ESSENTIALS OF ECONOMETRICS

FOURTH EDITION

Damodar N. Gujarati

Professor Emeritus of Economics, United States Military Academy, West Point

Dawn C. Porter

University of Southern California

Boston Burr Ridge, IL Dubuque, IA New York San Francisco St. Louis Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

ABOUT THE AUTHORS

DAMODAR N. GUJARATI

After teaching for more than 25 years at the City University of New York and 17 years in the Department of Social Sciences, U.S. Military Academy at West Point, New York, Dr. Gujarati is currently Professor Emeritus of economics at the Academy. Dr. Gujarati received his M.Com. degree from the University of Bombay in 1960, his M.B.A. degree from the University of Chicago in 1963, and his Ph.D. degree from the University of Chicago in 1965. Dr. Gujarati has published extensively in recognized national and international journals, such as the *Review of Economics and Statistics,* the *Economic Journal,* the *Journal of Financial and Quantitative Analysis,* and the *Journal of Business.* Dr. Gujarati was a member of the Indian Econometric Society. Dr. Gujarati is also the author of *Pensions and the New York City Fiscal Crisis* (the American Enterprise Institute, 1978), *Government and Business* (McGraw-Hill, 1984), and *Basic Econometrics* (McGraw-Hill, 5th ed., 2009). Dr. Gujarati's books on econometrics have been translated into several languages.

Dr. Gujarati was a Visiting Professor at the University of Sheffield, U.K. (1970–1971), a Visiting Fulbright Professor to India (1981–1982), a Visiting Professor in the School of Management of the National University of Singapore 1985–1986), and a Visiting Professor of Econometrics, University of New South Wales, Australia (summer of 1988). Dr. Gujarati has lectured extensively on micro- and macroeconomic topics in countries such as Australia, China, Bangladesh, Germany, India, Israel, Mauritius, and the Republic of South Korea.

DAWN C. PORTER

Dawn Porter has been an assistant professor in the Information and Operations Management Department at the Marshall School of Business of the University of Southern California since the fall of 2006. She currently teaches undergraduate, M.B.A., and graduate elective statistics courses in the business school. Prior to joining the faculty at USC, from 2001–2006, Dawn was an assistant professor at the McDonough School of Business at Georgetown University and also served as a Visiting Professor in the Psychology Department at the Graduate School of Arts and Sciences at NYU. At NYU she taught a number of advanced statistical methods courses and was also an instructor at the Stern School of Business. Her Ph.D. is from the Stern School in Statistics, and her undergraduate degree is in mathematics from Cornell University.

Dawn's areas of research interest include categorical analysis, agreement measures, multivariate modeling, and applications to the field of psychology. Her current research examines online auction models from a statistical perspective. She has presented her research at the Joint Statistical Meetings, the Decision Sciences Institute meetings, the International Conference on Information Systems, several universities including the London School of Economics and NYU, and various e-commerce and statistics seminar series. Dawn is also a co-author on *Essentials of Business Statistics*, 2nd edition and *Basic Econometrics*, 5th edition, both from McGraw-Hill.

Outside academics, Dawn has been employed as a statistical consultant for KPMG, Inc. She also has worked as a statistical consultant for many other major companies, including Ginnie Mae, Inc.; Toys R Us Corporation; IBM; Cosmaire, Inc; and New York University (NYU) Medical Center.

CONTENTS

	PRE	FACE	xix
1	The	Nature and Scope of Econometrics	1
	1.1	WHAT IS ECONOMETRICS?	1
	1.2	WHY STUDY ECONOMETRICS?	2
	1.3	THE METHODOLOGY OF ECONOMETRICS	3
		Creating a Statement of Theory or Hypothesis	3
		Collecting Data	4
		Specifying the Mathematical Model of Labor Force Participation	5
		Specifying the Statistical, or Econometric, Model of Labor Force	
		Participation	7
		Estimating the Parameters of the Chosen Econometric Model	9
		Checking for Model Adequacy: Model Specification Testing	9
		Testing the Hypothesis Derived from the Model	11
		Using the Model for Prediction or Forecasting	12
	1.4	THE ROAD AHEAD	12
		KEY TERMS AND CONCEPTS	13
		QUESTIONS	14
		PROBLEMS	14
		APPENDIX 1A: ECONOMIC DATA ON	
		THE WORLD WIDE WEB	16
I	THE	E LINEAR REGRESSION MODEL	19
-			
2	Bas	ic Ideas of Linear Regression: The Two-Variable Model	21
	2.1	THE MEANING OF REGRESSION	21
	2.2	THE POPULATION REGRESSION FUNCTION (PRF):	

PART

A HYPOTHETICAL EXAMPLE 22

vii

3

2.3	STATISTICAL OR STOCHASTIC SPECIFICATION	
	OF THE POPULATION REGRESSION FUNCTION	25
2.4	THE NATURE OF THE STOCHASTIC ERROR TERM	27
2.5	THE SAMPLE REGRESSION FUNCTION (SRF)	28
2.6	THE SPECIAL MEANING OF THE TERM "LINEAR"	
	REGRESSION	31
	Linearity in the Variables	31
	Linearity in the Parameters	32
2.7	TWO-VARIABLE VERSUS MULTIPLE LINEAR	
	REGRESSION	33
2.8	ESTIMATION OF PARAMETERS: THE METHOD	
	OF ORDINARY LEAST SQUARES	33
	The Method of Ordinary Least Squares	34
2.9	PUTTING IT ALL TOGETHER	36
	Interpretation of the Estimated Math S.A.T. Score Function	37
2.10	SOME ILLUSTRATIVE EXAMPLES	38
2.11	SUMMARY	43
	KEY TERMS AND CONCEPTS	44
	QUESTIONS	44
	PROBLEMS	45
	OPTIONAL QUESTIONS	51
	APPENDIX 2A: DERIVATION OF LEAST-SQUARES	
	ESTIMATES	52
The T	wo-Variable Model: Hypothesis Testing	53
3.1	THE CLASSICAL LINEAR REGRESSION MODEL	54
3.2	VARIANCES AND STANDARD ERRORS OF	
	ORDINARY LEAST SQUARES ESTIMATORS	57
	Variances and Standard Errors of the Math S.A.T. Score Example	59
	Summary of the Math S.A.T. Score Function	59
3.3	WHY OLS? THE PROPERTIES OF OLS ESTIMATORS	60
	Monte Carlo Experiment	61
3.4	THE SAMPLING, OR PROBABILITY, DISTRIBUTIONS	
	OF OLS ESTIMATORS	62
3.5	HYPOTHESIS TESTING	64
	Testing $H_0:B_2 = 0$ versus $H_1:B_2 \neq 0$: The Confidence	
	Interval Approach	66
	The Test of Significance Approach to Hypothesis Testing	68
	Math S.A.T. Example Continued	69
3.6	HOW GOOD IS THE FITTED REGRESSION LINE:	
	THE COEFFICIENT OF DETERMINATION, r ²	71
	Formulas to Compute r^2	73
	r^2 for the Math S.A.T. Example	74
	The Coefficient of Correlation, r	74
3.7	REPORTING THE RESULTS OF REGRESSION ANALYSIS	75

3.8	COMPUTER OUTPUT OF THE MATH S.A.T. SCORE	
	EXAMPLE	76
3.9	NORMALITY TESTS	77
	Histograms of Residuals	77
	Normal Probability Plot	78
	Jarque-Bera Test	78
3.10	A CONCLUDING EXAMPLE: RELATIONSHIP BETWEEN WAGES AND PRODUCTIVITY IN THE U.S. BUSINESS SECTOR 1959-2006	70
2 1 1		80
3 12	SUMMARY	85
0.12		86
	OUESTIONS	86
	PBOBI EMS	88
	THOBLEMO	00
Multi 4.1	ple Regression: Estimation and Hypothesis Testing THE THREE-VARIABLE LINEAR REGRESSION	93
	MODEL	94
	The Meaning of Partial Regression Coefficient	95
4.2	ASSUMPTIONS OF THE MULTIPLE LINEAR	
	REGRESSION MODEL	97
4.3	ESTIMATION OF THE PARAMETERS OF MULTIPLE	
	REGRESSION	99
	Ordinary Least Squares Estimators	99
	Variance and Standard Errors of OLS Estimators	100
	Properties of OLS Estimators of Multiple Regression	102
4.4	GOODNESS OF FIT OF ESTIMATED MULTIPLE	
	REGRESSION: MULTIPLE COEFFICIENT OF	
	DETERMINATION, R ²	102
4.5	ANTIQUE CLOCK AUCTION PRICES REVISITED	103
	Interpretation of the Regression Results	103
4.6	HYPOTHESIS TESTING IN A MULTIPLE REGRESSION:	
	GENERAL COMMENTS	104
4.7	TESTING HYPOTHESES ABOUT INDIVIDUAL PARTIAL	
	REGRESSION COEFFICIENTS	105
	The Test of Significance Approach	105
	The Confidence Interval Approach to Hypothesis Testing	106
4.8	TESTING THE JOINT HYPOTHESIS THAT	
	$B_2 = B_3 = 0 \text{ OR } R^2 = 0$	107
	An Important Relationship between F and R^2	111
4.9	TWO-VARIABLE REGRESSION IN THE CONTEXT OF	
	MULTIPLE REGRESSION: INTRODUCTION TO	
	SPECIFICATION BIAS	112
4.10	COMPARING TWO R^2 VALUES: THE ADJUSTED R^2	113

4

	4.11	WHEN TO ADD AN ADDITIONAL EXPLANATORY	
		VARIABLE TO A MODEL	114
	4.12	RESTRICTED LEAST SQUARES	116
	4.13	ILLUSTRATIVE EXAMPLES	117
		Discussion of Regression Results	118
	4.14	SUMMARY	122
		KEY TERMS AND CONCEPTS	123
		QUESTIONS	123
		PROBLEMS	125
		APPENDIX 4A.1: DERIVATIONS OF OLS ESTIMATORS	
		GIVEN IN EQUATIONS (4.20) TO (4.22)	129
		APPENDIX 4A.2: DERIVATION OF EQUATION (4.31)	129
		APPENDIX 4A.3: DERIVATION OF EQUATION (4.50)	130
		APPENDIX 4A.4: EVIEWS OUTPUT OF THE	
		CLOCK AUCTION PRICE EXAMPLE	131
5	Fund	tional Forms of Regression Models	132
•	5.1	HOW TO MEASURE ELASTICITY: THE LOG-LINEAR	
	-	MODEL	133
		Hypothesis Testing in Log-Linear Models	137
	5.2	COMPARING LINEAR AND LOG-LINEAR REGRESSION	
		MODELS	138
	5.3	MULTIPLE LOG-LINEAR REGRESSION MODELS	140
	5.4	HOW TO MEASURE THE GROWTH RATE: THE	
		SEMILOG MODEL	144
		Instantaneous versus Compound Rate of Growth	147
		The Linear Trend Model	148
	5.5	THE LIN-LOG MODEL: WHEN THE EXPLANATORY	
		VARIABLE IS LOGARITHMIC	149
	5.6	RECIPROCAL MODELS	150
	5.7	POLYNOMIAL REGRESSION MODELS	156
	5.8	REGRESSION THROUGH THE ORIGIN	158
	5.9	A NOTE ON SCALING AND UNITS OF MEASUREMENT	160
	5.10	REGRESSION ON STANDARDIZED VARIABLES	161
	5.11	SUMMARY OF FUNCTIONAL FORMS	163
	5.12	SUMMARY	164
		KEY TERMS AND CONCEPTS	165
		QUESTIONS	166
		PROBLEMS	167
		APPENDIX 5A: LOGARITHMS	175
6	Dum	my Variable Regression Models	178
	6.1	THE NATURE OF DUMMY VARIABLES	178
	6.2	ANCOVA MODELS: REGRESSION ON ONE	
		QUANTITATIVE VARIABLE AND ONE QUALITATIVE	
		VARIABLE WITH TWO CATEGORIES:	
		EXAMPLE 6.1 REVISITED	185

6.3	REGRESSION ON ONE QUANTITATIVE	
	VARIABLE AND ONE QUALITATIVE	
	VARIABLE WITH MORE THAN TWO	
	CLASSES OR CATEGORIES	187
6.4	REGRESSION ON ONE QUANTIATIVE EXPLANATORY	
	VARIABLE AND MORE THAN ONE QUALITATIVE	
	VARIABLE	190
	Interaction Effects	191
	A Generalization	192
6.5	COMPARING TWO REGESSIONS	193
6.6	THE USE OF DUMMY VARIABLES IN SEASONAL	
	ANALYSIS	198
6.7	WHAT HAPPENS IF THE DEPENDENT VARIABLE IS	
	ALSO A DUMMY VARIABLE? THE LINEAR	
	PROBABILITY MODEL (LPM)	201
6.8	SUMMARY	204
	KEY TERMS AND CONCEPTS	205
	QUESTIONS	206
	PROBLEMS	207

PART	II	REGRESSION	ANALYSIS IN PRACTICE	217
	7	Model Selection:	Criteria and Tests	219
		7.1 THE ATTRI	BUTES OF A GOOD MODEL	220
		7.2 TYPES OF	SPECIFICATION ERRORS	221
		7.3 OMISSON	OF RELEVANT VARIABLE BIAS:	
		"UNDER	FITTING" A MODEL	221
		7.4 INCLUSION	I OF IRRELEVANT VARIABLES:	
		"OVERFI	ITTING" A MODEL	225
		7.5 INCORREC	T FUNCTIONAL FORM	227
		7.6 ERRORS O	F MEASUREMENT	229
		Errors of Mea	asurement in the Dependent Variable	229
		Errors of Mea	asurement in the Explanatory Variable(s)	229
		7.7 DETECTING	G SPECIFICATION ERRORS: TESTS OF	
		SPECIFI	CATION ERRORS	230
		Detecting the	Presence of Unnecessary Variables	230
		Tests for Omi	tted Variables and Incorrect Functional Forms	233
		Choosing bet	ween Linear and Log-linear Regression Models:	
		The MWD	Test	235
		Regression E	rror Specification Test: RESET	237
		7.8 SUMMARY		239
		KEY TERM	S AND CONCEPTS	240
		QUESTION	S	240
		PROBLEMS	8	241

8	Mult	ticollinearity: What Happens If Explanatory	
	Vari	ables are Correlated?	245
	8.1	THE NATURE OF MULTICOLLINEARITY: THE	
		CASE OF PERFECT MULTICOLLINEARITY	246
	8.2	THE CASE OF NEAR, OR IMPERFECT,	
		MULTICOLLINEARITY	248
	8.3	THEORETICAL CONSEQUENCES OF	
		MULTICOLLINEARITY	250
	8.4	PRACTICAL CONSEQUENCES OF MULTICOLLINEARITY	251
	8.5	DETECTION OF MULTICOLLINEARITY	253
	8.6	IS MULTICOLLINEARITY NECESSARILY BAD?	258
	8.7	AN EXTENDED EXAMPLE: THE DEMAND FOR	
		CHICKENS IN THE UNITED STATES, 1960 TO 1982	259
		Collinearity Diagnostics for the Demand Function for	
		Chickens (Equation [8.15])	260
	8.8	WHAT TO DO WITH MULTICOLLINEARITY:	
		REMEDIAL MEASURES	261
		Dropping a Variable(s) from the Model	262
		Acquiring Additional Data or a New Sample	262
		Rethinking the Model	263
		Prior Information about Some Parameters	264
		Transformation of Variables	265
		Other Remedies	266
	8.9	SUMMARY	266
		KEY TERMS AND CONCEPTS	267
		QUESTIONS	267
		PROBLEMS	268
9	Hete	eroscedasticity: What Happens If the Error	
	Vari	ance Is Nonconstant?	274
	9.1	THE NATURE OF HETEROSCEDASTICITY	274
	9.2	CONSEQUENCES OF HETEROSCEDASTICITY	280
	9.3	DETECTION OF HETEROSCEDASTICITY: HOW DO	
		WE KNOW WHEN THERE IS A	
		HETEROSCEDASTICITY PROBLEM?	282
		Nature of the Problem	283
		Graphical Examination of Residuals	283
		Park Test	285
		Glejser Test	287
		White's General Heteroscedasticity Test	289
		Other Tests of Heteroscedasticity	290
	9.4	WHAT TO DO IF HETEROSCEDASTICITY IS OBSERVED:	
		REMEDIAL MEASURES	291
		When σ_{I}^{2} Is Known: The Method of Weighted Least Squares (WLS)	291
		When True σ_i^2 Is Unknown	292
		Respecification of the Model	297

	9.5	WHITE'S HETEROSCEDASTICITY-CORRECTED	
		STANDARD ERRORS AND t STATISTICS	298
	9.6	SOME CONCRETE EXAMPLES OF	
		HETEROSCEDASTICITY	299
	9.7	SUMMARY	302
		KEY TERMS AND CONCEPTS	303
		QUESTIONS	304
		PROBLEMS	304
10	Auto	correlation: What Happens If Error Terms Are Correlated?	312
	10.1	THE NATURE OF AUTOCORRELATION	313
		Inertia	314
		Model Specification Error(s)	315
		The Cobweb Phenomenon	315
		Data Manipulation	315
	10.2	CONSEQUENCES OF AUTOCORRELATION	316
	10.3	DETECTING AUTOCORRELATION	317
		The Graphical Method	318
		The Durbin-Watson <i>d</i> Test	320
	10.4	REMEDIAL MEASURES	325
	10.5	HOW TO ESTIMATE $ ho$	327
		ho = 1: The First Difference Method	327
		ρ Estimated from Durbin-Watson <i>d</i> Statistic	327
		ρ Estimated from OLS Residuals, e_t	328
		Other Methods of Estimating ρ	328
	10.6	A LARGE SAMPLE METHOD OF CORRECTING	
		OLS STANDARD ERRORS: THE NEWEY-WEST	
		(NW) METHOD	332
	10.7	SUMMARY	334
		KEY TERMS AND CONCEPTS	335
		QUESTIONS	335
		PROBLEMS	336
		APPENDIX 10A: THE RUNS TEST	341
		Swed-Eisenhart Critical Runs Test	342
		Decision Rule	342
		APPENDIX 10B: A GENERAL TEST OF	
		AUTOCORRELATION: THE	
		BREUSCH-GODFREY (BG) TEST	343

PART	Ш	ADVANCED TOPICS IN ECONOMETRICS	345
	11	Simultaneous Equation Models	347
		11.1 THE NATURE OF SIMULTANEOUS EQUATION MODELS	348
		11.2 THE SIMULTANEOUS EQUATION BIAS:	
		INCONSISTENCY OF OLS ESTIMATORS	350

12

11.3	THE METHOD OF INDIRECT LEAST SQUARES (ILS)	352
11.4	INDIRECT LEAST SQUARES: AN ILLUSTRATIVE	252
115	THE IDENTIFICATION PROBLEM: A BOSE BY	355
11.5	ANY OTHER NAME MAY NOT BE A BOSE	355
	Underidentification	356
	Just or Exact Identification	357
	Overidentification	359
11.6	RULES FOR IDENTIFICATION: THE ORDER	
	CONDITION OF IDENTIFICATION	361
11.7	ESTIMATION OF AN OVERIDENTIFIED EQUATION:	
	THE METHOD OF TWO-STAGE LEAST SQUARES	362
11.8	2SLS: A NUMERICAL EXAMPLE	364
11.9	SUMMARY	365
	KEY TERMS AND CONCEPTS	366
	QUESTIONS	367
		307
	AFFEINDIX TTA. INCONSISTENCE OF OLS ESTIMATORS	309
Sele	cted Topics in Single Equation Regression Models	371
12.1	DYNAMIC ECONOMIC MODELS: AUTOREGRESSIVE AND	
	DISTRIBUTED LAG MODELS	371
	Reasons for Lag	372
	Estimation of Distributed Lag Models	374
	The Koyck, Adaptive Expectations, and Stock Adjustment Models	
	Approach to Estimating Distributed Lag Models	377
12.2	THE PHENOMENON OF SPURIOUS REGRESSION:	000
10.0		380
12.3		302 202
12.4		384
12.5		386
12.0	Estimation of the Logit Model	390
12.7	SUMMARY	396
	KEY TERMS AND CONCEPTS	397
	QUESTIONS	397
	PROBLEMS	398
	ICE OF DORADILITY AND STATISTICS	402
DAG		403
Арре	endix A: Review of Statistics: Probability	_
an	d Probability Distributions	405
A.1	SOME NOTATION	405
	The Summation Notation	405

Properties of the Summation Operator

406

A.2	EXPERIMENT, SAMPLE SPACE, SAMPLE POINT,	
	AND EVENTS	407
	Experiment	407
	Sample Space or Population	407
	Sample Point	408
	Events	408
	Venn Diagrams	408
A.3	RANDOM VARIABLES	409
A.4	PROBABILITY	410
	Probability of an Event: The Classical or A Priori Definition	410
	Relative Frequency or Empirical Definition of Probability	411
	Probability of Random Variables	417
A.5	RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS	417
	Probability Distribution of a Discrete Random Variable	417
	Probability Distribution of a Continuous Random Variable	419
	Cumulative Distribution Function (CDF)	420
A.6	MULTIVARIATE PROBABILITY DENSITY FUNCTIONS	422
	Marginal Probability Functions	424
	Conditional Probability Functions	425
	Statistical Independence	427
A.7	SUMMARY AND CONCLUSIONS	428
	KEY TERMS AND CONCEPTS	428
	REFERENCES	429
	QUESTIONS	429
	PROBLEMS	430
Арр	endix B: Characteristics of Probability Distributions	434
B.1	EXPECTED VALUE: A MEASURE OF CENTRAL	
	TENDENCY	434
	Properties of Expected Value	436
БΟ		437
В.2		438
	Chebyebevia Inequality	439
	Coefficient of Variation	441
ВЗ		442
D.5	Properties of Coveriance	443
R4		445
D.4	Properties of Correlation Coefficient	445
	Variances of Correlated Variables	443
B 5		447
2.0	Conditional Variance	449
B.6	SKEWNESS AND KURTOSIS	449
B.7	FROM THE POPULATION TO THE SAMPLE	452
	Sample Mean	452
	-	

	Sample Variance	453
	Sample Covariance	454
	Sample Correlation Coefficient	455
	Sample Skewness and Kurtosis	456
B.8	SUMMARY	456
	KEY TERMS AND CONCEPTS	457
	QUESTIONS	457
	PROBLEMS	458
	OPTIONAL EXERCISES	460
Арр	endix C: Some Important Probability Distributions	461
C.1	THE NORMAL DISTRIBUTION	462
	Properties of the Normal Distribution	462
	The Standard Normal Distribution	464
	Random Sampling from a Normal Population	468
	The Sampling or Probability Distribution of the Sample Mean $ar{X}$	468
	The Central Limit Theorem (CLT)	472
C.2	THE t DISTRIBUTION	473
	Properties of the <i>t</i> Distribution	474
C.3	THE CHI-SQUARE (χ^2) PROBABILITY DISTRIBUTION	477
<u> </u>	Properties of the Chi-square Distribution	478
C.4	THE F DISTRIBUTION	480
0.5	Properties of the F Distribution	481
0.5		483
	KEY TERMS AND CONCEPTS	483
		484
	PROBLEMS	484
App	endix D: Statistical Inference: Estimation and	407
п) Г 1		487
D.1		407
D.2		100
D 2		409
D.3		490
D.4		490
	Linearity	494
	Minimum Variance	495
	Efficiency	496
	Best Linear Unbiased Estimator (BLUE)	497
	Consistency	497
D.5	STATISTICAL INFERENCE: HYPOTHESIS TESTING	498
2.0	The Confidence Interval Approach to Hypothesis Testing	499
	Type I and Type II Errors: A Digression	500
	The Test of Significance Approach to Hypothesis Testing	503

A Word on Choosing the Level of Significance, α , and the p	Value 506
	510
KEY TERMS AND CONCEPTS	510
QUESTIONS	511
PROBLEMS	512
Appendix E: Statistical Tables	515
Appendix F: Computer Output of EViews, MINITAB, Excel, and STATA	534
Appendix F: Computer Output of EViews, MINITAB, Excel, and STATA SELECTED BIBLIOGRAPHY	534 541
Appendix F: Computer Output of EViews, MINITAB, Excel, and STATA SELECTED BIBLIOGRAPHY INDEXES	534 541 545
Appendix F: Computer Output of EViews, MINITAB, Excel, and STATA SELECTED BIBLIOGRAPHY INDEXES Name Index	534 541 545 545