints 126
5.2.3 Working toward Collaboration 126
5.2.4 Asking the First Questions 127

5.3 Eliciting Requirements 128
5.3.1 Collaborative Requirements Gathering 128
5.3.2 Quality Function Deployment 131
5.3.3 Usage Scenarios 132
5.3.4 Elicitation Work Products 133

5.4 Developing Use Cases 133
5.5 Building the Requirements Model 138

5.5.1 Elements of the Requirements Model 139
5.5.2 Analysis Patterns 142

5.6 Negotiating Requirements 142
5.7 Validating Requirements 144
5.8 Summary 145
PROBLEMS AND POINTS TO PONDER 145
FURTHER READINGS AND INFORMATION SOURCES 146

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION,
AND ANALYSIS CLASSES 148

6.1 Requirements Analysis 149
6.1.1 Overall Objectives and Philosophy 150
6.1.2 Analysis Rules of Thumb 151
6.1.3 Domain Analysis 151
6.1.4 Requirements Modeling Approaches 153

6.2 Scenario-Based Modeling 154
6.2.1 Creating a Preliminary Use Case 155
6.2.2 Refining a Preliminary Use Case 158
6.2.3 Writing a Formal Use Case 159

6.3 UML Models That Supplement the Use Case 161
6.3.1 Developing an Activity Diagram 161
6.3.2 Swimlane Diagrams 162

6.4 Data Modeling Concepts 164
6.4.1 Data Objects 164
6.4.2 Data Attributes 164
6.4.3 Relationships 165

6.5 Class-Based Modeling 167
6.5.1 Identifying Analysis Classes 167
6.5.2 Specifying Attributes 171
6.5.3 Defining Operations 171
6.5.4 Class-Responsibility-Collaborator (CRC) Modeling 173
6.5.5 Associations and Dependencies 180
6.5.6 Analysis Packages 182

6.6 Summary 183
PROBLEMS AND POINTS TO PONDER 183
FURTHER READINGS AND INFORMATION SOURCES 184

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS,
AND WEBAPPS 186

7.1 Requirements Modeling Strategies 186
7.2 Flow-Oriented Modeling 187

TABLE OF CONTENTS xi

pre75977_FM.qxd 11/27/08 6:38 PM Page xi

7.2.1 Creating a Data Flow Model 188
7.2.2 Creating a Control Flow Model 191
7.2.3 The Control Specification 191
7.2.4 The Process Specification 192

7.3 Creating a Behavioral Model 195
7.3.1 Identifying Events with the Use Case 195
7.3.2 State Representations 196

7.4 Patterns for Requirements Modeling 199
7.4.1 Discovering Analysis Patterns 200
7.4.2 A Requirements Pattern Example: Actuator-Sensor 200

7.5 Requirements Modeling for WebApps 205
7.5.1 How Much Analysis Is Enough? 205
7.5.2 Requirements Modeling Input 206
7.5.3 Requirements Modeling Output 207
7.5.4 Content Model for WebApps 207
7.5.5 Interaction Model for WebApps 209
7.5.6 Functional Model for WebApps 210
7.5.7 Configuration Models for WebApps 211
7.5.8 Navigation Modeling 212

7.6 Summary 213
PROBLEMS AND POINTS TO PONDER 213
FURTHER READINGS AND INFORMATION SOURCES 214

CHAPTER 8 DESIGN CONCEPTS 215

8.1 Design within the Context of Software Engineering 216
8.2 The Design Process 219

8.2.1 Software Quality Guidelines and Attributes 219
8.2.2 The Evolution of Software Design 221

8.3 Design Concepts 222
8.3.1 Abstraction 223
8.3.2 Architecture 223
8.3.3 Patterns 224
8.3.4 Separation of Concerns 225
8.3.5 Modularity 225
8.3.6 Information Hiding 226
8.3.7 Functional Independence 227
8.3.8 Refinement 228
8.3.9 Aspects 228
8.3.10 Refactoring 229
8.3.11 Object-Oriented Design Concepts 230
8.3.12 Design Classes 230

8.4 The Design Model 233
8.4.1 Data Design Elements 234
8.4.2 Architectural Design Elements 234
8.4.3 Interface Design Elements 235
8.4.4 Component-Level Design Elements 237
8.4.5 Deployment-Level Design Elements 237

8.5 Summary 239
PROBLEMS AND POINTS TO PONDER 240
FURTHER READINGS AND INFORMATION SOURCES 240

xii TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xii

CHAPTER 9 ARCHITECTURAL DESIGN 242

9.1 Software Architecture 243
9.1.1 What Is Architecture? 243
9.1.2 Why Is Architecture Important? 245
9.1.3 Architectural Descriptions 245
9.1.4 Architectural Decisions 246

9.2 Architectural Genres 246
9.3 Architectural Styles 249

9.3.1 A Brief Taxonomy of Architectural Styles 250
9.3.2 Architectural Patterns 253
9.3.3 Organization and Refinement 255

9.4 Architectural Design 255
9.4.1 Representing the System in Context 256
9.4.2 Defining Archetypes 257
9.4.3 Refining the Architecture into Components 258
9.4.4 Describing Instantiations of the System 260

9.5 Assessing Alternative Architectural Designs 261
9.5.1 An Architecture Trade-Off Analysis Method 262
9.5.2 Architectural Complexity 263
9.5.3 Architectural Description Languages 264

9.6 Architectural Mapping Using Data Flow 265
9.6.1 Transform Mapping 265
9.6.2 Refining the Architectural Design 272

9.7 Summary 273
PROBLEMS AND POINTS TO PONDER 274
FURTHER READINGS AND INFORMATION SOURCES 274

CHAPTER 10 COMPONENT-LEVEL DESIGN 276

10.1 What Is a Component? 277
10.1.1 An Object-Oriented View 277
10.1.2 The Traditional View 279
10.1.3 A Process-Related View 281

10.2 Designing Class-Based Components 282
10.2.1 Basic Design Principles 282
10.2.2 Component-Level Design Guidelines 285
10.2.3 Cohesion 286
10.2.4 Coupling 288

10.3 Conducting Component-Level Design 290
10.4 Component-Level Design for WebApps 296

10.4.1 Content Design at the Component Level 297
10.4.2 Functional Design at the Component Level 297

10.5 Designing Traditional Components 298
10.5.1 Graphical Design Notation 299
10.5.2 Tabular Design Notation 300
10.5.3 Program Design Language 301

10.6 Component-Based Development 303
10.6.1 Domain Engineering 303
10.6.2 Component Qualification, Adaptation, and Composition 304
10.6.3 Analysis and Design for Reuse 306
10.6.4 Classifying and Retrieving Components 307

TABLE OF CONTENTS xiii

pre75977_FM.qxd 11/27/08 6:38 PM Page xiii

10.7 Summary 309
PROBLEMS AND POINTS TO PONDER 310
FURTHER READINGS AND INFORMATION SOURCES 311

CHAPTER 11 USER INTERFACE DESIGN 312

11.1 The Golden Rules 313
11.1.1 Place the User in Control 313
11.1.2 Reduce the User’s Memory Load 314
11.1.3 Make the Interface Consistent 316

11.2 User Interface Analysis and Design 317
11.2.1 Interface Analysis and Design Models 317
11.2.2 The Process 319

11.3 Interface Analysis 320
11.3.1 User Analysis 321
11.3.2 Task Analysis and Modeling 322
11.3.3 Analysis of Display Content 327
11.3.4 Analysis of the Work Environment 328

11.4 Interface Design Steps 328
11.4.1 Applying Interface Design Steps 329
11.4.2 User Interface Design Patterns 330
11.4.3 Design Issues 331

11.5 WebApp Interface Design 335
11.5.1 Interface Design Principles and Guidelines 336
11.5.2 Interface Design Workflow for WebApps 340

11.6 Design Evaluation 342
11.7 Summary 344
PROBLEMS AND POINTS TO PONDER 345
FURTHER READINGS AND INFORMATION SOURCES 346

CHAPTER 12 PATTERN-BASED DESIGN 347

12.1 Design Patterns 348
12.1.1 Kinds of Patterns 349
12.1.2 Frameworks 352
12.1.3 Describing a Pattern 352
12.1.4 Pattern Languages and Repositories 353

12.2 Pattern-Based Software Design 354
12.2.1 Pattern-Based Design in Context 354
12.2.2 Thinking in Patterns 356
12.2.3 Design Tasks 357
12.2.4 Building a Pattern-Organizing Table 358
12.2.5 Common Design Mistakes 359

12.3 Architectural Patterns 360
12.4 Component-Level Design Patterns 362
12.5 User Interface Design Patterns 364
12.6 WebApp Design Patterns 368

12.6.1 Design Focus 368
12.6.2 Design Granularity 369

12.7 Summary 370
PROBLEMS AND POINTS TO PONDER 371
FURTHER READING AND INFORMATION SOURCES 372

xiv TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xiv

CHAPTER 13 WEBAPP DESIGN 373

13.1 WebApp Design Quality 374
13.2 Design Goals 377
13.3 A Design Pyramid for WebApps 378
13.4 WebApp Interface Design 378
13.5 Aesthetic Design 380

13.5.1 Layout Issues 380
13.5.2 Graphic Design Issues 381

13.6 Content Design 382
13.6.1 Content Objects 382
13.6.2 Content Design Issues 382

13.7 Architecture Design 383
13.7.1 Content Architecture 384
13.7.2 WebApp Architecture 386

13.8 Navigation Design 388
13.8.1 Navigation Semantics 388
13.8.2 Navigation Syntax 389

13.9 Component-Level Design 390
13.10 Object-Oriented Hypermedia Design Method (OOHDM) 390

13.10.1 Conceptual Design for OOHDM 391
13.10.2 Navigational Design for OOHDM 391
13.10.3 Abstract Interface Design and Implementation 392

13.11 Summary 393
PROBLEMS AND POINTS TO PONDER 394
FURTHER READINGS AND INFORMATION SOURCES 395

PART THREE QUALITY MANAGEMENT 397

CHAPTER 14 QUALITY CONCEPTS 398

14.1 What Is Quality? 399
14.2 Software Quality 400

14.2.1 Garvin’s Quality Dimensions 401
14.2.2 McCall’s Quality Factors 402
14.2.3 ISO 9126 Quality Factors 403
14.2.4 Targeted Quality Factors 404
14.2.5 The Transition to a Quantitative View 405

14.3 The Software Quality Dilemma 406
14.3.1 “Good Enough” Software 406
14.3.2 The Cost of Quality 407
14.3.3 Risks 409
14.3.4 Negligence and Liability 410
14.3.5 Quality and Security 410
14.3.6 The Impact of Management Actions 411

14.4 Achieving Software Quality 412
14.4.1 Software Engineering Methods 412
14.4.2 Project Management Techniques 412
14.4.3 Quality Control 412
14.4.4 Quality Assurance 413

14.5 Summary 413
PROBLEMS AND POINTS TO PONDER 414
FURTHER READINGS AND INFORMATION SOURCES 414

TABLE OF CONTENTS xv

pre75977_FM.qxd 11/27/08 6:38 PM Page xv

CHAPTER 15 REVIEW TECHNIQUES 416

15.1 Cost Impact of Software Defects 417
15.2 Defect Amplification and Removal 418
15.3 Review Metrics and Their Use 420

15.3.1 Analyzing Metrics 420
15.3.2 Cost Effectiveness of Reviews 421

15.4 Reviews: A Formality Spectrum 423
15.5 Informal Reviews 424
15.6 Formal Technical Reviews 426

15.6.1 The Review Meeting 426
15.6.2 Review Reporting and Record Keeping 427
15.6.3 Review Guidelines 427
15.6.4 Sample-Driven Reviews 429

15.7 Summary 430
PROBLEMS AND POINTS TO PONDER 431
FURTHER READINGS AND INFORMATION SOURCES 431

CHAPTER 16 SOFTWARE QUALITY ASSURANCE 432

16.1 Background Issues 433
16.2 Elements of Software Quality Assurance 434
16.3 SQA Tasks, Goals, and Metrics 436

16.3.1 SQA Tasks 436
16.3.2 Goals, Attributes, and Metrics 437

16.4 Formal Approaches to SQA 438
16.5 Statistical Software Quality Assurance 439

16.5.1 A Generic Example 439
16.5.2 Six Sigma for Software Engineering 441

16.6 Software Reliability 442
16.6.1 Measures of Reliability and Availability 442
16.6.2 Software Safety 443

16.7 The ISO 9000 Quality Standards 444
16.8 The SQA Plan 445
16.9 Summary 446
PROBLEMS AND POINTS TO PONDER 447
FURTHER READINGS AND INFORMATION SOURCES 447

CHAPTER 17 SOFTWARE TESTING STRATEGIES 449

17.1 A Strategic Approach to Software Testing 450
17.1.1 Verification and Validation 450
17.1.2 Organizing for Software Testing 451
17.1.3 Software Testing Strategy—The Big Picture 452
17.1.4 Criteria for Completion of Testing 455

17.2 Strategic Issues 455
17.3 Test Strategies for Conventional Software 456

17.3.1 Unit Testing 456
17.3.2 Integration Testing 459

17.4 Test Strategies for Object-Oriented Software 465
17.4.1 Unit Testing in the OO Context 466
17.4.2 Integration Testing in the OO Context 466

17.5 Test Strategies for WebApps 467
17.6 Validation Testing 467

xvi TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xvi

17.6.1 Validation-Test Criteria 468
17.6.2 Configuration Review 468
17.6.3 Alpha and Beta Testing 468

17.7 System Testing 470
17.7.1 Recovery Testing 470
17.7.2 Security Testing 470
17.7.3 Stress Testing 471
17.7.4 Performance Testing 471
17.7.5 Deployment Testing 472

17.8 The Art of Debugging 473
17.8.1 The Debugging Process 473
17.8.2 Psychological Considerations 474
17.8.3 Debugging Strategies 475
17.8.4 Correcting the Error 477

17.9 Summary 478
PROBLEMS AND POINTS TO PONDER 478
FURTHER READINGS AND INFORMATION SOURCES 479

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 481

18.1 Software Testing Fundamentals 482
18.2 Internal and External Views of Testing 484
18.3 White-Box Testing 485
18.4 Basis Path Testing 485

18.4.1 Flow Graph Notation 485
18.4.2 Independent Program Paths 487
18.4.3 Deriving Test Cases 489
18.4.4 Graph Matrices 491

18.5 Control Structure Testing 492
18.5.1 Condition Testing 492
18.5.2 Data Flow Testing 493
18.5.3 Loop Testing 493

18.6 Black-Box Testing 495
18.6.1 Graph-Based Testing Methods 495
18.6.2 Equivalence Partitioning 497
18.6.3 Boundary Value Analysis 498
18.6.4 Orthogonal Array Testing 499

18.7 Model-Based Testing 502
18.8 Testing for Specialized Environments, Architectures, and Applications 503

18.8.1 Testing GUIs 503
18.8.2 Testing of Client-Server Architectures 503
18.8.3 Testing Documentation and Help Facilities 505
18.8.4 Testing for Real-Time Systems 506

18.9 Patterns for Software Testing 507
18.10 Summary 508
PROBLEMS AND POINTS TO PONDER 509
FURTHER READINGS AND INFORMATION SOURCES 510

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 511

19.1 Broadening the View of Testing 512
19.2 Testing OOA and OOD Models 513

TABLE OF CONTENTS xvii

pre75977_FM.qxd 12/1/08 3:15 PM Page xvii

19.2.1 Correctness of OOA and OOD Models 513
19.2.2 Consistency of Object-Oriented Models 514

19.3 Object-Oriented Testing Strategies 516
19.3.1 Unit Testing in the OO Context 516
19.3.2 Integration Testing in the OO Context 516
19.3.3 Validation Testing in an OO Context 517

19.4 Object-Oriented Testing Methods 517
19.4.1 The Test-Case Design Implications of OO Concepts 518
19.4.2 Applicability of Conventional Test-Case Design Methods 518
19.4.3 Fault-Based Testing 519
19.4.4 Test Cases and the Class Hierarchy 519
19.4.5 Scenario-Based Test Design 520
19.4.6 Testing Surface Structure and Deep Structure 522

19.5 Testing Methods Applicable at the Class Level 522
19.5.1 Random Testing for OO Classes 522
19.5.2 Partition Testing at the Class Level 524

19.6 Interclass Test-Case Design 524
19.6.1 Multiple Class Testing 524
19.6.2 Tests Derived from Behavior Models 526

19.7 Summary 527
PROBLEMS AND POINTS TO PONDER 528
FURTHER READINGS AND INFORMATION SOURCES 528

CHAPTER 20 TESTING WEB APPLICATIONS 529

20.1 Testing Concepts for WebApps 530
20.1.1 Dimensions of Quality 530
20.1.2 Errors within a WebApp Environment 531
20.1.3 Testing Strategy 532
20.1.4 Test Planning 532

20.2 The Testing Process—An Overview 533
20.3 Content Testing 534

20.3.1 Content Testing Objectives 534
20.3.2 Database Testing 535

20.4 User Interface Testing 537
20.4.1 Interface Testing Strategy 537
20.4.2 Testing Interface Mechanisms 538
20.4.3 Testing Interface Semantics 540
20.4.4 Usability Tests 540
20.4.5 Compatibility Tests 542

20.5 Component-Level Testing 543
20.6 Navigation Testing 545

20.6.1 Testing Navigation Syntax 545
20.6.2 Testing Navigation Semantics 546

20.7 Configuration Testing 547
20.7.1 Server-Side Issues 547
20.7.2 Client-Side Issues 548

20.8 Security Testing 548
20.9 Performance Testing 550

20.9.1 Performance Testing Objectives 550
20.9.2 Load Testing 551
20.9.3 Stress Testing 552

xviii TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xviii

20.10 Summary 553
PROBLEMS AND POINTS TO PONDER 554
FURTHER READINGS AND INFORMATION SOURCES 555

CHAPTER 21 FORMAL MODELING AND VERIFICATION 557

21.1 The Cleanroom Strategy 558
21.2 Functional Specification 560

21.2.1 Black-Box Specification 561
21.2.2 State-Box Specification 562
21.2.3 Clear-Box Specification 562

21.3 Cleanroom Design 563
21.3.1 Design Refinement 563
21.3.2 Design Verification 564

21.4 Cleanroom Testing 566
21.4.1 Statistical Use Testing 566
21.4.2 Certification 567

21.5 Formal Methods Concepts 568
21.6 Applying Mathematical Notation for Formal Specification 571
21.7 Formal Specification Languages 573

21.7.1 Object Constraint Language (OCL) 574
21.7.2 The Z Specification Language 577

21.8 Summary 580
PROBLEMS AND POINTS TO PONDER 581
FURTHER READINGS AND INFORMATION SOURCES 582

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 584

22.1 Software Configuration Management 585
22.1.1 An SCM Scenario 586
22.1.2 Elements of a Configuration Management System 587
22.1.3 Baselines 587
22.1.4 Software Configuration Items 589

22.2 The SCM Repository 590
22.2.1 The Role of the Repository 590
22.2.2 General Features and Content 591
22.2.3 SCM Features 592

22.3 The SCM Process 593
22.3.1 Identification of Objects in the Software Configuration 594
22.3.2 Version Control 595
22.3.3 Change Control 596
22.3.4 Configuration Audit 599
22.3.5 Status Reporting 600

22.4 Configuration Management for WebApps 601
22.4.1 Dominant Issues 601
22.4.2 WebApp Configuration Objects 603
22.4.3 Content Management 603
22.4.4 Change Management 606
22.4.5 Version Control 608
22.4.6 Auditing and Reporting 609

22.5 Summary 610
PROBLEMS AND POINTS TO PONDER 611
FURTHER READINGS AND INFORMATION SOURCES 612

TABLE OF CONTENTS xix

pre75977_FM.qxd 11/27/08 6:38 PM Page xix

CHAPTER 23 PRODUCT METRICS 613

23.1 A Framework for Product Metrics 614
23.1.1 Measures, Metrics, and Indicators 614
23.1.2 The Challenge of Product Metrics 615
23.1.3 Measurement Principles 616
23.1.4 Goal-Oriented Software Measurement 617
23.1.5 The Attributes of Effective Software Metrics 618

23.2 Metrics for the Requirements Model 619
23.2.1 Function-Based Metrics 620
23.2.2 Metrics for Specification Quality 623

23.3 Metrics for the Design Model 624
23.3.1 Architectural Design Metrics 624
23.3.2 Metrics for Object-Oriented Design 627
23.3.3 Class-Oriented Metrics—The CK Metrics Suite 628
23.3.4 Class-Oriented Metrics—The MOOD Metrics Suite 631
23.3.5 OO Metrics Proposed by Lorenz and Kidd 632
23.3.6 Component-Level Design Metrics 632
23.3.7 Operation-Oriented Metrics 634
23.3.8 User Interface Design Metrics 635

23.4 Design Metrics for WebApps 636
23.5 Metrics for Source Code 638
23.6 Metrics for Testing 639

23.6.1 Halstead Metrics Applied to Testing 639
23.6.2 Metrics for Object-Oriented Testing 640

23.7 Metrics for Maintenance 641
23.8 Summary 642
PROBLEMS AND POINTS TO PONDER 642
FURTHER READINGS AND INFORMATION SOURCES 643

PART FOUR MANAGING SOFTWARE PROJECTS 645

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 646

24.1 The Management Spectrum 647
24.1.1 The People 647
24.1.2 The Product 648
24.1.3 The Process 648
24.1.4 The Project 648

24.2 People 649
24.2.1 The Stakeholders 649
24.2.2 Team Leaders 650
24.2.3 The Software Team 651
24.2.4 Agile Teams 654
24.2.5 Coordination and Communication Issues 655

24.3 The Product 656
24.3.1 Software Scope 656
24.3.2 Problem Decomposition 656

24.4 The Process 657
24.4.1 Melding the Product and the Process 657
24.4.2 Process Decomposition 658

24.5 The Project 660
24.6 The W5HH Principle 661

xx TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xx

24.7 Critical Practices 662
24.8 Summary 663
PROBLEMS AND POINTS TO PONDER 663
FURTHER READINGS AND INFORMATION SOURCES 664

CHAPTER 25 PROCESS AND PROJECT METRICS 666

25.1 Metrics in the Process and Project Domains 667
25.1.1 Process Metrics and Software Process Improvement 667
25.1.2 Project Metrics 670

25.2 Software Measurement 671
25.2.1 Size-Oriented Metrics 672
25.2.2 Function-Oriented Metrics 673
25.2.3 Reconciling LOC and FP Metrics 673
25.2.4 Object-Oriented Metrics 675
25.2.5 Use-Case–Oriented Metrics 676
25.2.6 WebApp Project Metrics 677

25.3 Metrics for Software Quality 679
25.3.1 Measuring Quality 680
25.3.2 Defect Removal Efficiency 681

25.4 Integrating Metrics within the Software Process 682
25.4.1 Arguments for Software Metrics 683
25.4.2 Establishing a Baseline 683
25.4.3 Metrics Collection, Computation, and Evaluation 684

25.5 Metrics for Small Organizations 684
25.6 Establishing a Software Metrics Program 686
25.7 Summary 688
PROBLEMS AND POINTS TO PONDER 688
FURTHER READINGS AND INFORMATION SOURCES 689

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 691

26.1 Observations on Estimation 692
26.2 The Project Planning Process 693
26.3 Software Scope and Feasibility 694
26.4 Resources 695

26.4.1 Human Resources 695
26.4.2 Reusable Software Resources 696
26.4.3 Environmental Resources 696

26.5 Software Project Estimation 697
26.6 Decomposition Techniques 698

26.6.1 Software Sizing 698
26.6.2 Problem-Based Estimation 699
26.6.3 An Example of LOC-Based Estimation 701
26.6.4 An Example of FP-Based Estimation 702
26.6.5 Process-Based Estimation 703
26.6.6 An Example of Process-Based Estimation 704
26.6.7 Estimation with Use Cases 705
26.6.8 An Example of Use-Case–Based Estimation 706
26.6.9 Reconciling Estimates 707

26.7 Empirical Estimation Models 708
26.7.1 The Structure of Estimation Models 709
26.7.2 The COCOMO II Model 709
26.7.3 The Software Equation 711

TABLE OF CONTENTS xxi

pre75977_FM.qxd 11/27/08 6:38 PM Page xxi

26.8 Estimation for Object-Oriented Projects 712
26.9 Specialized Estimation Techniques 713

26.9.1 Estimation for Agile Development 713
26.9.2 Estimation for WebApp Projects 714

26.10 The Make/Buy Decision 715
26.10.1 Creating a Decision Tree 715
26.10.2 Outsourcing 717

26.11 Summary 718
PROBLEMS AND POINTS TO PONDER 719
FURTHER READINGS AND INFORMATION SOURCES 719

CHAPTER 27 PROJECT SCHEDULING 721

27.1 Basic Concepts 722
27.2 Project Scheduling 724

27.2.1 Basic Principles 725
27.2.2 The Relationship Between People and Effort 725
27.2.3 Effort Distribution 727

27.3 Defining a Task Set for the Software Project 728
27.3.1 A Task Set Example 729
27.3.2 Refinement of Software Engineering Actions 730

27.4 Defining a Task Network 731
27.5 Scheduling 732

27.5.1 Time-Line Charts 732
27.5.2 Tracking the Schedule 734
27.5.3 Tracking Progress for an OO Project 735
27.5.4 Scheduling for WebApp Projects 736

27.6 Earned Value Analysis 739
27.7 Summary 741
PROBLEMS AND POINTS TO PONDER 741
FURTHER READINGS AND INFORMATION SOURCES 743

CHAPTER 28 RISK MANAGEMENT 744

28.1 Reactive versus Proactive Risk Strategies 745
28.2 Software Risks 745
28.3 Risk Identification 747

28.3.1 Assessing Overall Project Risk 748
28.3.2 Risk Components and Drivers 749

28.4 Risk Projection 749
28.4.1 Developing a Risk Table 750
28.4.2 Assessing Risk Impact 752

28.5 Risk Refinement 754
28.6 Risk Mitigation, Monitoring, and Management 755
28.7 The RMMM Plan 757
28.8 Summary 759
PROBLEMS AND POINTS TO PONDER 759
FURTHER READINGS AND INFORMATION SOURCES 760

CHAPTER 29 MAINTENANCE AND REENGINEERING 761

29.1 Software Maintenance 762
29.2 Software Supportability 764

xxii TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xxii

29.3 Reengineering 764
29.4 Business Process Reengineering 765

29.4.1 Business Processes 765
29.4.2 A BPR Model 766

29.5 Software Reengineering 768
29.5.1 A Software Reengineering Process Model 768
29.5.2 Software Reengineering Activities 770

29.6 Reverse Engineering 772
29.6.1 Reverse Engineering to Understand Data 773
29.6.2 Reverse Engineering to Understand Processing 774
29.6.3 Reverse Engineering User Interfaces 775

29.7 Restructuring 776
29.7.1 Code Restructuring 776
29.7.2 Data Restructuring 777

29.8 Forward Engineering 778
29.8.1 Forward Engineering for Client-Server Architectures 779
29.8.2 Forward Engineering for Object-Oriented Architectures 780

29.9 The Economics of Reengineering 780
29.10 Summary 781
PROBLEMS AND POINTS TO PONDER 782
FURTHER READINGS AND INFORMATION SOURCES 783

PART FIVE ADVANCED TOPICS 785

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 786

30.1 What Is SPI? 787
30.1.1 Approaches to SPI 787
30.1.2 Maturity Models 789
30.1.3 Is SPI for Everyone? 790

30.2 The SPI Process 791
30.2.1 Assessment and Gap Analysis 791
30.2.2 Education and Training 793
30.2.3 Selection and Justification 793
30.2.4 Installation/Migration 794
30.2.5 Evaluation 795
30.2.6 Risk Management for SPI 795
30.2.7 Critical Success Factors 796

30.3 The CMMI 797
30.4 The People CMM 801
30.5 Other SPI Frameworks 802
30.6 SPI Return on Investment 804
30.7 SPI Trends 805
30.8 Summary 806
PROBLEMS AND POINTS TO PONDER 806
FURTHER READINGS AND INFORMATION SOURCES 807

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 808

31.1 Technology Evolution 809
31.2 Observing Software Engineering Trends 811

TABLE OF CONTENTS xxiii

pre75977_FM.qxd 11/27/08 6:38 PM Page xxiii

31.3 Identifying “Soft Trends” 812
31.3.1 Managing Complexity 814
31.3.2 Open-World Software 815
31.3.3 Emergent Requirements 816
31.3.4 The Talent Mix 816
31.3.5 Software Building Blocks 817
31.3.6 Changing Perceptions of “Value” 818
31.3.7 Open Source 818

31.4 Technology Directions 819
31.4.1 Process Trends 819
31.4.2 The Grand Challenge 821
31.4.3 Collaborative Development 822
31.4.4 Requirements Engineering 824
31.4.5 Model-Driven Software Development 825
31.4.6 Postmodern Design 825
31.4.7 Test-Driven Development 826

31.5 Tools-Related Trends 827
31.5.1 Tools That Respond to Soft Trends 828
31.5.2 Tools That Address Technology Trends 830

31.6 Summary 830
PROBLEMS AND POINTS TO PONDER 831
FURTHER READINGS AND INFORMATION SOURCES 831

CHAPTER 32 CONCLUDING COMMENTS 833

32.1 The Importance of Software—Revisited 834
32.2 People and the Way They Build Systems 834
32.3 New Modes for Representing Information 835
32.4 The Long View 837
32.5 The Software Engineer’s Responsibility 838
32.6 A Final Comment 839

APPENDIX 1 AN INTRODUCTION TO UML 841
APPENDIX 2 OBJECT-ORIENTED CONCEPTS 863
REFERENCES 871
INDEX 889

xxiv TABLE OF CONTENTS

pre75977_FM.qxd 12/3/08 1:55 PM Page xxiv

