Zheng Qin
Jiankuan Xing
Xiang Zheng

Software Architecture

With 161 figures

W ST tH AR AL @ Springer

Preface

Building software nowadays is far more difficult than it can be done several decades
ago. At that time, software engineers focused on how to manipulate the computer to
work and then solve problems correctly. The organization of data and
implementation of algorithm were the crucial process of software designing then.
However, more and more tasks in low level, such as memory management and
network communication, have been automatized or at least can be reused with little
effort and cost. Programmers and designers, with the help of high level programming
languages and wieldy development tools, can pay more attention to problems, rather
than bury themselves into the machine code manuals. However, the side effect of
these utilities is that more complicated problems are given according to the
requirements from military, enterprise and so on, in which the complexity grows
rapidly day by day. We believe that software architecture is a key to deal with it.

Many people become aware of the existence of software architecture just
recently. Nevertheless, it in fact has a long history, which may surprise you. Before
the invention of C++or even C, some computer scientists had begun to notice the
concept of software structure and its influence to software development. In the
1990s, software architecture started its journey of bloom, when several communities,
workshops and conferences were hold with a great amount of published articles,
books and tools. Today, software architect, the job of taking software designing,
analysis and dealing with different concerns and requirements from different
stakeholders, is considered as the center of development team.

But there is an ironical problem that most existing architects in fact do not take
any study or training in this field, some of whom even do not realize that software
architecture is a kind of realm requiring academic effort, just as artificial intelligence
or data mining The reason is that software architecture has no widely-accepted
definitions and standards of basic theories and practical methods, which leads to
that there are almost no universal course about this subject. Meanwhile, the rapid
growth and division of software architecture result in too many branches and sub-
fields, most of which still keep non-dominant and unified. These changes aggregate

Vi Software Architecture

the trouble in learning even a subset of software architecture area. In this book, we
will provide an overview among the classic theories and some latest progresses of
software architecture and try to touch the software architecture’s essence.

This book is a collaboration of three authors: Zheng Qin, Jiankuan Xing and
Xiang Zheng. More particularly, Professor Qin is the primary author who decides
the contents and issues what you can see in this book. And Jiankuan Xing organizes
the work of writing, and facilitates the cooperation with authors and other
contributers.

Targets

This book aims to give an introduction to the theory foundations, various sub-fields,
current research status and practical methods of software architecture. In this book,
readers can acquire the basic knowledge of software architecture, including why
software architecture is necessary, how we can describe a system’s architecture by
formal language, what architecture styles are popular for practice use and how we
can apply software architecture into the development of systems. Study cases, data,
illustrations and other materials which are released in the recent years will be used
to show the latest development of software architecture. This book can be used as
the learning material for touching software architecture.

How to Read This Book

We target to give readers an inside-out understanding of software architecture,
therefore this book is divided into two parts (not shown explicitly in content):

e Basic Theories: Chapter 1—Chapter 5

® Advance Topics: Chapter 6—Chapter 9

In detail, we give the overview descriptions for each chapter as follows:

Chapter 1: Introduction. The theme of this chapter is the basic introduction
to software architecture, where readers will see why we need it, how it emerged and
what its definitions look like. We hope to give readers a clear vision on it,
considering a great many misunderstanding and arguments’ presence. In addition,
with the development of research, concerns and usage of software architecture have
become different, which we will mention at the last section of this chapter.

Chapter 2: Architectural Styles and Patterns. Initially, the research on
software architecture emphasized the categorization of software in architectural
level. Some systems share the common structure and properties are classified into
one set in which the same vocabulary and similar models for representing these
systems can be used. Each vocabulary and medels specified for a category is called
“architectural style”. What’s more, we abstract and represent some representative
structure and reuse them with style. Each structure is called an “architectural
pattern”. Architecture styles and patterns are very precise utilities for constructing

Preface Vi

complex systems. In Chapter 2, we provide descriptions, study cases and
comparison of them. _

Chapter 3. Application and Analysis of Architectural Styles. After
characterizing several popular styles, we continue to offer a few study cases, each
of which combines more than one architectural style. Academically, this is called
“heterogeneous style constructing”. As a matter of fact, applied software always
uses multiple styles simuitaneously, no matter how simple they are. The goal of
this chapter is to tie the abstract styles to practice use.

Chapter 4. Software Architecture Description. How to describe software
architecture is the centric subject of architecture realm, because it is the foundation
to represent software’s design, perform effective communications among
stakeholders and measure systems’ behaviors according to requirements. In this
chapter, we pay attention to architectural formal description, which stands on the
mathematic basis. However, for UML, the language widely used as architecture
representation in practice, you can find excessive materials about it.

Chapter 5: Design Strategies in Architecture Level. This chapter gives you
a chance to touch the concept of architectural design with formal foundation. In
contrast to practical software development processes, such as RUP (Rational
Unified Process), formal architectural design strategies stress the relationship and
calculus of function space and structure space, both of which abstract the
development process performed in the real world. To get through with this chapter,
a fair capability of set theory and automata theory is required.

Chapter 6. Software Architecture IDE. Although software architecture is
useful for software development, using it with pure handwork incurs too much
overhead, and then time and cost, to the development process, which may obliterate
its benefits. That’s the key why software architecture was not popularly accepted
in the 1990s. Now, we have the handy assist, software architecture IDE. The
purpose of IDE is to enable an organization to manage its software architecture and
other related actions and processes in a way that meets business needs by providing
a foundational utility upon which design, communication, framework code generation
and validation can be carried out automatically.

Chapter 7: Evaluating Software Architecture. After the initial architectural
design is finished, any stakeholder would finger out whether this design is good or
not, whether it will contribute to a successful development and then output the
satisfying production or doom to crush resulting from the design defects. That’s the
evaluation’s task. In this chapter, currently widely-used evaluation methods are
discussed and compared. However, evaluation methods still lack the formal
foundation, and more focus on the experience and capability of participators.
Therefore, the description here will bring you the practical architectural methods
and technologies, based on which evaluation is performed.

Chapter 8: Flexible Software Architecture., Flexible software architecture
means the structure of a system which can metamorphose during runtime according

VI Software Architecture

to users’ instructions, executing environment’s changes or other requirements and
the related actions and processes. That’s crucial for systems’ needs of self-healing
and self-adaptation abilities. The systems with these needs before normally mix the
structure metamorphosis code and application code, which insults more trouble in
maintaining and improving procedures. What’ s more, failing to divide this confusion
causes the system as conceived and the system as built to diverge over time. In this
chapter, we give an introduction to what flexible software in architecture level looks
like and what the principles and organization patterns of constructing it are.

Chapter 9: A Vision on Software Architecture. This is a chapter far away
from theories, methods and technologies, in which the applications of software
architecture in current software industry and in other fields, such as medicine,
electronic engineering and military are presented in general. After that, we will
provide several future research directions of software architecture at the end of this
book.

Considering the relative independence of each chapter, readers can choose several
chapters they are interested in. But we recommend Chapter 1 should be read
carefully since it can help you understand other chapters easier and better. In
addition, you can find more detail and deeper description about some topics through
the reference materials we give.

Wheo Should Read This Book

The graduates and undergraduates whose majors are elated to software design and
development will benefit much from this book. Also, other people who are
interested in software architecture would be guided to this field by reading this
book. Then, experienced software designers and project leaders who want to adopt
architecture as the centric concerns and utility of their software development
process are our target readers, too. But they may suffer pain for a moment when
converting their original mind to the new world, from which they will at last benefit.
We assume our readers should have simple experience as follows. (Each capability
may only be involved in several chapters rather than the whole book)

e Programming using C++, Java or C#

e Software design (even a simple project would be fine)

e Software project management

Acknowledgements

It is a great pleasure to acknowledge the profound and original work of Software
Architecture Group of Tsinghua Univ., especially Jiankuan Xing (Chapters 1, 5, 7,
8) and Xiang Zheng (Chapters 3, 4). Their insights, collaboration and diligence have
been a constant source which gestates the publication of this book.

For the current years I have been considering the problems of software

Preface X

architecture. During the book’ s writing, we have profited greatly by collaboration
with many people, including Kaimo Hu, who prepares lots of materials for Chapters
2 and 9. Meanwhile, he often inspired us with wide knowledge and ideas; and Juan
Wang who buried herself into various software architecture IDEs and taught us how
to use them in a great detail, which contributed much for Chapter 6. She is also
participating the XArch project focusing on ADL parsing and model generating. And
many thanks to Hui Cao, a nice reader who has inspected most manuscript and
offered valuable criticisms and comments.

Beijing Zheng Qin
June 2007

Contents

1

Introduction to Software Architecture
1.1 A Brief History of Software Development

1.1.1 The Evolution of Programming Language—Abstract Level

1.1.2- The Evolution of Software Development—Concerns

1.1.3 The Origin and Growth of Software Architecture — «or-recoeeeeseveneeee

1.2 Introduction to Software Architecture -:------:
1.2.1 Basic Terminologies +-+--+*-

1.2.2 Understanding IEEE 1471—2000

1.2.3 Views Used in Software Architecture -

1.24 Why We Need Software Architecture -

1.2.5 Where Is Software Architecture in Software Life Cycle

1.3 Summary

References F S T R T PR P R

Architectural Styles and Patterns «««---++-eeersessesessrssannnsannnsineuns
2.1 Fundamentals of Architectural Styles and Patterns «----exereceeeereneees

J N . 38
- 38

22 Pipes Filters
22.1 Style Description

222 Study Case O T Y T I P
e 42
)

2.3 Object-oriented
23.1 Style Description

232 Study €ase «r+reerreeeree e ene sttt
.- 51
- 51

24 Event-driven
24.1 Style Description

242 Study Case T T T AR

e 62
- 62
2.52 Study Case G he ees mes see Eee aus e e e AN B0e T4 L LIRS0 BSOS AR s aea Bes s0e sen oo ant
.. 70
- 70

2.5 Hierarchical Layer
2.5.1 Style Description

2.6 Data Sharing
2.6.1 Style Description

26.2 Study Case heaeestesasnneeieeatseeaescte tbe sraUetees aecats sttt stas tas aae bas

34
34

39

43

55

72

X Software Architecture

277 VirtUal MAChifle «- =+ =ceerevresrerarnosuesaeeareonnocsensanemieureinesnnsnsens
- 76

2.7.1 Style Description

2772 Study Case «++ s vrereesssserasssns sttt s
.. 81
- 81

2.8 Feedback Loop
2.8.1 Style Description

2,82 Study Case -+« -w-eeereessesesnnnanssutanstis et e e
- 83

2.9 Comparison among Sty les

2.10 Integration ofHeterogeneous Styles
- 87

2.11 Summary
References

3 Application and Analysis of Architectural Styles
. .. seesevensnans cae 89
-+ 89
-+ 91
3.1.3 Function Design «=+++sessreerssesareasesetaniiieneeriianatiiiiiaees 93
3.2 System Realization «««««e+oseeecermrmennrorerereinnentiioiinntiinin.
321 The Pattern ChOiCC L T R L L I T T
322 Interaction MECHAMISIIT «+«++ vserroreorenseatssossasosenreseennsnnsanenns
3.23 Realization of Mobile Collaboration «:+sveeecevsersrserveevirineenes
- 111
-+ 115
- 116

3.1 Introduction to SMCSP --r--cceeeese-
3.1.1 Program Background
3.1.2 Technical Routes

324 Knowledg&based De51gn

33 Summary
References -

4 Software Architecture Description
4.1 Formal Description of Software Architecture

4.1.1 Problems in Informal DesCription «+-=+««-+ssssssesrsnrerrnnereniianinns
-+ 120
-+ 123
- 123

4.12 Why Are Formal Methods Necessary
4.2 Architectural Description Language
42.1 Introduction to ADL seeeeees

422 Comparing among Typical ADLs «++esssrssssseeseevrnsrmiimminnaiinn
- 133

423 Describing Architectural Behaviors

43 Study Case: WRIGHT System -««+w«erereeesessesseneeaeeuiiineunniennnie.
-+ 136
- 141

4.3.1 Description of Component and Connector
4.32 Description of Configuration

433 Description of Style <+« +reerereereeseeersmimemntiiii e,
434 CSP—Semantic Basis of Formal Behavior Description «««--+--+-+-
44 FEAL: AnInfrastructuretoConstruct ADLs cerrerrrierenenriiiiienn

. ceetseenesn s . 160
-+ 161
«- 163
- 164

44.1 Demgn Purpose
442 FEC -

4.43 FEAL SLIUCLUrE ++vvvvcvsvecerenrsoretasncaanscnsamsetennanscnenens

444 FEAL Mapper -+-e-ee- o

445 Examples of FEAL Apphcatlon

4.5 Summary

76

77

82

85

89

97
97
101
104

- 117
- 117

117

127

135

143
146
160

164

Contents

ReferenCeS 94t 90 e BBe tes esetes e s Ees e sNe nas e At s st sEasseses sas Ree At PP sas e a0 ann 167
Design Strategies in Architecture Level 169
5.1 From Reuse to Architecture Design teeesrserasiisscitssacnsnsctssscacasses 170
5.2 Architectural Desxgn Space and Rules cervecvrereeemsmceceneinieeaeneee 171
53 SADPBA ceenescenvane cesecaseaan e 172
531 OVCI'VIeW PRI teeseesaneraans - 173
53.2 Split Design Process with Des1gn Space - 173
53.3 Trace Mechanism in SADPBA - R A - 176
534 Life Cycle Model of Software Architecture ««-«:s--e-eesrereecereeeees 177
53.5 SADPBA in Practice - 178
54 Study Case: MEECS - 180
541 Introduction to MEECS cesesssreecsnrcetaenaerssanersenane 180
542 Applylng SADPBA m MEECS [R T 182
5.5 Summary 189
References - 190
Software Architecture IDE PP 1) |
6.1 What Can Software Architecture IDE Do --eecereerrereeeeeecnceeeeee 10]
6.1.1 A Comparison with Formalized Description Approach seveeseeseee 191
6.1.2 Important Roles of Architecture IDE 192
6.2 ProtOLype «oereseerremersseseesteeseececttiiuiiiiiei i 105
6.2.1 User Interface Layer =+ -corereeressessentiersiatinniiii . 196
622 Model Layer S T L IR 197
6.2.3 Foundational Layer - 199
6.24 1IDE Design Tactics -+ 200
6.3 ArchStudio 4 System -+ 201
63.1 Introductlon TR tse e essassena . 201
6.3.2 Installing ArchStudio 4 - - 204
6.3.3 ArchStudio 4 Overview - R A R - 206
634 Usmg ArChStule R R R LR R R T LR R LT R IR 214
6.4 Surmnary -« 218
References - - 220
Evaluating Software Architecture - 221
7.1 What Is Software Architecture Evaluation seeereaceecee 229D
711 Quahty Attribute eeceeserseears ses e saaten bttt tas aee bas tan taa b asacon vt 222
7.1.2 Why Is Evaluation Necessary - 224
713 Scenario.based EValuatiOn Methods ceetesesesesses st ecesesans trr aes nen 225
72 SAAM cessesnssnras seserensacean . 228
7.2.1 General Steps of SAAM -« 228
7.2.2 Scenario Development - 230
723 Architecture Description - 230
7.2.4 Scenario Classification and Prioritization - 231

W Software Architecture

7.2.5 Individual Evaluation of Indirect Scenarios =+« --ssereceereenseciennes 232
7.2.6 Assessment of Scenario Interaction eevsceererereseiiiseiieeiiiee 933
72.7 Creation of QOverall Evaluation 233
7_3‘1 INItial ATAM cveeeevrserasrsnnsensanssteaeenterensmiaennsanssrisnsoneees 235
732 ATAM Improvement B T R LY/
733 General Process of ATAM ccceervrrsceeeniinntteceernecieeciiee 238
734 Presentation -cccc-ee- B Y ¥
735 Investlgatxon and AnalySIS B T TR TR V.)
736 TESHINg -+ veerevreevrssrsseenesonernt ettt ees it ettt 244
7377 Present the Results ceccecereveerererieiaiiiiittiiiiiiiiiieescineiinieees 245
7.4 Comparison among Evaluation Methods «cocsesserercecacceienieacetes 246
7.4.1 ComparisonFramework B 2 T S
74.2 Overview and Comparison of Evaluation Methods --«-+--<-------+-- 250

8 Flexible Software Architecture Dy 2
8.1 What Is Flexibility FOT rrevrerressentensssccantsretistcnnssissinannsicsaees 274
82 Dynamic Software Architecture —=+--sxeerersemesrrmerens i 276
82.1 wADL: A Behavior Perspective 1
822 MARMOL: A Reflection Perspective -««:«---s sesesmesneesneeenies 284
8.2.3 LIME: A Coordination Perspective «+-sr-rercersersecrocncerceraces 207
8.3 Flexibility:Beyond the Dynamism .
83.1 Concept of Flexible Software Architecture -«+«+srseseerseeseeess 299
832 Tradc*offofFle)qbﬂlty . 104
8.4 Study Cases -++-+- R 0
84.1 RaAINDOW ttrerrreterertatetieiiietiiitiiiriotaratnastcecsinscaenannsnsas 303
REFEIENCES ++ v rr e rresrstetsstataiesoiiutssieissseaiasienssscnoessocnsssescecesnes 308

9 A Vision on Software Architecture -+-«--e-resrerrererrrrnnenraeorueecnnnes 313
9.1 Software Architecture in Modern Software Industry =~ «---veeveeeeeeer 313
9.1.1 Categorlzlng Software cecrrerecrertreentiiiitieiiiieticiciaiiarsesiease 313
9.1.2 Software Product Line -c-e-ce---creereerrrsorsacsoasaesncareiensemeeacsas 318
9.2 Software Architecture Used in Other Fields ----t--s-errveereevececeeenes 325
9.2.1 The Outline of Software Architecture Application Practice ::--- 325
9.22 The Development Trends of Domain- Spemﬁc Software =~ ----e--eeer 325
9.3 Software Architecture’s Future Research - - sreeeeseeeeeee 330
0.4 SUMMAry +rereevesversresessererearetetnionnnaetiiettiinnaeecenienaeneneee 33]
REfErenCes « ++ torererreresserraenctosseteocennetacessaransanesorcsosanssesrsssesses 330

Index L T T R R LT ETR R PP f¢ 1

