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Preface
A fashionable curriculum proposition is that students should

be given what they need and no more. It often comes bun-

dled with language like “efficient” and “lean.” Followers

are quick to enumerate a number of topics they learned as

students, which remained unused in their subsequent lives.

What could they have accomplished, they muse, if they could

have back the time lost studying such retrospectively un-

used topics? But many go further—they conflate unused

with useless and then advocate that students should therefore

have lean and efficient curricula, teaching only what students

need. It has a convincing ring to it. Who wants to spend time

on courses in “useless studies?”

When confronted with this compelling position, an even

more compelling reply is to look the protagonist in the eye

and ask, “How do you know what students need?” That’s the

trick, isn’t it? If you could answer questions like that, you

could become rich by making only those lean and efficient

investments and bets that make money. It’s more than that

though. Knowledge of the fundamentals, unlike old lottery

tickets, retains value. Few forms of human knowledge can

beat mathematics in terms of enduring value and raw utility.

Mathematics learned that you have not yet used retains value

into an uncertain future.

It is thus ironic that the mathematics curriculum is one

of the first topics that terms like lean and efficient get applied

to. While there is much to discuss about this paradox, it is

safe to say that it has little to do with what students actually

need. If anything, people need more mathematics than ever

as the arcane abstractions of yesteryear become the consumer

products of today. Can one understand how web search en-

gines work without knowing what an eigenvector is? Can

one understand how banks try to keep your accounts safe on

the web without understanding polynomials, or grasping how

GPS works without understanding differentials?

All of this knowledge, seemingly remote from our every-

day lives, is actually at the core of the modern world. With-

out mathematics you are estranged from it, and everything

descends into rumour, superstition, and magic. The best les-

son one can teach students about what to apply themselves

to is that the future is uncertain, and it is a gamble how one

chooses to spend one’s efforts. But a sound grounding in

mathematics is always a good first option. One of the most

common educational regrets of many adults is that they did

not spend enough time on mathematics in school, which is

quite the opposite of the efficiency regrets of spending too

much time on things unused.

A good mathematics textbook cannot be about a con-

trived minimal necessity. It has to be more than crib notes for

a lean and diminished course in what students are deemed to

need, only to be tossed away after the final exam. It must be

more than a website or a blog. It should be something that

stays with you, giving help in a familiar voice when you need

to remember mathematics you will have forgotten over the

years. Moreover, it should be something that one can grow

into. People mature mathematically. As one does, concepts

that seemed incomprehensible eventually become obvious.

When that happens, new questions emerge that were previ-

ously inconceivable. This text has answers to many of those

questions too.

Such a textbook must not only take into account the na-

ture of the current audience, it must also be open to how well

it bridges to other fields and introduces ideas new to the con-

ventional curriculum. In this regard, this textbook is like no

other. Topics not available in any other text are bravely in-

troduced through the thematic concept of gateway applica-

tions. Applications of calculus have always been an impor-

tant feature of earlier editions of this book. But the agenda

of introducing gateway applications was introduced in the

8th edition. Rather than shrinking to what is merely needed,

this 9th edition is still more comprehensive than the 8th edi-

tion. Of course, it remains possible to do a light and minimal

treatment of the subject with this book, but the decision as to

what that might mean precisely becomes the responsibility

of a skilled instructor, and not the result of the limitations of

some text. Correspondingly, a richer treatment is also an op-

tion. Flexibility in terms of emphasis, exercises, and projects

is made easily possible with a larger span of subject material.

Some of the unique topics naturally addressed in the

gateway applications, which may be added or omitted, in-

clude Liapunov functions, and Legendre transformations, not

to mention exterior calculus. Exterior calculus is a powerful

refinement of the calculus of a century ago, which is often

overlooked. This text has a complete chapter on it, written

accessibly in classical textbook style rather than as an ad-

vanced monograph. Other gateway applications are easy to

cover in passing, but they are too often overlooked in terms of

their importance to modern science. Liapunov functions are

often squeezed into advanced books because they are left out

of classical curricula, even though they are an easy addition

to the discussion of vector fields, where their importance to

stability theory and modern biomathematics can be usefully

noted. Legendre transformations, which are so important to

modern physics and thermodynamics, are a natural and easy

topic to add to the discussion of differentials in more than

one variable.

There are rich opportunities that this textbook captures.

For example, it is the only mainstream textbook that covers

sufficient conditions for maxima and minima in higher di-

mensions, providing answers to questions that most books

gloss over. None of these are inaccessible. They are rich op-

portunities missed because many instructors are simply unfa-

miliar with their importance to other fields. The 9th edition

continues in this tradition. For example, in the existing sec-
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