


Preface

The first three editions of H.L.Royden's Real Analysis have contributed to the education of
generations of mathematical analysis students. This fourth edition of Real Analysis preserves
the goal and general structure of its venerable predecessors-to present the measure theory,
integration theory, and functional analysis that a modem analyst needs to know.

The book is divided the three parts: Part I treats Lebesgue measure and Lebesgue
integration for functions of a single real variable; Part II treats abstract spaces-topological
spaces, metric spaces, Banach spaces, and Hilbert spaces; Part III treats integration over
general measure spaces, together with the enrichments possessed by the general theory in
the presence of topological, algebraic, or dynamical structure.

The material in Parts II and III does not formally depend on Part I. However, a careful
treatment of Part I provides the student with the opportunity to encounter new concepts in a
familiar setting, which provides a foundation and motivation for the more abstract concepts
developed in the second and third parts. Moreover, the Banach spaces created in Part I, the
LP spaces, are one of the most important classes of Banach spaces. The principal reason for
establishing the completeness of the LP spaces and the characterization of their dual spaces
is to be able to apply the standard tools of functional analysis in the study of functionals and
operators on these spaces. The creation of these tools is the goal of Part II.

NEW TO THE EDITION

This edition contains 50% more exercises than the previous edition

Fundamental results, including Egoroff s Theorem and Urysohn's Lemma are now
proven in the text.

The Borel-Cantelli Lemma, Chebychev's Inequality, rapidly Cauchy sequences, and
the continuity properties possessed both by measure and the integral are now formally
presented in the text along with several other concepts.

There are several changes to each part of the book that are also noteworthy:

Part I

The concept of uniform integrability and the Vitali Convergence Theorem are now
presented and make the centerpiece of the proof of the fundamental theorem of
integral calculus for the Lebesgue integral

A precise analysis of the properties of rapidly Cauchy sequences in the LP(E) spaces,
1 < p < oo, is now the basis of the proof of the completeness of these spaces

Weak sequential compactness in the LP(E) spaces, 1 < p < oo, is now examined in
detail and used to prove the existence of minimizers for continuous convex functionals.
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Part II

General structural properties of metric and topological spaces are now separated into
two brief chapters in which the principal theorems are proven.

In the treatment of Banach spaces, beyond the basic results on bounded linear
operators, compactness for weak topologies induced by the duality between a Banach
space and its dual is now examined in detail.

There is a new chapter on operators in Hilbert spaces, in which weak sequential com-
pactness is the basis of the proofs of the Hilbert-Schmidt theorem on the eigenvectors
of a compact symmetric operator and the characterization by Riesz and Schuader of
linear Fredholm operators of index zero acting in a Hilbert space.

Part III

General measure theory and general integration theory are developed, including the
completeness, and the representation of the dual spaces, of the LP(X, µ) spaces for,
1 < p < oo. Weak sequential compactness is explored in these spaces, including the
proof of the Dunford-Pettis theorem that characterizes weak sequential compactness
inL1(X,A).
The relationship between topology and measure is examined in order to characterize
the dual of C(X), for a compact Hausdorff space X. This leads, via compactness
arguments, to (i) a proof of von Neumann's theorem on the existence of unique
invariant measures on a compact group and (ii) a proof of the existence, for a mapping
on a compact Hausdorf space, of a probability measure with respect to which the
mapping is ergodic.

The general theory of measure and integration was born in the early twentieth century. It
is now an indispensable ingredient in remarkably diverse areas of mathematics, including
probability theory, partial differential equations, functional analysis, harmonic analysis, and
dynamical systems. Indeed, it has become a unifying concept. Many different topics can
agreeably accompany a treatment of this theory. The companionship between integration
and functional analysis and, in particular, between integration and weak convergence, has
been fostered here: this is important, for instance, in the analysis of nonlinear partial
differential equations (see L.C. Evans' book Weak Convergence Methods for Nonlinear
Partial Differential Equations [AMS, 1998]).

The bibliography lists a number of books that are not specifically referenced but should
be consulted for supplementary material and different viewpoints. In particular, two books
on the interesting history of mathematical analysis are listed.

SUGGESTIONS FOR COURSES: FIRST SEMESTER

In Chapter 1, all the background elementary analysis and topology of the real line needed
for Part I is established. This initial chapter is meant to be a handy reference. Core material
comprises Chapters 2, 3, and 4, the first five sections of Chapter 6, Chapter 7, and the first
section of Chapter 8. Following this, selections can be made: Sections 8.2-8.4 are interesting
for students who will continue to study duality and compactness for normed linear spaces,
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while Section 5.3 contains two jewels of classical analysis, the characterization of Lebesgue
integrability and of Riemann integrability for bounded functions.

SUGGESTIONS FOR COURSES: SECOND SEMESTER

This course should be based on Part III. Initial core material comprises Section 17.1, Section
18.1-18.4, and Sections 19.1-19.3. The remaining sections in Chapter 17 may be covered at
the beginning or as they are needed later: Sections 17.3-17.5 before Chapter 20, and Section
17.2 before Chapter 21. Chapter 20 can then be covered. None of this material depends on
Part II. Then several selected topics can be chosen, dipping into Part II as needed.

Suggestion 1: Prove the Baire Category Theorem and its corollary regarding the partial
continuity of the pointwise limit of a sequence of continuous functions (Theorem 7 of
Chapter 10), infer from the Riesz-Fischer Theorem that the Nikodym metric space is
complete (Theorem 23 of Chapter 18), prove the Vitali-Hahn-Saks Theorem and then
prove the Dunford-Pettis Theorem.
Suggestion 2: Cover Chapter 21 (omitting Section 20.5) on Measure and Topology,
with the option of assuming the topological spaces are metrizable, so 20.1 can be
skipped.

Suggestion 3: Prove Riesz's Theorem regarding the closed unit ball of an infinite
dimensional normed linear space being noncompact with respect to the topology
induced by the norm. Use this as a motivation for regaining sequential compactness
with respect to weaker topologies, then use Helley's Theorem to obtain weak sequential
compactness properties of the L P (X, µ) spaces, 1 < p < oo, if L9 (X, µ) is separable
and, if Chapter 21 has already been covered, weak-* sequential compactness results
for Radon measures on the Borel a--algebra of a compact metric space.

SUGGESTIONS FOR COURSES: THIRD SEMESTER

I have used Part II, with some supplemental material, for a course on functional analysis,
for students who had taken the first two semesters; the material is tailored, of course, to that
chosen for the second semester. Chapter 16 on bounded linear operators on a Hilbert space
may be covered right after Chapter 13 on bounded linear operators on a Banach space, since
the results regarding weak sequential compactness are obtained directly from the existence
of an orthogonal complement for each closed subspace of a Hilbert space. Part II should be
interlaced with selections from Part III to provide applications of the abstract space theory
to integration. For instance, reflexivity and weak compactness can be considered in general
LP(X, µ) spaces, using material from Chapter 19. The above suggestion 1 for the second
semester course can be taken in the third semester rather than the second, providing a truly
striking application of the Baire Category Theorem. The establishment, in Chapter 21, of the
representation of the dual of C(X ), where X is a compact Hausdorff space, provides another
collection of spaces, spaces of signed Radon measures, to which the theorems of Helley,
Alaoglu, and Krein-Milman apply. By covering Chapter 22 on Invariant Measures, the
student will encounter applications of Alaoglu's Theorem and the Krein-Milman Theorem
to prove the existence of Haar measure on a compact group and the existence of measures
with respect to which a mapping is ergodic (Theorem 14 of Chapter 22), and an application
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of Helley's Theorem to establish the existence of invariant measures (the Bogoliubov-Krilov
Theorem).

I welcome comments at pmf@math.umd.edu. A list of errata and remarks will be
placed on www.math.umd.edu/-pmf/RealAnalysis.
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