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Foreword

It is a distinct pleasure to have the opportunity to introduce Professor
Malliavin's book to the English-speaking mathematical world.

In recent years there has been a noticeable retreat from the level of ab-
straction at which graduate-level courses in analysis were previously taught
in the United States and elsewhere. In contrast to the practices used in the
1950s and 1960s, when great emphasis was placed on the most general
context for integration and operator theory, we have recently witnessed
an increased emphasis on detailed discussion of integration over Euclidean
space and related problems in probability theory, harmonic analysis, and
partial differential equations.

Professor Malliavin is uniquely qualified to introduce the student to anal-
ysis with the proper mix of abstract theories and concrete problems. His
mathematical career includes many notable contributions to harmonic anal-
ysis, complex analysis, and related problems in probability theory and par-
tial differential equations. Rather than developed as a thing-in-itself, the
abstract approach serves as a context into which special models can be
couched. For example, the general theory of integration is developed at an
abstract level, and only then specialized to discuss the Lebesgue measure
and integral on the real line. Another important area is the entire theory
of probability, where we prefer to have the abstract model in mind, with
no other specialization than total unit mass. Generally, we learn to work
at an abstract level so that we can specialize when appropriate.

A cursory examination of the contents reveals that this book covers most
of the topics that are familiar in the first graduate course on analysis. It also
treats topics that are not available elsewhere in textbook form. A notable
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example is Chapter V, which deals with Malliavin's stochastic calculus of
variations developed in the context of Gaussian measure spaces. Originally
inspired by the desire to obtain a probabilistic proof of Hormander's theo-
rem on the smoothness of the solutions of second-order hypoelliptic differ-
ential equations, the subject has found a life of its own. This is partly due
to Malliavin and his followers' development of a suitable notion of "differen-
tiable function" on a Gaussian measure space. The novice should be warned
that this notion of differentiability is not easily related to the more con-
ventional notion of differentiability in courses on manifolds. Here we have
a fancily of Sobolev spaces of "differentiable functions" over the measure
space, where the definition is global, in terms of the Sobolev norms. The
finite-dimensional Sobolev spaces are introduced through translation op-
erators, and immediately generalizes to the infinite-dimensional case. The
main theorem of the subject states that if a differentiable vector-valued
function has enough "variation", then it induces a smooth measure on Eu-
clidean space.

Such relations illustrate the interplay between the "upstairs" and the
"downstairs" of analysis. We find the natural proof of a theorem in real
analysis (smoothness of a measure) by going up to the infinite-dimensional
Gaussian measure space where the measure is naturally defined. This in-
terplay of ideas can also be found in more traditional forms of finite-
dimensional real analysis, where we can better understand and prove for-
mulas and theorems on special functions on the real line by going up to the
higher-dimensional geometric problems from which they came by "projec-
tion"; Bessel and Legendre functions provide some elementary examples of
such phenomena.

The mathematical public owes an enormous debt of gratitude to Leslie
Kay, whose superlative efforts in editing and translating this text have been
accomplished with great speed and accuracy.

Mark Pinsky

Department of Mathematics
Northwestern University
Evanston, IL 60208, USA



Preface

We plan to survey various extensions of Lebesgue theory in contemporary
analysis: the abstract integral, Radon measures, Fourier analysis, Hilbert
spectral analysis, Sobolev spaces, pseudo-differential operators, probabil-
ity, martingales, the theory of differentiation, and stochastic calculus of
variations.

In order to give complete proofs within the limits of this book, we have
chosen an axiomatic method of exposition; the interest of the concepts in-
troduced will become clear only after the reader has encountered examples
later in the text. For instance, the first chapter deals with the abstract inte-
gral, but the reader does not see a nontrivial example of the abstract theory
until the Lebesgue integral is introduced in Chapter II. This axiomatic ap-
proach is now familiar in topology; it should not cause difficulties in the
theory of integration.

In addition, we have tried as much as possible to base each theory on the
results of the theories presented earlier. This structure permits an econ-
omy of means, furnishes interesting examples of applications of general
theorems, and above all illustrates the unity of the subject. For example,
the Radon-Nikodym theorem, which could have appeared at the end of
Chapter I, is treated at the end of Chapter IV as an example of the theory
of martingales; we then obtain the stronger result of convergence almost
everywhere. Similarly, conditional probabilities are treated using (i) the
theory of Radon measures and (ii) a general isomorphism theorem show-
ing that there exists only one model of a nonatomic separable measure
space, namely R equipped with Lebesgue measure. Furthermore, the spec-
tral theory of unitary operators on an abstract Hilbert space is derived from
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Bochner's theorem characterizing Fourier series of measures. The treatment
in Chapter V of Sobolev spaces over a probability space parallels that in
Chapter III of Sobolev spaces over R".

In the detailed table of contents, the reader can see how the book is
organized. It is easy to read only selected parts of the book, depending on
the results one hopes to reach; at the beginning of the book, as a reader's
guide, there is a diagram showing the interdependence of the different sec-
tions. There is also an index of terms at the end of the work. Certain parts
of the text, which can be skipped on a first reading, are printed in smaller
type.

Readers interested in probability theory can focus essentially on Chap-
ters I, IV, and V; those interested in Fourier analysis, essentially on Chap-
ters I and III. Chapter III can be read in different ways, depending on
whether one is interested in partial differential equations or in spectral
analysis.

The book includes a variety of exercises by G6rard Letac. Detailed solu-
tions can be found in Exercises and Solutions Manual for Integration and
Probability by G6rard Letac, Springer-Verlag, 1995. The upcoming book
Stochastic Analysis by Paul Malliavin, Grundlehren der Mathematischen
Wissenschaften, volume 313, Springer-Verlag, 1995, is meant for second-
year graduate students who are planning to continue their studies in prob-
ability theory.
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