
Software Engineering

A P R A C T I T I O N E R ’ S A P P R O A C H

EIGHTH EDITION

Roger S. Pressman, Ph.D.
Bruce R. Maxim, Ph.D.

vi

 Roger S. Pressman is an internationally recognized consultant and author in soft-

ware engineering. For more than four decades, he has worked as a software engi-

neer, a manager, a professor, an author, a consultant, and an entrepreneur.

 Dr. Pressman is president of R. S. Pressman & Associates, Inc., a consulting

fi rm that specializes in helping companies establish effective software engineer-

ing practices. Over the years he has developed a set of techniques and tools that

improve software engineering practice. He is also the founder of Teslaccessories,

LLC, a start-up manufacturing company that specializes in custom products for

the Tesla Model S electric vehicle.

 Dr. Pressman is the author of nine books, including two novels, and many techni-

cal and management papers. He has been on the editorial boards of IEEE Software

and The Cutter IT Journal and was editor of the “Manager” column in IEEE Software.

 Dr. Pressman is a well-known speaker, keynoting a number of major industry

conferences. He has presented tutorials at the International Conference on Soft-

ware Engineering and at many other industry meetings. He has been a member of

the ACM, IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa Nu, and Pi Tau Sigma.

 Bruce R. Maxim has worked as a software engineer, project manager, professor,

author, and consultant for more than thirty years. His research interests include

software engineering, human computer interaction, game design, social media,

artifi cial intelligence, and computer science education.

 Dr. Maxim is associate professor of computer and information science at the

University of Michigan—Dearborn. He established the GAME Lab in the College

of Engineering and Computer Science. He has published a number of papers on

computer algorithm animation, game development, and engineering education.

He is coauthor of a best-selling introductory computer science text. Dr. Maxim

has supervised several hundred industry-based software development projects

as part of his work at UM-Dearborn.

 Dr. Maxim’s professional experience includes managing research informa-

tion systems at a medical school, directing instructional computing for a medical

campus, and working as a statistical programmer. Dr. Maxim served as the chief

technology offi cer for a game development company.

 Dr. Maxim was the recipient of several distinguished teaching awards and a

 distinguished community service award. He is a member of Sigma Xi, Upsilon Pi

 Epsilon, Pi Mu Epsilon, Association of Computing Machinery, IEEE Computer

 Society, American Society for Engineering Education, Society of Women Engineers,

and International Game Developers Association.

 ABOUT THE AUTHORS

vii

CONTENTS AT A GLANCE

CHAPTER 1 The Nature of Software 1

CHAPTER 2 Software Engineering 14

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 3 Software Process Structure 30

CHAPTER 4 Process Models 40

CHAPTER 5 Agile Development 66

CHAPTER 6 Human Aspects of Software Engineering 87

PART TWO MODELING 103

CHAPTER 7 Principles That Guide Practice 104

CHAPTER 8 Understanding Requirements 131

CHAPTER 9 Requirements Modeling: Scenario-Based Methods 166

CHAPTER 10 Requirements Modeling: Class-Based Methods 184

CHAPTER 11 Requirements Modeling: Behavior, Patterns, and Web/Mobile Apps 202

CHAPTER 12 Design Concepts 224

CHAPTER 13 Architectural Design 252

CHAPTER 14 Component-Level Design 285

CHAPTER 15 User Interface Design 317

CHAPTER 16 Pattern-Based Design 347

CHAPTER 17 WebApp Design 371

CHAPTER 18 MobileApp Design 391

PART THREE QUALITY MANAGEMENT 411

CHAPTER 19 Quality Concepts 412

CHAPTER 20 Review Techniques 431

CHAPTER 21 Software Quality Assurance 448

CHAPTER 22 Software Testing Strategies 466

CHAPTER 23 Testing Conventional Applications 496

CHAPTER 24 Testing Object-Oriented Applications 523

CHAPTER 25 Testing Web Applications 540

CHAPTER 26 Testing MobileApps 567

viii CONTENTS AT A GLANCE

CHAPTER 27 Security Engineering 584

CHAPTER 28 Formal Modeling and Verifi cation 601

CHAPTER 29 Software Confi guration Management 623

CHAPTER 30 Product Metrics 653

PART FOUR MANAGING SOFTWARE PROJECTS 683

CHAPTER 31 Project Management Concepts 684

CHAPTER 32 Process and Project Metrics 703

CHAPTER 33 Estimation for Software Projects 727

CHAPTER 34 Project Scheduling 754

CHAPTER 35 Risk Management 777

CHAPTER 36 Maintenance and Reengineering 795

PART FIVE ADVANCED TOPICS 817

CHAPTER 37 Software Process Improvement 818

CHAPTER 38 Emerging Trends in Software Engineering 839

CHAPTER 39 Concluding Comments 860

APPENDIX 1 An Introduction to UML 869

APPENDIX 2 Object-Oriented Concepts 891

APPENDIX 3 Formal Methods 899

REFERENCES 909

INDEX 933

ix

TABLE OF CONTENTS

 Preface xxvii

CHAPTER 1 THE NATURE OF SOFTWARE 1

1.1 The Nature of Software 3
1.1.1 Defi ning Software 4
1.1.2 Software Application Domains 6
1.1.3 Legacy Software 7

1.2 The Changing Nature of Software 9
1.2.1 WebApps 9
1.2.2 Mobile Applications 9
1.2.3 Cloud Computing 10
1.2.4 Product Line Software 11

1.3 Summary 11
PROBLEMS AND POINTS TO PONDER 12
FURTHER READINGS AND INFORMATION SOURCES 12

CHAPTER 2 SOFTWARE ENGINEERING 14

2.1 Defi ning the Discipline 15
2.2 The Software Process 16

2.2.1 The Process Framework 17
2.2.2 Umbrella Activities 18
2.2.3 Process Adaptation 18

2.3 Software Engineering Practice 19
2.3.1 The Essence of Practice 19
2.3.2 General Principles 21

2.4 Software Development Myths 23
2.5 How It All Starts 26
2.6 Summary 27
PROBLEMS AND POINTS TO PONDER 27
FURTHER READINGS AND INFORMATION SOURCES 27

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 30

3.1 A Generic Process Model 31
3.2 Defi ning a Framework Activity 32
3.3 Identifying a Task Set 34
3.4 Process Patterns 35
3.5 Process Assessment and Improvement 37
3.6 Summary 38
PROBLEMS AND POINTS TO PONDER 38
FURTHER READINGS AND INFORMATION SOURCES 39

x TABLE OF CONTENTS

CHAPTER 4 PROCESS MODELS 40

4.1 Prescriptive Process Models 41
4.1.1 The Waterfall Model 41
4.1.2 Incremental Process Models 43
4.1.3 Evolutionary Process Models 45
4.1.4 Concurrent Models 49
4.1.5 A Final Word on Evolutionary Processes 51

4.2 Specialized Process Models 52
4.2.1 Component-Based Development 53
4.2.2 The Formal Methods Model 53
4.2.3 Aspect-Oriented Software Development 54

4.3 The Unifi ed Process 55
4.3.1 A Brief History 56
4.3.2 Phases of the Unifi ed Process 56

4.4 Personal and Team Process Models 59
4.4.1 Personal Software Process 59
4.4.2 Team Software Process 60

4.5 Process Technology 61
4.6 Product and Process 62
4.7 Summary 64
PROBLEMS AND POINTS TO PONDER 64
FURTHER READINGS AND INFORMATION SOURCES 65

CHAPTER 5 AGILE DEVELOPMENT 66

5.1 What Is Agility? 68
5.2 Agility and the Cost of Change 68
5.3 What Is an Agile Process? 69

5.3.1 Agility Principles 70
5.3.2 The Politics of Agile Development 71

5.4 Extreme Programming 72
5.4.1 The XP Process 72
5.4.2 Industrial XP 75

5.5 Other Agile Process Models 77
5.5.1 Scrum 78
5.5.2 Dynamic Systems Development Method 79
5.5.3 Agile Modeling 80
5.5.4 Agile Unifi ed Process 82

5.6 A Tool Set for the Agile Process 83
5.7 Summary 84
PROBLEMS AND POINTS TO PONDER 85
FURTHER READINGS AND INFORMATION SOURCES 85

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING 87

6.1 Characteristics of a Software Engineer 88
6.2 The Psychology of Software Engineering 89
6.3 The Software Team 90
6.4 Team Structures 92
6.5 Agile Teams 93

6.5.1 The Generic Agile Team 93
6.5.2 The XP Team 94

TABLE OF CONTENTS xi

6.6 The Impact of Social Media 95
6.7 Software Engineering Using the Cloud 97
6.8 Collaboration Tools 98
6.9 Global Teams 99
6.10 Summary 100
PROBLEMS AND POINTS TO PONDER 101
FURTHER READINGS AND INFORMATION SOURCES 102

PART TWO MODELING 103

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 104

7.1 Software Engineering Knowledge 105
7.2 Core Principles 106

7.2.1 Principles That Guide Process 106
7.2.2 Principles That Guide Practice 107

7.3 Principles That Guide Each Framework Activity 109
7.3.1 Communication Principles 110
7.3.2 Planning Principles 112
7.3.3 Modeling Principles 114
7.3.4 Construction Principles 121
7.3.5 Deployment Principles 125

7.4 Work Practices 126
7.5 Summary 127
PROBLEMS AND POINTS TO PONDER 128
FURTHER READINGS AND INFORMATION SOURCES 129

CHAPTER 8 UNDERSTANDING REQUIREMENTS 131

8.1 Requirements Engineering 132
8.2 Establishing the Groundwork 138

8.2.1 Identifying Stakeholders 139
8.2.2 Recognizing Multiple Viewpoints 139
8.2.3 Working toward Collaboration 140
8.2.4 Asking the First Questions 140
8.2.5 Nonfunctional Requirements 141
8.2.6 Traceability 142

8.3 Eliciting Requirements 142
8.3.1 Collaborative Requirements Gathering 143
8.3.2 Quality Function Deployment 146
8.3.3 Usage Scenarios 146
8.3.4 Elicitation Work Products 147
8.3.5 Agile Requirements Elicitation 148
8.3.6 Service-Oriented Methods 148

8.4 Developing Use Cases 149
8.5 Building the Analysis Model 154

8.5.1 Elements of the Analysis Model 154
8.5.2 Analysis Patterns 157
8.5.3 Agile Requirements Engineering 158
8.5.4 Requirements for Self-Adaptive Systems 158

8.6 Negotiating Requirements 159

xii TABLE OF CONTENTS

8.7 Requirements Monitoring 160
8.8 Validating Requirements 161
8.9 Avoiding Common Mistakes 162
8.10 Summary 162
PROBLEMS AND POINTS TO PONDER 163
FURTHER READINGS AND OTHER INFORMATION SOURCES 164

CHAPTER 9 REQUIREMENTS MODELING: SCENARIO-BASED

METHODS 166

9.1 Requirements Analysis 167
9.1.1 Overall Objectives and Philosophy 168
9.1.2 Analysis Rules of Thumb 169
9.1.3 Domain Analysis 170
9.1.4 Requirements Modeling Approaches 171

9.2 Scenario-Based Modeling 173
9.2.1 Creating a Preliminary Use Case 173
9.2.2 Refi ning a Preliminary Use Case 176
9.2.3 Writing a Formal Use Case 177

9.3 UML Models That Supplement the Use Case 179
9.3.1 Developing an Activity Diagram 180
9.3.2 Swimlane Diagrams 181

9.4 Summary 182
PROBLEMS AND POINTS TO PONDER 182
FURTHER READINGS AND INFORMATION SOURCES 183

CHAPTER 10 REQUIREMENTS MODELING: CLASS-BASED METHODS 184

10.1 Identifying Analysis Classes 185
10.2 Specifying Attributes 188
10.3 Defi ning Operations 189
10.4 Class-Responsibility-Collaborator Modeling 192
10.5 Associations and Dependencies 198
10.6 Analysis Packages 199
10.7 Summary 200
PROBLEMS AND POINTS TO PONDER 201
FURTHER READINGS AND INFORMATION SOURCES 201

CHAPTER 11 REQUIREMENTS MODELING: BEHAVIOR, PATTERNS,

AND WEB/MOBILE APPS 202

11.1 Creating a Behavioral Model 203
11.2 Identifying Events with the Use Case 203
11.3 State Representations 204
11.4 Patterns for Requirements Modeling 207

11.4.1 Discovering Analysis Patterns 208
11.4.2 A Requirements Pattern Example: Actuator-Sensor 209

11.5 Requirements Modeling for Web and Mobile Apps 213
11.5.1 How Much Analysis Is Enough? 214
11.5.2 Requirements Modeling Input 214
11.5.3 Requirements Modeling Output 215
11.5.4 Content Model 216

TABLE OF CONTENTS xiii

11.5.5 Interaction Model for Web and Mobile Apps 217
11.5.6 Functional Model 218
11.5.7 Confi guration Models for WebApps 219
11.5.8 Navigation Modeling 220

11.6 Summary 221
PROBLEMS AND POINTS TO PONDER 222
FURTHER READINGS AND INFORMATION SOURCES 222

CHAPTER 12 DESIGN CONCEPTS 224

12.1 Design within the Context of Software Engineering 225
12.2 The Design Process 228

12.2.1 Software Quality Guidelines and Attributes 228
12.2.2 The Evolution of Software Design 230

12.3 Design Concepts 231
12.3.1 Abstraction 232
12.3.2 Architecture 232
12.3.3 Patterns 233
12.3.4 Separation of Concerns 234
12.3.5 Modularity 234
12.3.6 Information Hiding 235
12.3.7 Functional Independence 236
12.3.8 Refi nement 237
12.3.9 Aspects 237
12.3.10 Refactoring 238
12.3.11 Object-Oriented Design Concepts 238
12.3.12 Design Classes 239
12.3.13 Dependency Inversion 241
12.3.14 Design for Test 242

12.4 The Design Model 243
12.4.1 Data Design Elements 244
12.4.2 Architectural Design Elements 244
12.4.3 Interface Design Elements 245
12.4.4 Component-Level Design Elements 247
12.4.5 Deployment-Level Design Elements 248

12.5 Summary 249
PROBLEMS AND POINTS TO PONDER 250
FURTHER READINGS AND INFORMATION SOURCES 251

CHAPTER 13 ARCHITECTURAL DESIGN 252

13.1 Software Architecture 253
13.1.1 What Is Architecture? 253
13.1.2 Why Is Architecture Important? 254
13.1.3 Architectural Descriptions 255
13.1.4 Architectural Decisions 256

13.2 Architectural Genres 257
13.3 Architectural Styles 258

13.3.1 A Brief Taxonomy of Architectural Styles 258
13.3.2 Architectural Patterns 263
13.3.3 Organization and Refi nement 263

13.4 Architectural Considerations 264

xiv TABLE OF CONTENTS

13.5 Architectural Decisions 266
13.6 Architectural Design 267

13.6.1 Representing the System in Context 267
13.6.2 Defi ning Archetypes 269
13.6.3 Refi ning the Architecture into Components 270
13.6.4 Describing Instantiations of the System 272
13.6.5 Architectural Design for Web Apps 273
13.6.6 Architectural Design for Mobile Apps 274

13.7 Assessing Alternative Architectural Designs 274
13.7.1 Architectural Description Languages 276
13.7.2 Architectural Reviews 277

13.8 Lessons Learned 278
13.9 Pattern-based Architecture Review 278
13.10 Architecture Conformance Checking 279
13.11 Agility and Architecture 280
13.12 Summary 282
PROBLEMS AND POINTS TO PONDER 282
FURTHER READINGS AND INFORMATION SOURCES 283

CHAPTER 14 COMPONENT-LEVEL DESIGN 285

14.1 What Is a Component? 286
14.1.1 An Object-Oriented View 286
14.1.2 The Traditional View 288
14.1.3 A Process-Related View 291

14.2 Designing Class-Based Components 291
14.2.1 Basic Design Principles 292
14.2.2 Component-Level Design Guidelines 295
14.2.3 Cohesion 296
14.2.4 Coupling 298

14.3 Conducting Component-Level Design 299
14.4 Component-Level Design for WebApps 305

14.4.1 Content Design at the Component Level 306
14.4.2 Functional Design at the Component Level 306

14.5 Component-Level Design for Mobile Apps 306
14.6 Designing Traditional Components 307
14.7 Component-Based Development 308

14.7.1 Domain Engineering 308
14.7.2 Component Qualifi cation, Adaptation, and Composition 309
14.7.3 Architectural Mismatch 311
14.7.4 Analysis and Design for Reuse 312
14.7.5 Classifying and Retrieving Components 312

14.8 Summary 313
PROBLEMS AND POINTS TO PONDER 315
FURTHER READINGS AND INFORMATION SOURCES 315

CHAPTER 15 USER INTERFACE DESIGN 317

15.1 The Golden Rules 318
15.1.1 Place the User in Control 318
15.1.2 Reduce the User’s Memory Load 319
15.1.3 Make the Interface Consistent 321

TABLE OF CONTENTS xv

15.2 User Interface Analysis and Design 322
15.2.1 Interface Analysis and Design Models 322
15.2.2 The Process 323

15.3 Interface Analysis 325
15.3.1 User Analysis 325
15.3.2 Task Analysis and Modeling 326
15.3.3 Analysis of Display Content 331
15.3.4 Analysis of the Work Environment 331

15.4 Interface Design Steps 332
15.4.1 Applying Interface Design Steps 332
15.4.2 User Interface Design Patterns 334
15.4.3 Design Issues 335

15.5 WebApp and Mobile Interface Design 337
15.5.1 Interface Design Principles and Guidelines 337
15.5.2 Interface Design Workfl ow for Web and Mobile Apps 341

15.6 Design Evaluation 342
15.7 Summary 344
PROBLEMS AND POINTS TO PONDER 345
FURTHER READINGS AND INFORMATION SOURCES 346

CHAPTER 16 PATTERN-BASED DESIGN 347

16.1 Design Patterns 348
16.1.1 Kinds of Patterns 349
16.1.2 Frameworks 351
16.1.3 Describing a Pattern 352
16.1.4 Pattern Languages and Repositories 353

16.2 Pattern-Based Software Design 354
16.2.1 Pattern-Based Design in Context 354
16.2.2 Thinking in Patterns 354
16.2.3 Design Tasks 356
16.2.4 Building a Pattern-Organizing Table 358
16.2.5 Common Design Mistakes 359

16.3 Architectural Patterns 359
16.4 Component-Level Design Patterns 360
16.5 User Interface Design Patterns 362
16.6 WebApp Design Patterns 364

16.6.1 Design Focus 365
16.6.2 Design Granularity 365

16.7 Patterns for Mobile Apps 366
16.8 Summary 367
PROBLEMS AND POINTS TO PONDER 368
FURTHER READINGS AND INFORMATION SOURCES 369

CHAPTER 17 WEBAPP DESIGN 371

17.1 WebApp Design Quality 372
17.2 Design Goals 374
17.3 A Design Pyramid for WebApps 375
17.4 WebApp Interface Design 376

xvi TABLE OF CONTENTS

17.5 Aesthetic Design 377
17.5.1 Layout Issues 378
17.5.2 Graphic Design Issues 378

17.6 Content Design 379
17.6.1 Content Objects 379
17.6.2 Content Design Issues 380

17.7 Architecture Design 381
17.7.1 Content Architecture 381
17.7.2 WebApp Architecture 384

17.8 Navigation Design 385
17.8.1 Navigation Semantics 385
17.8.2 Navigation Syntax 387

17.9 Component-Level Design 387
17.10 Summary 388
PROBLEMS AND POINTS TO PONDER 389
FURTHER READINGS AND INFORMATION SOURCES 389

CHAPTER 18 MOBILEAPP DESIGN 391

18.1 The Challenges 392
18.1.1 Development Considerations 392
18.1.2 Technical Considerations 393

18.2 Developing MobileApps 395
18.2.1 MobileApp Quality 397
18.2.2 User Interface Design 398
18.2.3 Context-Aware Apps 399
18.2.4 Lessons Learned 400

18.3 MobileApp Design—Best Practices 401
18.4 Mobility Environments 403
18.5 The Cloud 405
18.6 The Applicability of Conventional Software Engineering 407
18.7 Summary 408
PROBLEMS AND POINTS TO PONDER 409
FURTHER READINGS AND INFORMATION SOURCES 409

PART THREE QUALITY MANAGEMENT 411

CHAPTER 19 QUALITY CONCEPTS 412

19.1 What Is Quality? 413
19.2 Software Quality 414

19.2.1 Garvin’s Quality Dimensions 415
19.2.2 McCall’s Quality Factors 416
19.2.3 ISO 9126 Quality Factors 418
19.2.4 Targeted Quality Factors 418
19.2.5 The Transition to a Quantitative View 420

19.3 The Software Quality Dilemma 420
19.3.1 “Good Enough” Software 421
19.3.2 The Cost of Quality 422
19.3.3 Risks 424
19.3.4 Negligence and Liability 425

TABLE OF CONTENTS xvii

19.3.5 Quality and Security 425
19.3.6 The Impact of Management Actions 426

19.4 Achieving Software Quality 427
19.4.1 Software Engineering Methods 427
19.4.2 Project Management Techniques 427
19.4.3 Quality Control 427
19.4.4 Quality Assurance 428

19.5 Summary 428
PROBLEMS AND POINTS TO PONDER 429
FURTHER READINGS AND INFORMATION SOURCES 429

CHAPTER 20 REVIEW TECHNIQUES 431

20.1 Cost Impact of Software Defects 432
20.2 Defect Amplifi cation and Removal 433
20.3 Review Metrics and Their Use 435

20.3.1 Analyzing Metrics 435
20.3.2 Cost-Effectiveness of Reviews 436

20.4 Reviews: A Formality Spectrum 438
20.5 Informal Reviews 439
20.6 Formal Technical Reviews 441

20.6.1 The Review Meeting 441
20.6.2 Review Reporting and Record Keeping 442
20.6.3 Review Guidelines 442
20.6.4 Sample-Driven Reviews 444

20.7 Post-Mortem Evaluations 445
20.8 Summary 446
PROBLEMS AND POINTS TO PONDER 446
FURTHER READINGS AND INFORMATION SOURCES 447

CHAPTER 21 SOFTWARE QUALITY ASSURANCE 448

21.1 Background Issues 449
21.2 Elements of Software Quality Assurance 450
21.3 SQA Processes and Product Characteristics 452
21.4 SQA Tasks, Goals, and Metrics 452

21.4.1 SQA Tasks 453
21.4.2 Goals, Attributes, and Metrics 454

21.5 Formal Approaches to SQA 456
21.6 Statistical Software Quality Assurance 456

21.6.1 A Generic Example 457
21.6.2 Six Sigma for Software Engineering 458

21.7 Software Reliability 459
21.7.1 Measures of Reliability and Availability 459
21.7.2 Software Safety 460

21.8 The ISO 9000 Quality Standards 461
21.9 The SQA Plan 463
21.10 Summary 463
PROBLEMS AND POINTS TO PONDER 464
FURTHER READINGS AND INFORMATION SOURCES 464

xviii TABLE OF CONTENTS

CHAPTER 22 SOFTWARE TESTING STRATEGIES 466

22.1 A Strategic Approach to Software Testing 466
22.1.1 Verifi cation and Validation 468
22.1.2 Organizing for Software Testing 468
22.1.3 Software Testing Strategy—The Big Picture 469
22.1.4 Criteria for Completion of Testing 472

22.2 Strategic Issues 472
22.3 Test Strategies for Conventional Software 473

22.3.1 Unit Testing 473
22.3.2 Integration Testing 475

22.4 Test Strategies for Object-Oriented Software 481
22.4.1 Unit Testing in the OO Context 481
22.4.2 Integration Testing in the OO Context 481

22.5 Test Strategies for WebApps 482
22.6 Test Strategies for MobileApps 483
22.7 Validation Testing 483

22.7.1 Validation-Test Criteria 484
22.7.2 Confi guration Review 484
22.7.3 Alpha and Beta Testing 484

22.8 System Testing 486
22.8.1 Recovery Testing 486
22.8.2 Security Testing 486
22.8.3 Stress Testing 487
22.8.4 Performance Testing 487
22.8.5 Deployment Testing 487

22.9 The Art of Debugging 488
22.9.1 The Debugging Process 488
22.9.2 Psychological Considerations 490
22.9.3 Debugging Strategies 491
22.9.4 Correcting the Error 492

22.10 Summary 493
PROBLEMS AND POINTS TO PONDER 493
FURTHER READINGS AND INFORMATION SOURCES 494

CHAPTER 23 TESTING CONVENTIONAL APPLICATIONS 496

23.1 Software Testing Fundamentals 497
23.2 Internal and External Views of Testing 499
23.3 White-Box Testing 500
23.4 Basis Path Testing 500

23.4.1 Flow Graph Notation 500
23.4.2 Independent Program Paths 502
23.4.3 Deriving Test Cases 504
23.4.4 Graph Matrices 506

23.5 Control Structure Testing 507
23.6 Black-Box Testing 509

23.6.1 Graph-Based Testing Methods 509
23.6.2 Equivalence Partitioning 511
23.6.3 Boundary Value Analysis 512
23.6.4 Orthogonal Array Testing 513

TABLE OF CONTENTS xix

23.7 Model-Based Testing 516
23.8 Testing Documentation and Help Facilities 516
23.9 Testing for Real-Time Systems 517
23.10 Patterns for Software Testing 519
23.11 Summary 520
PROBLEMS AND POINTS TO PONDER 521
FURTHER READINGS AND INFORMATION SOURCES 521

CHAPTER 24 TESTING OBJECT-ORIENTED APPLICATIONS 523

24.1 Broadening the View of Testing 524
24.2 Testing OOA and OOD Models 525

24.2.1 Correctness of OOA and OOD Models 525
24.2.2 Consistency of Object-Oriented Models 526

24.3 Object-Oriented Testing Strategies 528
24.3.1 Unit Testing in the OO Context 528
24.3.2 Integration Testing in the OO Context 529
24.3.3 Validation Testing in an OO Context 529

24.4 Object-Oriented Testing Methods 529
24.4.1 The Test-Case Design Implications of OO Concepts 530
24.4.2 Applicability of Conventional Test-Case Design Methods 531
24.4.3 Fault-Based Testing 531
24.4.4 Scenario-Based Test Design 532

24.5 Testing Methods Applicable at the Class Level 532
24.5.1 Random Testing for OO Classes 532
24.5.2 Partition Testing at the Class Level 533

24.6 Interclass Test-Case Design 534
24.6.1 Multiple Class Testing 534
24.6.2 Tests Derived from Behavior Models 536

24.7 Summary 537
PROBLEMS AND POINTS TO PONDER 538
FURTHER READINGS AND INFORMATION SOURCES 538

CHAPTER 25 TESTING WEB APPLICATIONS 540

25.1 Testing Concepts for WebApps 541
25.1.1 Dimensions of Quality 541
25.1.2 Errors within a WebApp Environment 542
25.1.3 Testing Strategy 543
25.1.4 Test Planning 543

25.2 The Testing Process—An Overview 544
25.3 Content Testing 545

25.3.1 Content Testing Objectives 545
25.3.2 Database Testing 547

25.4 User Interface Testing 549
25.4.1 Interface Testing Strategy 549
25.4.2 Testing Interface Mechanisms 550
25.4.3 Testing Interface Semantics 552
25.4.4 Usability Tests 552
25.4.5 Compatibility Tests 554

25.5 Component-Level Testing 555

xx TABLE OF CONTENTS

25.6 Navigation Testing 556
25.6.1 Testing Navigation Syntax 556
25.6.2 Testing Navigation Semantics 556

25.7 Confi guration Testing 558
25.7.1 Server-Side Issues 558
25.7.2 Client-Side Issues 559

25.8 Security Testing 559
25.9 Performance Testing 560

25.9.1 Performance Testing Objectives 561
25.9.2 Load Testing 562
25.9.3 Stress Testing 562

25.10 Summary 563
PROBLEMS AND POINTS TO PONDER 564
FURTHER READINGS AND INFORMATION SOURCES 565

CHAPTER 26 TESTING MOBILEAPPS 567

26.1 Testing Guidelines 568
26.2 The Testing Strategies 569

26.2.1 Are Conventional Approaches Applicable? 570
26.2.2 The Need for Automation 571
26.2.3 Building a Test Matrix 572
26.2.4 Stress Testing 573
26.2.5 Testing in a Production Environment 573

26.3 Considering the Spectrum of User Interaction 574
26.3.1 Gesture Testing 575
26.3.2 Voice Input and Recognition 576
26.3.3 Virtual Key Board Input 577
26.3.4 Alerts and Extraordinary Conditions 577

26.4 Test Across Borders 578
26.5 Real-Time Testing Issues 578
26.6 Testing Tools and Environments 579
26.7 Summary 581
PROBLEMS AND POINTS TO PONDER 582
FURTHER READINGS AND INFORMATION SOURCES 582

CHAPTER 27 SECURITY ENGINEERING 584

27.1 Analyzing Security Requirements 585
27.2 Security and Privacy in an Online World 586

27.2.1 Social Media 587
27.2.2 Mobile Applications 587
27.2.3 Cloud Computing 587
27.2.4 The Internet of Things 588

27.3 Security Engineering Analysis 588
27.3.1 Security Requirement Elicitation 589
27.3.2 Security Modeling 590
27.3.3 Measures Design 591
27.3.4 Correctness Checks 591

27.4 Security Assurance 592
27.4.1 The Security Assurance Process 592
27.4.2 Organization and Management 593

TABLE OF CONTENTS xxi

27.5 Security Risk Analysis 594
27.6 The Role of Conventional Software Engineering Activi t ies 595
27.7 Verifi cation of Trustworthy Systems 597
27.8 Summary 599
PROBLEMS AND POINTS TO PONDER 599
FURTHER READINGS AND INFORMATION SOURCES 600

CHAPTER 28 FORMAL MODELING AND VERIFICATION 601

28.1 The Cleanroom Strategy 602
28.2 Functional Specifi cation 604

28.2.1 Black-Box Specifi cation 605
28.2.2 State-Box Specifi cation 606
28.2.3 Clear-Box Specifi cation 607

28.3 Cleanroom Design 607
28.3.1 Design Refi nement 608
28.3.2 Design Verifi cation 608

28.4 Cleanroom Testing 610
28.4.1 Statistical Use Testing 610
28.4.2 Certifi cation 612

28.5 Rethinking Formal Methods 612
28.6 Formal Methods Concepts 615
28.7 Alternative Arguments 618
28.8 Summary 619
PROBLEMS AND POINTS TO PONDER 620
FURTHER READINGS AND INFORMATION SOURCES 621

CHAPTER 29 SOFTWARE CONFIGURATION MANAGEMENT 623

29.1 Software Confi guration Management 624
29.1.1 An SCM Scenario 625
29.1.2 Elements of a Confi guration Management System 626
29.1.3 Baselines 626
29.1.4 Software Confi guration Items 628
29.1.5 Management of Dependencies and Changes 628

29.2 The SCM Repository 630
29.2.1 General Features and Content 630
29.2.2 SCM Features 631

29.3 The SCM Process 632
29.3.1 Identifi cation of Objects in the Software Confi guration 633
29.3.2 Version Control 634
29.3.3 Change Control 635
29.3.4 Impact Management 638
29.3.5 Confi guration Audit 639
29.3.6 Status Reporting 639

29.4 Confi guration Management for Web and MobileApps 640
29.4.1 Dominant Issues 641
29.4.2 Confi guration Objects 642
29.4.3 Content Management 643
29.4.4 Change Management 646
29.4.5 Version Control 648
29.4.6 Auditing and Reporting 649

xxii TABLE OF CONTENTS

29.5 Summary 650
PROBLEMS AND POINTS TO PONDER 651
FURTHER READINGS AND INFORMATION SOURCES 651

CHAPTER 30 PRODUCT METRICS 653

30.1 A Framework for Product Metrics 654
30.1.1 Measures, Metrics, and Indicators 654
30.1.2 The Challenge of Product Metrics 655
30.1.3 Measurement Principles 656
30.1.4 Goal-Oriented Software Measurement 656
30.1.5 The Attributes of Effective Software Metrics 657

30.2 Metrics for the Requirements Model 659
30.2.1 Function-Based Metrics 659
30.2.2 Metrics for Specifi cation Quality 662

30.3 Metrics for the Design Model 663
30.3.1 Architectural Design Metrics 663
30.3.2 Metrics for Object-Oriented Design 666
30.3.3 Class-Oriented Metrics—The CK Metrics Suite 667
30.3.4 Class-Oriented Metrics—The MOOD Metrics Suite 670
30.3.5 OO Metrics Proposed by Lorenz and Kidd 671
30.3.6 Component-Level Design Metrics 671
30.3.7 Operation-Oriented Metrics 671
30.3.8 User Interface Design Metrics 672

30.4 Design Metrics for Web and Mobile Apps 672
30.5 Metrics for Source Code 675
30.6 Metrics for Testing 676

30.6.1 Halstead Metrics Applied to Testing 676
30.6.2 Metrics for Object-Oriented Testing 677

30.7 Metrics for Maintenance 678
30.8 Summary 679
PROBLEMS AND POINTS TO PONDER 679
FURTHER READINGS AND INFORMATION SOURCES 680

PART FOUR MANAGING SOFTWARE PROJECTS 683

CHAPTER 31 PROJECT MANAGEMENT CONCEPTS 684

31.1 The Management Spectrum 685
31.1.1 The People 685
31.1.2 The Product 686
31.1.3 The Process 686
31.1.4 The Project 686

31.2 People 687
31.2.1 The Stakeholders 687
31.2.2 Team Leaders 688
31.2.3 The Software Team 689
31.2.4 Agile Teams 691
31.2.5 Coordination and Communication Issues 692

31.3 The Product 693
31.3.1 Software Scope 694
31.3.2 Problem Decomposition 694

TABLE OF CONTENTS xxiii

31.4 The Process 694
31.4.1 Melding the Product and the Process 695
31.4.2 Process Decomposition 696

31.5 The Project 697
31.6 The W5HH Principle 698
31.7 Critical Practices 699
31.8 Summary 700
PROBLEMS AND POINTS TO PONDER 700
FURTHER READINGS AND INFORMATION SOURCES 701

CHAPTER 32 PROCESS AND PROJECT METRICS 703

32.1 Metrics in the Process and Project Domains 704
32.1.1 Process Metrics and Software Process Improvement 704
32.1.2 Project Metrics 707

32.2 Software Measurement 708
32.2.1 Size-Oriented Metrics 709
32.2.2 Function-Oriented Metrics 710
32.2.3 Reconciling LOC and FP Metrics 711
32.2.4 Object-Oriented Metrics 713
32.2.5 Use Case-Oriented Metrics 714
32.2.6 WebApp Project Metrics 714

32.3 Metrics for Software Quality 716
32.3.1 Measuring Quality 717
32.3.2 Defect Removal Effi ciency 718

32.4 Integrating Metrics within the Software Process 719
32.4.1 Arguments for Software Metrics 720
32.4.2 Establishing a Baseline 720
32.4.3 Metrics Collection, Computation, and Evaluation 721

32.5 Metrics for Small Organizations 721
32.6 Establishing a Software Metrics Program 722
32.7 Summary 724
PROBLEMS AND POINTS TO PONDER 724
FURTHER READINGS AND INFORMATION SOURCES 725

CHAPTER 33 ESTIMATION FOR SOFTWARE PROJECTS 727

33.1 Observations on Estimation 728
33.2 The Project Planning Process 729
33.3 Software Scope and Feasibility 730
33.4 Resources 731

33.4.1 Human Resources 731
33.4.2 Reusable Software Resources 732
33.4.3 Environmental Resources 732

33.5 Software Project Estimation 733
33.6 Decomposition Techniques 734

33.6.1 Software Sizing 734
33.6.2 Problem-Based Estimation 735
33.6.3 An Example of LOC-Based Estimation 736
33.6.4 An Example of FP-Based Estimation 738
33.6.5 Process-Based Estimation 739
33.6.6 An Example of Process-Based Estimation 740
33.6.7 Estimation with Use Cases 740

xxiv TABLE OF CONTENTS

33.6.8 An Example of Estimation Using Use Case Points 742
33.6.9 Reconciling Estimates 742

33.7 Empirical Estimation Models 743
33.7.1 The Structure of Estimation Models 744
33.7.2 The COCOMO II Model 744
33.7.3 The Software Equation 744

33.8 Estimation for Object-Oriented Projects 746
33.9 Specialized Estimation Techniques 746

33.9.1 Estimation for Agile Development 746
33.9.2 Estimation for WebApp Projects 747

33.10 The Make/Buy Decision 748
33.10.1 Creating a Decision Tree 749
33.10.2 Outsourcing 750

33.11 Summary 752
PROBLEMS AND POINTS TO PONDER 752
FURTHER READINGS AND INFORMATION SOURCES 753

CHAPTER 34 PROJECT SCHEDULING 754

34.1 Basic Concepts 755
34.2 Project Scheduling 757

34.2.1 Basic Principles 758
34.2.2 The Relationship between People and Effort 759
34.2.3 Effort Distribution 760

34.3 Defi ning a Task Set for the Software Project 761
34.3.1 A Task Set Example 762
34.3.2 Refi nement of Major Tasks 763

34.4 Defi ning a Task Network 764
34.5 Scheduling 765

34.5.1 Time-Line Charts 766
34.5.2 Tracking the Schedule 767
34.5.3 Tracking Progress for an OO Project 768
34.5.4 Scheduling for WebApp and Mobile Projects 769

34.6 Earned Value Analysis 772
34.7 Summary 774
PROBLEMS AND POINTS TO PONDER 774
FURTHER READINGS AND INFORMATION SOURCES 776

CHAPTER 35 RISK MANAGEMENT 777

35.1 Reactive versus Proactive Risk Strategies 778
35.2 Software Risks 778
35.3 Risk Identifi cation 780

35.3.1 Assessing Overall Project Risk 781
35.3.2 Risk Components and Drivers 782

35.4 Risk Projection 782
35.4.1 Developing a Risk Table 783
35.4.2 Assessing Risk Impact 785

35.5 Risk Refi nement 787
35.6 Risk Mitigation, Monitoring, and Management 788
35.7 The RMMM Plan 790
35.8 Summary 792

TABLE OF CONTENTS xxv

PROBLEMS AND POINTS TO PONDER 792
FURTHER READINGS AND INFORMATION SOURCES 793

CHAPTER 36 MAINTENANCE AND REENGINEERING 795

36.1 Software Maintenance 796
36.2 Software Supportability 798
36.3 Reengineering 798
36.4 Business Process Reengineering 799

36.4.1 Business Processes 799
36.4.2 A BPR Model 800

36.5 Software Reengineering 802
36.5.1 A Software Reengineering Process Model 802
36.5.2 Software Reengineering Activities 803

36.6 Reverse Engineering 805
36.6.1 Reverse Engineering to Understand Data 807
36.6.2 Reverse Engineering to Understand Processing 807
36.6.3 Reverse Engineering User Interfaces 808

36.7 Restructuring 809
36.7.1 Code Restructuring 809
36.7.2 Data Restructuring 810

36.8 Forward Engineering 811
36.8.1 Forward Engineering for Client-Server Architectures 812
36.8.2 Forward Engineering for Object-Oriented Architectures 813

36.9 The Economics of Reengineering 813
36.10 Summary 814
PROBLEMS AND POINTS TO PONDER 815
FURTHER READINGS AND INFORMATION SOURCES 816

PART FIVE ADVANCED TOPICS 817

CHAPTER 37 SOFTWARE PROCESS IMPROVEMENT 818

37.1 What Is SPI? 819
37.1.1 Approaches to SPI 819
37.1.2 Maturity Models 821
37.1.3 Is SPI for Everyone? 822

37.2 The SPI Process 823
37.2.1 Assessment and Gap Analysis 823
37.2.2 Education and Training 825
37.2.3 Selection and Justifi cation 825
37.2.4 Installation/Migration 826
37.2.5 Evaluation 827
37.2.6 Risk Management for SPI 827

37.3 The CMMI 828
37.4 The People CMM 832
37.5 Other SPI Frameworks 832
37.6 SPI Return on Investment 834
37.7 SPI Trends 835
37.8 Summary 836
PROBLEMS AND POINTS TO PONDER 837
FURTHER READINGS AND INFORMATION SOURCES 837

xxvi TABLE OF CONTENTS

CHAPTER 38 EMERGING TRENDS IN SOFTWARE ENGINEERING 839

38.1 Technology Evolution 840
38.2 Prospects for a True Engineering Discipline 841
38.3 Observing Software Engineering Trends 842
38.4 Identifying “Soft Trends” 843

38.4.1 Managing Complexity 845
38.4.2 Open-World Software 846
38.4.3 Emergent Requirements 846
38.4.4 The Talent Mix 847
38.4.5 Software Building Blocks 847
38.4.6 Changing Perceptions of “Value” 848
38.4.7 Open Source 848

38.5 Technology Directions 849
38.5.1 Process Trends 849
38.5.2 The Grand Challenge 851
38.5.3 Collaborative Development 852
38.5.4 Requirements Engineering 852
38.5.5 Model-Driven Software Development 853
38.5.6 Postmodern Design 854
38.5.7 Test-Driven Development 854

38.6 Tools-Related Trends 855
38.7 Summary 857
PROBLEMS AND POINTS TO PONDER 857
FURTHER READINGS AND INFORMATION SOURCES 858

CHAPTER 39 CONCLUDING COMMENTS 860

39.1 The Importance of Software—Revisited 861
39.2 People and the Way They Build Systems 861
39.3 New Modes for Representing Information 862
39.4 The Long View 864
39.5 The Software Engineer’s Responsibility 865
39.6 A Final Comment from RSP 867

APPENDIX 1 AN INTRODUCTION TO UML 869
APPENDIX 2 OBJECT-ORIENTED CONCEPTS 891
APPENDIX 3 FORMAL METHODS 899
REFERENCES 909
INDEX 933

