A Practical Guide to Forecasting _____ Financial Market Volatility ____

Ser-Huang Poon

_____ Contents _____

Fo	orewo	ord by Clive Granger	xiii
Pı	reface	e	XV
1	Vola	atility Definition and Estimation	1
	1.1	What is volatility?	1
	1.2	Financial market stylized facts	3
	1.3	3 Volatility estimation	
		1.3.1 Using squared return as a proxy for	
		daily volatility	11
		1.3.2 Using the high–low measure to proxy volatility	12
		1.3.3 Realized volatility, quadratic variation	
		and jumps	14
		1.3.4 Scaling and actual volatility	16
	1.4	The treatment of large numbers	17
2	Vola	atility Forecast Evaluation	21
	2.1	The form of X_t	21
	2.2	Error statistics and the form of ε_t	23
	2.3	Comparing forecast errors of different models	24
		2.3.1 Diebold and Mariano's asymptotic test	26
		2.3.2 Diebold and Mariano's sign test	27
		2.3.3 Diebold and Mariano's Wilcoxon sign-rank test	27
		2.3.4 Serially correlated loss differentials	28
	2.4	Regression-based forecast efficiency and	
		orthogonality test	28
	2.5	Other issues in forecast evaluation	30

3	Hist	torical Volatility Models	31
	3.1	Modelling issues	31
	3.2	Types of historical volatility models	32
		3.2.1 Single-state historical volatility models	32
		3.2.2 Regime switching and transition exponential	
		smoothing	34
	3.3	Forecasting performance	35
4	Arch		
	4.1	Engle (1982)	37
	4.2	Generalized ARCH	38
	4.3	Integrated GARCH	39
	4.4	Exponential GARCH	41
	4.5	Other forms of nonlinearity	41
	4.6	Forecasting performance	43
5	Lin	ear and Nonlinear Long Memory Models	45
	5.1	What is long memory in volatility?	45
	5.2	Evidence and impact of volatility long memory	46
	5.3	Fractionally integrated model	50
		5.3.1 FIGARCH	51
		5.3.2 FIEGARCH	52
		5.3.3 The positive drift in fractional integrated series	52
		5.3.4 Forecasting performance	53
	5.4	Competing models for volatility long memory	
		5.4.1 Breaks	54
		5.4.2 Components model	55
		5.4.3 Regime-switching model	57
		5.4.4 Forecasting performance	58
6	Stochastic Volatility		
	6.1	The volatility innovation	59
	6.2	The MCMC approach	60
		6.2.1 The volatility vector <i>H</i>	61
		6.2.2 The parameter <i>w</i>	62
	6.3	Forecasting performance	63
7	Mu	ltivariate Volatility Models	65
	7.1	Asymmetric dynamic covariance model	65

		Contents	ix ix
	7.2	A bivariate example	67
	7.3	Applications	68
8	Black-Scholes		
	8.1	The Black–Scholes formula	71
		8.1.1 The Black–Scholes assumptions	72
		8.1.2 Black–Scholes implied volatility	73
		8.1.3 Black–Scholes implied volatility smile	74
		8.1.4 Explanations for the 'smile'	75
	8.2	Black–Scholes and no-arbitrage pricing	77
		8.2.1 The stock price dynamics	77
		8.2.2 The Black–Scholes partial differential equation	77
		8.2.3 Solving the partial differential equation	79
	8.3	Binomial method	80
		8.3.1 Matching volatility with <i>u</i> and <i>d</i>	83
		8.3.2 A two-step binomial tree and American-style	
		options	85
	8.4	Testing option pricing model in practice	86
	8.5	Dividend and early exercise premium	88
		8.5.1 Known and finite dividends	88
		8.5.2 Dividend yield method	88
		8.5.3 Barone-Adesi and Whaley quadratic	
		approximation	89
	8.6	Measurement errors and bias	90
		8.6.1 Investor risk preference	91
	8.7	Appendix: Implementing Barone-Adesi and Whaley's	
		efficient algorithm	92
9	Opt	ion Pricing with Stochastic Volatility	97
	9.1	The Heston stochastic volatility option pricing model	98
	9.2	Heston price and Black–Scholes implied	99
	9.3	Model assessment	102
		9.3.1 Zero correlation	103
		9.3.2 Nonzero correlation	103
	9.4	Volatility forecast using the Heston model	105
	9.5	Appendix: The market price of volatility risk	107
		9.5.1 Ito's lemma for two stochastic variables	107
		9.5.2 The case of stochastic volatility	107
		9.5.3 Constructing the risk-free strategy	108

	9	.5.4 Correlated processes	110
	9	.5.5 The market price of risk	111
10	Opti	on Forecasting Power	115
	10.1	Using option implied standard deviation to forecast	
		volatility	115
	10.2	At-the-money or weighted implied?	116
	10.3	Implied biasedness	117
	10.4	Volatility risk premium	119
11	Volat	tility Forecasting Records	121
	11.1	Which volatility forecasting model?	121
	11.2	Getting the right conditional variance and forecast	
		with the 'wrong' models	123
	11.3	Predictability across different assets	124
		11.3.1 Individual stocks	124
		11.3.2 Stock market index	125
		11.3.3 Exchange rate	126
		11.3.4 Other assets	127
12	Volat	ility Models in Risk Management	129
	12.1	Basel Committee and Basel Accords I & II	129
	12.2	VaR and backtest	131
		12.2.1 VaR	131
		12.2.2 Backtest	132
		12.2.3 The three-zone approach to backtest	
		evaluation	133
	12.3	Extreme value theory and VaR estimation	135
		12.3.1 The model	136
		12.3.2 10-day VaR	137
		12.3.3 Multivariate analysis	138
	12.4	Evaluation of VaR models	139
13	VIX	and Recent Changes in VIX	143
	13.1	New definition for VIX	143
	13.2	What is the VXO?	144
	13.3	Reason for the change	146
14	Whe	re Next?	147

	Contents	xi
Appendix	14	19
References	20)1
Index	2	15

Foreword _

If one invests in a financial asset today the return received at some prespecified point in the future should be considered as a random variable. Such a variable can only be fully characterized by a distribution function or, more easily, by a density function. The main, single and most important feature of the density is the expected or mean value, representing the location of the density. Around the mean is the uncertainty or the volatility. If the realized returns are plotted against time, the jagged oscillating appearance illustrates the volatility. This movement contains both welcome elements, when surprisingly large returns occur, and also certainly unwelcome ones, the returns far below the mean. The wellknown fact that a poor return can arise from an investment illustrates the fact that investing can be risky and is why volatility is sometimes equated with risk.

Volatility is itself a stock variable, having to be measured over a period of time, rather than a flow variable, measurable at any instant of time. Similarly, a stock price is a flow variable but a return is a stock variable. Observed volatility has to be observed over stated periods of time, such as hourly, daily, or weekly, say.

Having observed a time series of volatilities it is obviously interesting to ask about the properties of the series: is it forecastable from its own past, do other series improve these forecasts, can the series be modeled conveniently and are there useful multivariate generalizations of the results? Financial econometricians have been very inventive and industrious considering such questions and there is now a substantial and often sophisticated literature in this area.

The present book by Professor Ser-Huang Poon surveys this literature carefully and provides a very useful summary of the results available.

By so doing, she allows any interested worker to quickly catch up with the field and also to discover the areas that are still available for further exploration.

Clive W.J. Granger December 2004

Preface

Volatility forecasting is crucial for option pricing, risk management and portfolio management. Nowadays, volatility has become the subject of trading. There are now exchange-traded contracts written on volatility. Financial market volatility also has a wider impact on financial regulation, monetary policy and macroeconomy. This book is about financial market volatility forecasting. The aim is to put in one place models, tools and findings from a large volume of published and working papers from many experts. The material presented in this book is extended from two review papers ('Forecasting Financial Market Volatility: A Review' in the *Journal of Economic Literature*, 2003, 41, 2, pp. 478–539, and 'Practical Issues in Forecasting Volatility' in the *Financial Analysts Journal*, 2005, 61, 1, pp. 45–56) jointly published with Clive Granger.

Since the main focus of this book is on volatility forecasting performance, only volatility models that have been tested for their forecasting performance are selected for further analysis and discussion. Hence, this book is oriented towards practical implementations. Volatility models are not pure theoretical constructs. The practical importance of volatility modelling and forecasting in many finance applications means that the success or failure of volatility models will depend on the characteristics of empirical data that they try to capture and predict. Given the prominent role of option price as a source of volatility forecast, I have also devoted much effort and the space of two chapters to cover Black–Scholes and stochastic volatility option pricing models.

This book is intended for first- and second-year finance PhD students and practitioners who want to implement volatility forecasting models but struggle to comprehend the huge volume of volatility research. Readers who are interested in more technical aspects of volatility modelling could refer to, for example, Gourieroux (1997) on ARCH models, Shephard (2003) on stochastic volatility and Fouque, Papanicolaou and Sircar (2000) on stochastic volatility option pricing. Books that cover specific aspects or variants of volatility models include Franses and van Dijk (2000) on nonlinear models, and Beran (1994) and Robinson (2003) on long memory models. Specialist books that cover financial time series modelling in a more general context include Alexander (2001), Tsay (2002) and Taylor (2005). There are also a number of edited series that contain articles on volatility modelling and forecasting, e.g. Rossi (1996), Knight and Satchell (2002) and Jarrow (1998).

I am very grateful to Clive for his teaching and guidance in the last few years. Without his encouragement and support, our volatility survey works and this book would not have got started. I would like to thank all my co-authors on volatility research, in particular Bevan Blair, Namwon Hyung, Eric Jondeau, Martin Martens, Michael Rockinger, Jon Tawn, Stephen Taylor and Konstantinos Vonatsos. Much of the writing here reflects experience gained from joint work with them.