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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the clas-
sical techniques of applied mathematics. This renewal of interest, both in
research and teaching, has led to the establishment of the series: Texts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos mix with
and reinforce the traditional methods of applied mathematics. Thus, the
purpose of this textbook series is to meet the current and future needs of
these advances and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Math-
ematical Sciences (AMS) series, which will focus on advanced textbooks
and research-level monographs.



Preface

"It is impossible to exaggerate the extent to which modern
applied mathematics has been shaped and fueled by the gen-
eral availability of fast computers with large memories. Their
impact on mathematics, both applied and pure, is comparable
to the role of the telescopes in astronomy and microscopes in
biology."

— Peter Lax, Siam Rev. Vol. 31 No. 4

Congratulations! You have chosen to study partial differential equations.
That decision is a wise one; the laws of nature are written in the language
of partial differential equations. Therefore, these equations arise as models
in virtually all branches of science and technology. Our goal in this book
is to help you to understand what this vast subject is about. The book is
an introduction to the field. We assume only that you are familiar with ba-
sic calculus and elementary linear algebra. Some experience with ordinary
differential equations would also be an advantage.

Introductory courses in partial differential equations are given all over
the world in various forms. The traditional approach to the subject is to
introduce a number of analytical techniques, enabling the student to de-
rive exact solutions of some simplified problems. Students who learn about
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computational techniques on other courses subsequently realize the scope
of partial differential equations beyond paper and pencil.

Our approach is different. We introduce analytical and computational
techniques in the same book and thus in the same course. The main reason
for doing this is that the computer, developed to assist scientists in solv-
ing partial differential equations, has become commonly available and is
currently used in all practical applications of partial differential equations.
Therefore, a modern introduction to this topic must focus on methods suit-
able for computers. But these methods often rely on deep analytical insight
into the equations. We must therefore take great care not to throw away
basic analytical methods but seek a sound balance between analytical and
computational techniques.

One advantage of introducing computational techniques is that nonlinear
problems can be given more attention than is common in a purely analytical
introduction. We have included several examples of nonlinear equations in
addition to the standard linear models which are present in any introduc-
tory text. In particular we have included a discussion of reaction-diffusion
equations. The reason for this is their widespread application as important
models in various scientific applications.

Our aim is not to discuss the merits of different numerical techniques.
There are a huge number of papers in scientific journals comparing different
methods to solve various problems. We do not want to include such discus-
sions. Our aim is to demonstrate that computational techniques are simple
to use and often give very nice results, not to show that even better results
can be obtained if slightly different methods are used. We touch briefly
upon some such discussion, but not in any major way, since this really be-
longs to the field of numerical analysis and should be taught in separate
courses. Having said this, we always try to use the simplest possible nu-
merical techniques. This should in no way be interpreted as an attempt to
advocate certain methods as opposed to others; they are merely chosen for
their simplicity.

Simplicity is also our reason for choosing to present exclusively finite
difference techniques. The entire text could just as well be based on finite
element techniques, which definitely have greater potential from an appli-
cation point of view but are slightly harder to understand than their finite
difference counterparts.

We have attempted to present the material at an easy pace, explaining
carefully both the ideas and details of the derivations. This is particularly
the case in the first chapters but subsequently less details are included and
some steps are left for the reader to fill in. There are a lot of exercises
included, ranging from the straightforward to more challenging ones. Some
of them include a bit of implementation and some experiments to be done
on the computer. We strongly encourage students not to skip these parts.
In addition there are some "projects." These are either included to refresh
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the student's memory of results needed in this course, or to extend the
theories developed in the present text.

Given the fact that we introduce both numerical and analytical tools, we
have chosen to put little emphasis on modeling. Certainly, the derivation
of models based on partial differential equations is an important topic, but
it is also very large and can therefore not be covered in detail here.

The first seven chapters of this book contain an elementary course in
partial differential equations. Topics like separation of variables, energy ar-
guments, maximum principles, and finite difference methods are discussed
for the three basic linear partial differential equations, i.e. the heat equa-
tion, the wave equation, and Poisson's equation. In Chapters 8-10 more
theoretical questions related to separation of variables and convergence of
Fourier series are discussed. The purpose of Chapter 11 is to introduce
nonlinear partial differential equations. In particular, we want to illustrate
how easily finite difference methods adopt to such problems, even if these
equations may be hard to handle by an analytical approach. In Chapter 12
we give a brief introduction to the Fourier transform and its application to
partial differential equations.

Some of the exercises in this text are small computer projects involving
a bit of programming. This programming could be done in any language.
In order to get started with these projects, you may find it useful to pick
up some examples from our web site, http://www.ifi.uio.no/~pde/, where
you will find some Matlab code and some simple Java applets.
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