
ptg

Design Patterns
Elements of Reusable Object-Oriented Software

Erich Gamma

Richard Helm

Ralph Johnson

John Vlissides

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid 

Capetown • Sidney • Tokyo • Singapore • Mexico City



ptg

Contents

Preface xi

Foreword xiii

Guide to Readers xv

1 Introduction 1

1.1 What Is a Design Pattern? 2

1.2 Design Patterns in Smalltalk MVC 4

1.3 Describing Design Patterns 6

1.4 The Catalog of Design Patterns 8

1.5 Organizing the Catalog 9

1.6 How Design Patterns Solve Design Problems 11

1.7 How to Select a Design Pattern 28

1.8 How to Use a Design Pattern 29

2 A Case Study: Designing a Document Editor 33

2.1 Design Problems 33

2.2 Document Structure 35

2.3 Formatting 40

2.4 Embellishing the User Interface . 43

2.5 Supporting Multiple Look-and-Feel Standards 47

2.6 Supporting Multiple Window Systems 51

2.7 User Operations i 58

2.8 Spelling Checking and Hyphenation 64

vii



ptg

viii CONTENTS

2.9 Summary 76

Design Pattern Catalog 79

3 Creational Patterns 81

Abstract Factory 87

Builder 97

Factory Method 107

Prototype 117 

Singleton 127

Discussion of Creational Patterns 135

4 Structural Patterns 137

Adapter 139

Bridge 151

Composite 163

Decorator 175

Facade 185

Flyweight 195 

Proxy 207

Discussion of Structural Patterns 219

5 Behavioral Patterns 221

Chain of Responsibility 223

Command 233

Interpreter 243

Iterator 257

Mediator 273

Memento 283 

Observer 293

State 305

Strategy 315



ptg

CONTENTS ix

Template Method 325

Visitor 331

Discussion of Behavioral Patterns 345

6 Conclusion 351

6.1 What to Expect from Design Patterns 351

6.2 A Brief History 355

6.3 The Pattern Community 356

6.4 An Invitation 358

6.5 A Parting Thought 358

A Glossary 359

B Guide to Notation 363

B.I Class Diagram 363

B.2 Object Diagram 364

B.3 Interaction Diagram 366

C Foundation Classes 369

C.1 List 369

C.2 Iterator 372

C.3 Listlterator 372

C.4 Point 373

C.5 Rect 374

Bibliography 375

Index 383



ptg

Preface

This book isn't an introduction to object-oriented technology or design. Many books
already do a good job of that. This book assumes you are reasonably proficient in at least
one object-oriented programming language, and you should have some experience in
object-oriented design as well. You definitely shouldn't have to rush to the nearest
dictionary the moment we mention "types" and "polymorphism," or "interface" as
opposed to "implementation" inheritance.

On the other hand, this isn't an advanced technical treatise either. It's a book of design
patterns that describes simple and elegant solutions to specific problems in object-
oriented software design. Design patterns capture solutions that have developed and
evolved over time. Hence they aren't the designs people tend to generate initially. They
reflect untold redesign and receding as developers have struggled for greater reuse 
and flexibility in their software. Design patterns capture these solutions in a succinct
and easily applied form.

The design patterns require neither unusual language features nor amazing program-
ming tricks with which to astound your friends and managers. All can be implemented 
in standard object-oriented languages, though they might take a little more work than
ad hoc solutions. But the extra effort invariably pays dividends in increased flexibility
and reusability.

Once you understand the design patterns and have had an "Aha!" (and not just a
"Huh?") experience with them, you won't ever think about object-oriented design in
the same way. You'll have insights that can make your own designs more flexible,
modular, reusable, and understandable—which is why you're interested in object-
oriented technology in the first place, right?

A word of warning and encouragement: Don't worry if you don't understand this
book completely on the first reading. We didn't understand it all on the first writing!
Remember that this isn't a book to read once and put on a shelf. We hope you'll find
yourself referring to it again and again for design insights and for inspiration.

This book has had a long gestation. It has seen four countries, three of its authors'
marriages, and the birth of two (unrelated) offspring. Many people have had a part
in its development. Special thanks are due Bruce Anderson, Kent Beck, and Andre
Weinand for their inspiration and advice. We also thank those who reviewed drafts

XI



ptg

xii PREFACE

of the manuscript: Roger Bielefeld, Grady Booch, Tom Cargill, Marshall Cline, Ralph
Hyre, Brian Kernighan, Thomas Laliberty, Mark Lorenz, Arthur Riel, Doug Schmidt,
Clovis Tondo, Steve Vinoski, and Rebecca Wirfs-Brock. We are also grateful to the
team at Addison-Wesley for their help and patience: Kate Habib, Tiffany Moore, Lisa
Raffaele, Pradeepa Siva, and John Wait. Special thanks to Carl Kessler, Danny Sabbah,
and Mark Wegman at IBM Research for their unflagging support of this work.

Last but certainly not least, we thank everyone on the Internet and points beyond who
commented on versions of the patterns, offered encouraging words, and told us that
what we were doing was worthwhile. These people include but are not limited to 
Jon Avotins, Steve Berczuk, Julian Berdych, Matthias Bohlen, John Brant, Allan Clarke,
Paul Chisholm, Jens Coldewey, Dave Collins, Jim Coplien, Don Dwiggins, Gabriele Elia,
Doug Felt, Brian Foote, Denis Fortin, Ward Harold, Hermann Hueni, Nayeem Islam,
Bikramjit Kalra, Paul Keefer, Thomas Kofler, Doug Lea, Dan LaLiberte, James Long,
Ann Louise Luu, Pundi Madhavan, Brian Marick, Robert Martin, Dave McComb, Carl
McConnell, Christine Mingins, Hanspeter Mossenbock, Eric Newton, Marianne Ozkan,
Roxsan Payette, Larry Podmolik, George Radin, Sita Ramakrishnan, Russ Ramirez,
Alexander Ran, Dirk Riehle, Bryan Rosenburg, Aamod Sane, Duri Schmidt, Robert
Seidl, Xin Shu, and Bill Walker.

We don't consider this collection of design patterns complete and static; it's more a
recording of our current thoughts on design. We welcome comments on it, whether
criticisms of our examples, references and known uses we've missed, or design pat-
terns we should have included. You can write us care of Addison-Wesley, or send
electronic mail to design-patterns@cs.uiuc. edu. You can also obtain softcopy 
for the code in the Sample Code sections by sending the message "send design pattern
source" to design-patterns-sourceics. uiuc. edu. And now there's a Web page
at http://st-www.cs.uiuc.edu/users/patterns/DPBook/DPBook.html for
late-breaking information and updates.

Mountain View, California E.G.

Montreal, Quebec R.H.

Urbana, Illinois R.J.

Hawthorne, New York J.V.

August 1994



ptg

Foreword

All well-structured object-oriented architectures are full of patterns. Indeed, one of the
ways that I measure the quality of an object-oriented system is to judge whether or
not its developers have paid careful attention to the common collaborations among its
objects. Focusing on such mechanisms during a system's development can yield an
architecture that is smaller, simpler, and far more understandable than if these patterns
are ignored.

The importance of patterns in crafting complex systems has been long recognized in
other disciplines. In particular, Christopher Alexander and his colleagues were perhaps
the first to propose the idea of using a pattern language to architect buildings and cities.
His ideas and the contributions of others have now taken root in the object-oriented
software community. In short, the concept of the design pattern in software provides a
key to helping developers leverage the expertise of other skilled architects.

In this book, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides introduce
the principles of design patterns and then offer a catalog of such patterns. Thus, this
book makes two important contributions. First, it shows the role that patterns can play
in architecting complex systems. Second, it provides a very pragmatic reference to a set
of well-engineered patterns that the practicing developer can apply to crafting his or
her own specific applications.

I'm honored to have had the opportunity to work directly with some of the authors of
this book in architectural design efforts. I have learned much from them, and I suspect
that in reading this book, you will also.

Grady Booch

Chief Scientist, Rational Software Corporation

xm



ptg

Guide to Readers

This book has two main parts. The first part (Chapters 1 and 2) describes what design
patterns are and how they help you design object-oriented software. It includes a design
case study that demonstrates how design patterns apply in practice. The second part
of the book (Chapters 3,4, and 5) is a catalog of the actual design patterns.

The catalog makes up the majority of the book. Its chapters divide the design patterns
into three types: creational, structural, and behavioral. You can use the catalog hi several
ways. You can read the catalog from start to finish, or you can just browse from pattern 
to pattern. Another approach is to study one of the chapters. That will help you see
how closely related patterns distinguish themselves.

You can use the references between the patterns as a logical route through the catalog.
This approach will give you insight into how patterns relate to each other, how they can
be combined with other patterns, and which patterns work well together. Figure 1.1
(page 12) depicts these references graphically.

Yet another way to read the catalog is to use a more problem-directed approach. Skip
to Section 1.6 (page 24) to read about some common problems hi designing reusable
object-oriented software; then read the patterns that address these problems. Some
people read the catalog through first and then use a problem-directed approach to
apply the patterns to their projects.

If you aren't an experienced object-oriented designer, then start with the simplest and
most common patterns:

• Abstract Factory (page 87) • Factory Method (107)

• Adapter (139) • Observer (293)

• Composite (163) • Strategy (315)

• Decorator (175) • Template Method (325)

It's hard to find an object-oriented system that doesn't use at least a couple of these
patterns, and large systems use nearly all of them. This subset will help you understand
design patterns in particular and good object-oriented design in general.

xv




