Paul Malliavin In Cooperation with Hélène Airault, Leslie Kay, Gérard Letac

Integration and Probability

Foreword

It is a distinct pleasure to have the opportunity to introduce Professor Malliavin's book to the English-speaking mathematical world.

In recent years there has been a noticeable retreat from the level of abstraction at which graduate-level courses in analysis were previously taught in the United States and elsewhere. In contrast to the practices used in the 1950s and 1960s, when great emphasis was placed on the most general context for integration and operator theory, we have recently witnessed an increased emphasis on detailed discussion of integration over Euclidean space and related problems in probability theory, harmonic analysis, and partial differential equations.

Professor Malliavin is uniquely qualified to introduce the student to analysis with the proper mix of abstract theories and concrete problems. His mathematical career includes many notable contributions to harmonic analysis, complex analysis, and related problems in probability theory and partial differential equations. Rather than developed as a thing-in-itself, the abstract approach serves as a context into which special models can be couched. For example, the general theory of integration is developed at an abstract level, and only then specialized to discuss the Lebesgue measure and integral on the real line. Another important area is the entire theory of probability, where we prefer to have the abstract model in mind, with no other specialization than total unit mass. Generally, we learn to work at an abstract level so that we can specialize when appropriate.

A cursory examination of the contents reveals that this book covers most of the topics that are familiar in the first graduate course on analysis. It also treats topics that are not available elsewhere in textbook form. A notable example is Chapter V, which deals with Malliavin's stochastic calculus of variations developed in the context of Gaussian measure spaces. Originally inspired by the desire to obtain a probabilistic proof of Hörmander's theorem on the smoothness of the solutions of second-order hypoelliptic differential equations, the subject has found a life of its own. This is partly due to Malliavin and his followers' development of a suitable notion of "differentiable function" on a Gaussian measure space. The novice should be warned that this notion of differentiability is not easily related to the more conventional notion of differentiability in courses on manifolds. Here we have a family of Sobolev spaces of "differentiable functions" over the measure space, where the definition is global, in terms of the Sobolev norms. The finite-dimensional Sobolev spaces are introduced through translation operators, and immediately generalizes to the infinite-dimensional case. The main theorem of the subject states that if a differentiable vector-valued function has enough "variation", then it induces a smooth measure on Euclidean space.

Such relations illustrate the interplay between the "upstairs" and the "downstairs" of analysis. We find the natural proof of a theorem in real analysis (smoothness of a measure) by going up to the infinite-dimensional Gaussian measure space where the measure is naturally defined. This interplay of ideas can also be found in more traditional forms of finitedimensional real analysis, where we can better understand and prove formulas and theorems on special functions on the real line by going up to the higher-dimensional geometric problems from which they came by "projection"; Bessel and Legendre functions provide some elementary examples of such phenomena.

The mathematical public owes an enormous debt of gratitude to Leslie Kay, whose superlative efforts in editing and translating this text have been accomplished with great speed and accuracy.

> Mark Pinsky Department of Mathematics Northwestern University Evanston, IL 60208, USA

Preface

We plan to survey various extensions of Lebesgue theory in contemporary analysis: the abstract integral, Radon measures, Fourier analysis, Hilbert spectral analysis, Sobolev spaces, pseudo-differential operators, probability, martingales, the theory of differentiation, and stochastic calculus of variations.

In order to give complete proofs within the limits of this book, we have chosen an axiomatic method of exposition; the interest of the concepts introduced will become clear only after the reader has encountered examples later in the text. For instance, the first chapter deals with the abstract integral, but the reader does not see a nontrivial example of the abstract theory until the Lebesgue integral is introduced in Chapter II. This axiomatic approach is now familiar in topology; it should not cause difficulties in the theory of integration.

In addition, we have tried as much as possible to base each theory on the results of the theories presented earlier. This structure permits an economy of means, furnishes interesting examples of applications of general theorems, and above all illustrates the unity of the subject. For example, the Radon-Nikodym theorem, which could have appeared at the end of Chapter I, is treated at the end of Chapter IV as an example of the theory of martingales; we then obtain the stronger result of convergence almost everywhere. Similarly, conditional probabilities are treated using (i) the theory of Radon measures and (ii) a general isomorphism theorem showing that there exists only one model of a nonatomic separable measure space, namely \mathbf{R} equipped with Lebesgue measure. Furthermore, the spectral theory of unitary operators on an abstract Hilbert space is derived from

Bochner's theorem characterizing Fourier series of measures. The treatment in Chapter V of Sobolev spaces over a probability space parallels that in Chapter III of Sobolev spaces over \mathbb{R}^{n} .

In the detailed table of contents, the reader can see how the book is organized. It is easy to read only selected parts of the book, depending on the results one hopes to reach; at the beginning of the book, as a reader's guide, there is a diagram showing the interdependence of the different sections. There is also an index of terms at the end of the work. Certain parts of the text, which can be skipped on a first reading, are printed in smaller type.

Readers interested in probability theory can focus essentially on Chapters I, IV, and V; those interested in Fourier analysis, essentially on Chapters I and III. Chapter III can be read in different ways, depending on whether one is interested in partial differential equations or in spectral analysis.

The book includes a variety of exercises by Gérard Letac. Detailed solutions can be found in *Exercises and Solutions Manual for Integration and Probability* by Gérard Letac, Springer-Verlag, 1995. The upcoming book *Stochastic Analysis* by Paul Malliavin, Grundlehren der Mathematischen Wissenschaften, volume 313, Springer-Verlag, 1995, is meant for secondyear graduate students who are planning to continue their studies in probability theory.

March 1995

P. M.

Contents

Foreword

Pı	refac	е		vii
In	dex	of Nota	tion	xvii
Pı	rolog	jue		xix
I	Me	asurabl	e Spaces and Integrable Functions	1
	1	σ -alge	ebras	2
		1.1	Sub- σ -algebras. Intersection of σ -algebras	2
		1.2	σ -algebra generated by a family of sets	3
		1.3	Limit of a monotone sequence of sets	3
		1.4	Theorem (Boolean algebras and monotone classes) .	4
		1.5	Product σ -algebras	5
	2	Meas	urable Spaces	6
		2.1	Inverse image of a σ -algebra	6
		2.2	Closure under inverse images	
			of the generated σ -algebra	7
		2.3	Measurable spaces and measurable mappings	7
		2.4	Borel algebras. Measurability and continuity.	
			Operations on measurable functions	8
		2.5	Pointwise convergence of measurable mappings	11
		2.6	Supremum of a sequence of measurable functions	12
			• • • • • • • • • • • • • • • • • • • •	

v

3	Meas	ures and Measure Spaces	13		
	3.1	Convexity inequality	14		
	3.2	Measure of limits of monotone sequences	14		
	3.3	Countable convexity inequality	16		
4	Negli	gible Sets and Classes of Measurable Mappings	16		
	4.1	Negligible sets	16		
	4.2	Complete measure spaces	17		
	4.3	The space $M_{\mu}((X, \mathcal{A}); (X', \mathcal{A}'))$	18		
5	Conv	ergence in $M_{\mu}((X, \mathcal{A}); (Y, \mathcal{B}_Y))$	19		
	5.1	Convergence almost everywhere	19		
	5.2	Convergence in measure	20		
6	The S	Space of Integrable Functions	25		
	6.1	Simple measurable functions	25		
	6.2	Finite σ -algebras	26		
	6.3	Simple functions and indicator functions	27		
	6.4	Approximation by simple functions	27		
	6.5	Integrable simple functions	29		
	6.6	Some spaces of bounded measurable functions	31		
	6.7	The truncation operator	32		
	6.8	Construction of L^1	33		
7	Theorems on Passage to the Limit under the Integral Sign . 34				
	7.1	Fatou-Beppo Levi theorem	34		
	7.2	Lebesgue's theorem on series	34		
	7.3	Theorem (truncation operator a contraction)	35		
	7.4	Integrability criteria	35		
	7.5	Definition of the integral on a measurable set	36		
	7.6	Lebesgue's dominated convergence theorem	37		
	7.7	Fatou's lemma	38		
	7.8	Applications of the dominated convergence theorem			
		to integrals which depend on a parameter	39		
8	Produ	uct Measures and the Fubini-Lebesgue Theorem	41		
	8.1	Definition of the product measure	41		
	8.2	Proposition (uniqueness of the product measure)	41		
	8.3	Lemma (measurability of sections)	42		
	8.4	Construction of the product measure	43		
	8.5	The Fubini-Lebesgue theorem	44		
9	The I	L^p Spaces	46		
	9.0	Integration of complex-valued functions	46		
	9.1	Definition of the L^p spaces	47		
	9.2	Convexity inequalities	48		
	9.3	Completeness theorem	51		
	9.4	Notions of duality	52		
	9.5	The space L^{∞}	53		
	9.6	Theorem (containment relations between L^p spaces			
		if $\mu(X) < \infty$)	54		

Π	Bor	el Meas	ures and Radon Measures	55
	1	Locally	Compact Spaces and Partitions of Unity	56
		1.0	Definition of locally compact spaces	
			which are countable at infinity	56
		1.1	Urysohn's lemma	57
		1.2	Support of a function	57
		1.3	Subordinate covers	58
		1.4	Partitions of unity	60
	2	Positiv	e Linear Functionals on $C_K(X)$	
		and Po	ositive Radon Measures	61
		2.1	Borel measures	61
		2.2	Radon-Riesz theorem	61
		2.3	Proof of uniqueness of the Riesz representation	62
		2.4	Proof of existence of the Riesz representation	65
	3	Regula	rity of Borel Measures and Lusin's Theorem	75
		3.1	Proposition (Borel measures and Radon measures) .	76
		3.2	Theorem (regularity of Radon measures)	76
		3.3	Theorem (regularity of locally finite Borel measures)	76
		3.4	The classes $\mathcal{G}_{\delta}(X)$ and $\mathcal{F}_{\sigma}(X)$	76
		3.5	Theorem (density of C_K in L^p)	78
	4	The Le	ebesgue Integral on R and on \mathbf{R}^n	79
		4.1	Definition of the Lebesgue integral on R	79
		4.2	Properties of the Lebesgue integral	80
		4.3	Lebesgue measure on \mathbb{R}^n	82
		4.4	Change of variables in the Lebesgue integral on \mathbb{R}^n .	83
	5	Linear	Functionals on $C_{\kappa}(X)$ and Signed Radon Measures	86
		5.1	Continuous linear functionals on $C(X)$ (X compact)	86
		5.2	Decomposition theorem	87
		5.3	Signed Borel measures	90
		5.4	Dirac measures and discrete measures	93
		5.5	Support of a signed Radon measure	94
	6	Measu	res and Duality with Respect to Spaces	
	•	of Con	tinuous Functions on a Locally Compact Space	94
		6.1	Definitions	94
		6.2	Proposition (relationships among C_b , C_K , and C_0).	95
		6.3	The Alexandroff compactification	95
		6.4	Proposition	96
		6.5	The space $M^1(X)$	96
		6.6	Theorem $(M^1(X))$ the dual of $C_0(X)$	97
		6.7	Defining convergence by duality	97
		6.8	Theorem (relationships among types of convergence)	98
		6.9	Theorem (narrow density of M^1 , in M^1)	99
			,, ,,, ,, ,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,, ,,, ,,, ,,, ,,, ,,, ,,,	

III	l Fou	rier Ana	lysis	101
	1	Convol	lutions and Spectral Analysis	
		on Loc	ally Compact Abelian Groups	102
		1.1	Notation	102
		1.2	Examples	102
		1.3	The group algebra	103
		1.4	The dual group. The Fourier transform on M^1	106
		1.5	Invariant measures. The space L^1	108
		1.6	The space $L^1(G)$	110
		1.7	The translation operator	112
		1.8	Extensions of the convolution product	114
		1.9	Convergence theorem	116
	2	Spectr	al Synthesis on \mathbf{T}^n and \mathbf{R}^n	118
		2.1	The character groups of \mathbf{R}^n and \mathbf{T}^n	118
		2.2	Spectral synthesis on T	120
		2.3	Extension of the results to \mathbf{T}^n	125
		2.4	Spectral synthesis on R	126
		2.5	Spectral synthesis on \mathbb{R}^n	133
		2.6	Parseval's lemma	134
	3	Vector	Differentiation and Sobolev Spaces	135
		3.1	Differentiation in the vector sense. The spaces W_s^p .	135
		3.2	The space $\mathcal{D}(\mathbf{R}^n)$	136
		3.3	Weak differentiation	138
		3.4	Action of \mathcal{D} on W_s^p . The space $W_{s,loc}^p$	140
		3.5	Sobolev spaces	142
	4	Fourie	r Transform of Tempered Distributions	149
		4.1	The space $\mathcal{S}(\mathbf{R}^n)$	149
		4.2	lsomorphism of $\mathcal{S}(\mathbf{R}^n)$ under the Fourier transform .	150
		4.3	The Fourier transform in spaces of distributions	152
	5	Pseudo	p-differential Operators	156
		5.1	Symbol of a differential operator	156
		5.2	Definition of a pseudo-differential operator on $\mathcal{D}(E)$	158
		5.3	Extension of pseudo-differential operators	
			to Sobolev spaces	159
		5.4	Calderon's symbolic pseudo-calculus	162
		5.5	Elliptic regularity	168
		. –		
IV	Hilb	ert Spa	ce Methods and Limit Theorems	
	in P	robabili	ty Theory	171
	1	Found	ations of Probability Theory	171
		1.1	Introductory remarks	
			on the mathematical representation	
			of a physical system	171
		1.2	Axiomatic definition of abstract Boolean algebras	172
		1.3	Representation of a Boolean algebra	173

	1.4	Probability spaces	176
	1.5	Morphisms of probability spaces	177
	1.6	Random variables and distributions	
		of random variables	179
	1.7	Mathematical expectation and distributions	179
	1.8	Various notions of convergence in probability theory	180
2	Condit	tional Expectation	183
	2.0	Phenomenological meaning	183
	2.1	Conditional expectation as a projection operator	
		on L^2	184
	2.2	Conditional expectation and positivity	186
	2.3	Extension of conditional expectation to L^1	186
	2.4	Calculating $\mathbf{E}^{\mathcal{B}}$ when \mathcal{B} is a finite σ -algebra	187
	2.5	Approximation by finite σ -algebras	188
	2.6	Conditional expectation and L^p spaces	189
3	Indepe	endence and Orthogonality	190
	3.0	Independence of two sub- σ -algebras	190
	3.1	Independence of random variables and of σ -algebras	191
	3.2	Expectation of a product of independent r.v.	191
	3.3	Conditional expectation and independence	193
	3.4	Independence and distributions	
		(case of two random variables)	194
	3.5	A function space on the σ -algebra generated	
		by two σ -algebras $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	195
	3.6	Independence and distributions	
		(case of n random variables) $\ldots \ldots \ldots \ldots$	197
4	Chara	cteristic Functions and Theorems on Convergence	
	in Dist	tribution	198
	4.1	The characteristic function of a random variable	198
	4.2	Characteristic function of a sum of independent r.v.	202
	4.3	Laplace's theorem and Gaussian distributions	204
5	Theore	ems on Convergence of Martingales	207
	5.1		207
	5.2	Energy equality	208
	5.3	Theory of L^2 martingales $\ldots \ldots \ldots \ldots \ldots$	208
	5.4	Stopping times and the maximal inequality	210
	5.5	Convergence of regular martingales	213
	5.6	L^1 martingales	214
	5.7	Uniformly integrable sets	216
•	5.8	Regularity criterion	217
6	Theory	y of Differentiation	218
	6.0	Separability	219
	6.1	Separability and approximation by finite σ -algebras	219
	6.2	The Radon-Nikodym theorem	220

		6.3	Duality of the L^p spaces	223
		6.4	Isomorphisms of separable probability spaces	224
		6.5	Conditional probabilities	227
		6.6	Product of a countably infinite set	
			of probability spaces	228
v	Gai	ussian S	Sobolev Spaces	
•	and	Stoch	astic Calculus of Variations	229
	1	Gaus	sian Probability Spaces	230
	-	1.1	Definition (Gaussian random variables)	230
		1.2	Definition (Gaussian spaces)	230
		1.3	Hermite polynomials	230
		1.4	Hermite series expansion	232
		1.5	The Ornstein-Uhlenbeck operator on B	233
		1.6	Canonical basis for the L^2 space	200
			of a Gaussian probability space	235
		1.7	Isomorphism theorem	236
		1.8	The Cameron-Martin theorem on $(\mathbf{R}^N, \mathcal{B}_{\infty}, \nu)$:	200
			quasi-invariance under the action of ℓ^2	236
	2	Gaus	sian Sobolev Spaces	238
		2.1	Finite-dimensional spaces	238
		2.2	Using Hermite series to characterize $D^2_{\alpha}(\mathbf{R})$	
			in the Gaussian L^2 space $\ldots \ldots \ldots \ldots \ldots \ldots$	239
		2.3	The spaces $\mathbf{D}^2_{\bullet}(\mathbf{R}^k)$ $(k \ge 1)$	243
		2.4	Approximation of $L^p(\mathbf{R}^N, \nu)$ by $L^p(\mathbf{R}^n, \nu)$	244
		2.5	The spaces $\mathbf{D}_r^p(\mathbf{R}^N)$	244
	3	Absol	lute Continuity of Distributions	246
		3.1	The Gaussian Space on R	246
		3.2	The Gaussian space on \mathbf{R}^N	248
An	Denc	lix I. A	lilbert Spectral Analysis	253
	1	Funct	tions of Positive Type	253
	2	Boch	ner's Theorem	255
	3	Spect	ral Measures for a Unitary Operator	256
	4	Spect	ral Decomposition Associated	200
		with a	a Unitary Operator	257
	5	Spect	ral Decomposition	
		for Se	everal Unitary Operators	259
AD	pend	lix II. I	Infinitesimal and Integrated Forms	
of t	he (Change	-of-Variables Formula	26 1
	1	Notat	ion	261
	2	Veloc	ity Fields and Densities	262
	3	The n	a-dimensional Gaussian Space	265

	Contents	xv
Exercises for Chapter I		267
Exercises for Chapter II		273
Exercises for Chapter III		285
Exercises for Chapter IV		297
Exercises for Chapter V		315
Index		319