
FOURTH EDITION

I. Scott MacKenzie
York University

Raphael C.-W. Phan
Swinburne University of Technology

(Sarawak Campus)

Pearson Education International

This book examines the hardware and software features of the MCS-51 family of micro-
controllers. The intended audience is college or university students of electronics,
computer technology, and electrical or computer engineering, or practicing technicians or
engineers interested in learning about microcontrollers.

The means to effectively fulfill that audience's informational needs were tested and
refined in the development of this book. In its prototype form, The 8051 Microcontroller
was the basis of a fifth-semester course for college students in computer engineering. As
detailed in Chapter 11, students built an 8051 single-board computer as part of this course.
That computer, in turn, has been used as the target system for a final, sixth-semester
"project" course in which students design, implement, and document a "product"
controlled by the 8051 microcontroller and incorporating original software and hardware.

Because the 8051—like all microcontrollers—contains a high degree of functional-
ity, the book emphasizes architecture and programming rather than electrical details. The
software topics are delivered in the context of Intel's assembler (ASM51) and linker/
locator (RL51).

Four new chapters are included in this edition, and the main additional feature is the
information about using 8051 C programming as an alternative to the assembly language
used in earlier editions. Programming in C allows for structured programs and is
especially useful in coding big and complex 8051-based projects.

All examples are annotated to assist both the student and the teacher. The examples
begin by stating a problem followed by a straightforward solution. Then, following the so-
lution, there is a discussion that explores the inner workings of the problem and the
solution. The approach is to explain and to elaborate, taking into account different
perspectives that enter into the example.

It is our view that courses on microprocessors or microcontrollers are inherently
more difficult to deliver than courses in, for example, digital systems, because a linear
sequence of topics is hard to devise. The very first program that is demonstrated to
students brings with it significant assumptions, such as a knowledge of the CPU's
programming model and addressing modes, the distinction between an address and the
content of an address, and so on. For this reason, a course based on this book should not
attempt to follow strictly the sequence presented. Chapter 1 is a good starting point,
however. It serves as a general introduction to microcontrollers, with particular emphasis
on the distinctions between microcontrollers and microprocessors.

iii

iv | PREFACE

Chapter 2 introduces the hardware architecture of the 8051 microcontroller and its coun-
terparts that form the MCS-51 family. Concise examples are presented using short sequences
of instructions. Instructors should be prepared at this point to introduce, in parallel, topics from
Chapters 3 and 7 and Appendices A and C to support the requisite software knowledge in these
examples. Appendix A is particularly valuable, since it contains in a single figure the entire
8051 instruction set.

Chapter 3 introduces the instruction set, beginning with definitions of the 8051's
addressing modes. The instruction set has convenient categories of instructions (data
transfer, branch, etc.) that facilitate a step-wise presentation. Numerous brief examples
demonstrate each addressing mode and each type of instruction.

Chapters 4, 5, and 6 progress through the 8051's on-chip features, beginning with the
timers, advancing to the serial port (which requires a timer as a baud rate generator), and
concluding with interrupts. The examples in these chapters are longer and more complex
than those presented earlier. Instructors are wise not to rush into these chapters; it is
essential that students gain solid understanding of the 8051's hardware architecture and
instruction set before advancing to these topics.

Many of the topics in Chapter 7 will be covered, by necessity, in progressing through
the first six chapters. Nevertheless, this chapter is perhaps the most important for devel-
oping in students the potential to undertake large-scale projects. Advanced topics such as
assemble-time expression evaluation, modular programming, linking and locating, and
macro programming will be a significant challenge for many students. At this point, the
importance of hands-on experience cannot be overemphasized. Students should be encour-
aged to experiment by entering the examples in the chapter into the computer and
observing the output and error messages provided by ASM51, RL51, and the object-to-hex
conversion utility (OH).

Chapter 8 lays the foundation for C programming the 8051. It highlights differences
between this higher-level language compared to assembly language, and differences be-
tween conventional C language for computer systems and C for an embedded microcon-
troller such as the 8051.

Some advanced topics relating to programming methods, style, and the development
environment are presented in Chapters 9 and 10. These chapters address larger, more con-
ceptual topics important in professional development environments.

Chapter 11 presents several design examples incorporating selected hardware with
supporting software. The software is fully annotated and is the real focus in these examples.
The fourth edition includes several additional interfaces: a liquid crystal display (LCD), the
8255, an RS-232 serial interface, a Centronics parallel interface, sensors, relays, and a stepper
motor. One of the designs in Chapter 11 is the SBC-51 - the 8051 single-board computer. The
SBC-5l can form the basis of a course on the 8051 microcontroller. A short monitor program
is included (see Appendix G), which is sufficient to get "up and running." A development
environment also requires a host computer, which doubles as a dumb terminal for controlling
the SBC-5l after programs have been downloaded for execution.

Many dozens of students have wire-wrapped prototype versions of the SBC during
years that Scott has taught 8051-based courses to computer engineering students. Raphael
also thanks his Microprocessor Fundamentals, Microprocessor Applications, and Embedded

PREFACE | v

Microcontrollers students, who enthusiastically undertook assignments and projects based on the 8051.
There is also a new chapter, Chapter 12, on the design and interface examples given in Chapter 11,

but with the solutions in C rather than in assembly language.
Chapter 13 presents some more advanced examples of 8051 projects for students and concentrates

on the discussion of design choices and the importance of pseudo code in the design process, prior to the
actual coding.

Chapter 14 talks briefly about some 8051 derivative devices that are descendants of the 8051 but
with enhancements such as increases in speed and memory size, additional built-in peripherals, and
enhanced network capabilities and security mechanisms.

Also worth mentioning is the treatment of smart cards and data security in this edition, notably in
Chapters 12, 13, and 14, and in Appendix J. This information is included because of the increasing
popularity of smart cards using 8-bit microcontrollers such as the 8051 to run security software to protect
confidential information.

The book makes extensive use of and builds on Intel's literature on the MCS-51 devices. In particular,
Appendix C contains the definitions of all 8051 instructions, and Appendix E contains the 8051 data sheet.
Intel's cooperation is gratefully acknowledged.

All the 8051 C examples in this edition have been compiled, debugged, and tested with Keil's
,µision2 IDE, available for download at http://www.keil.com. We also thank the following for their review
and invaluable comments, criticism, and suggestions: Dwight Egbert, University of Nevada; Marty Kaliski,
Cal Polytech State University; Claude Kansaku, Oregon Institute of Technology; and Ron Tinkham, Santa
Fe Community College. Raphael thanks his wife, Grace, for her understanding and patience, and for
sacrificing all the nights, weekends, and public holidays to keep him company in writing this edition. In
fact, without her gentle nudges, this edition would not have been completed. This edition is dedicated to
her.

I. Scott MacKenzie Raphael C.-W.
Phan

http://www.keil.com/

CONTENTS
1 INTRODUCTION TO MICROCONTROLLERS 1

1.1 Introduction 1

1.2 Terminology 3

1.3 The Central Processing Unit 4

1.4 Semiconductor Memory: RAM and ROM 5

1.5 The Buses: Address, Data, and Control 6

1.6 Input/Output Devices 7

1.6.1 Mass Storage Devices | 1.6.2 Human Interface Devices | 1.6.3
Control/Monitor Devices

1.7 Programs: Big and Small 8

1.8 Micros, Minis, and Mainframes 9

1.9 Microprocessors vs. Microcontrollers 10
1.9.1 Hardware Architecture | 1.9.2 Applications | 1.9.3 Instruction Set Features

1.10 New Concepts 12

1.11 Gains and Losses: A Design Example 13

Problems 14

2 HARDWARE SUMMARY 17

2.1 MCS-51 Family Overview 17

2.2 Once Around the Pins 18
2.2.1 Port 0 | 2.2.2 Port 1 | 2.2.3 Port 2 | 2.2.4 Port 3 |
2.2.5 PSEN (Program Store Enable) | 2.2.6 ALE (Address Latch Enable) | 2.2.7
EA (External Access) | 2.2.8 RST (Reset) | 2.2.9 On-Chip Oscillator Inputs |
2.2.10 Power Connections

2.3 I/O Port Structure 22

2.4 Timing and the Machine Cycle 23

2.5 Memory Organization 24

vii

viii | CONTENTS

2.5.1 General-Purpose RAM | 2.5.2 Bit-Addressable RAM | 2.5.3

Register Banks

2.6 Special Function Registers 28

2.6.1 Program Status Word | 2.6.2 B Register | 2.6.3 Stack Pointer | 2.6.4 Data
Pointer | 2.6.5 Port Registers | 2.6.6 Timer Registers | 2.6.7 Serial Port Registers |
2.6.8 Interrupt Registers | 2.6.9 Power Control Register

2.7 External Memory 36

2.7.1 Accessing External Code Memory | 2.7.2 Accessing External Memory | 2.7.3
Address Decoding | 2.7.4 Overlapping the External Code and Data Spaces

2.8 8032/8052 Enhancements 41

2.9 Reset Operation 43

Summary 44

Problems 44

3 INSTRUCTION SET SUMMARY 49
3.1 Introduction 49

3.2 Addressing Modes 50

3.2.1 Register Addressing | 3.2.2 Direct Addressing | 3.2.3 Indirect
Addressing | 3.2.4 Immediate Addressing | 3.2.5 Relative Addressing | 3.2.6
Absolute Addressing | 3.2.7 Long Addressing | 3.2.8 Indexed Addressing

3.3 Instruction Types 59

3.3.1 Arithmetic Instructions | 3.3.2 Logical Instructions | 3.3.3 Data Transfer
Instructions | 3.3.4 Boolean Instructions | 3.3.5 Program Branching Instructions

Summary 7 8

Problems 7 8

4 TIMER OPERATION 87

4.1 Introduction 87

4.2 Timer Mode Register (TMOD) 89

4.3 Timer Control Register (TCON) 89

4.4 Timer Modes and the Overflow Flag 90

4.4.1 13-Bit Timer Mode (Mode 0) | 4.4.2 16-Bit Timer Mode (Mode 1) | 4.4.3 8-
Bit Auto-Reload Mode (Mode 2) | 4.4.4 Split Timer Mode (Mode 3)

4.5 Clocking Sources 92

4.5.1 Interval Timing | 4.5.2 Event Counting

4.6 Starting, Stopping, and Controlling the Timers 93

4.7 Initializing and Accessing Timer Registers 95

4.7.1 Reading a Timer "on the Fly"

4.8 Short, Medium, and Long Intervals 96

4.9 Producing Exact Frequencies 102

4.9.1 Eliminating Round-off Errors | 4.9.2 Compensating for Overhead Due to

Instructions

4.10 8052 Timer 2 105

4.10.1 Auto-Reload Mode | 4.10.2 Capture Mode

4.11 Baud Rate Generation 106

Summary 1 0 7

Problems 107

5 SERIAL PORT OPERATION 111
5.1 Introduction 111

5.2 Serial Communication 111

5.3 Serial Port Buffer Register (SBUF) 112

5.4 Serial Port Control Register (SCON) 113

5.5 Modes of Operation 113

5.5.1 8-Bit Shift Register (Mode 0) | 5.5.2 8-Bit UART with Variable Baud Rate
(Mode 1) | 5.5.3 9-Bit UART with Fixed Baud Rate (Mode 2) | 5.5.4 9-Bit
UART with Variable Baud Rate (Mode 3)

5.6 Full Duplex Serial Communication: Issues 117

5.7 Initialization and Accessing Serial Port Registers 118

5.7.1 Receiver Enable | 5.7.2 The Ninth Data Bit | 5.7.3 Adding a Parity Bit |
5.7.4 Interrupt Flags |

5.8 Multiprocessor Communications 119

5.9 Serial Port Baud Rates 120

5.9.1 Using Timer 1 as the Baud Rate Clock

Summary 1 2 7

Problems 128

6 INTERRUPTS 131
6.1 Introduction 131

6.2 8051 Interrupt Organization 132

6.2.1 Enabling and Disabling Interrupts | 6.2.2 Interrupt Priority | 6.2.3
Polling Sequence

CONTENTS | ix

6.3 Processing Interrupts 136

6.3.1 Interrupt Vectors

6.4 Program Design Using Interrupts 137

6.4.1 Small Interrupt Service Routines | 6.4.2 Large Interrupt Service

Routines

6.5 Timer Interrupts 139

6.6 Serial Port Interrupts 142

6.7 External Interrupts 143

6.8 Interrupt Timings 148

Summary 149

Problems 150

7 ASSEMBLY LANGUAGE PROGRAMMING 151
7.1 Introduction 151

7.2 Assembler Operation 152

7.2.1 Pass One | 7.2.2 Pass Two

7.3 Assembly Language Program Format 155

7.3.1 Label Field | 7.3.2 Mnemonic Field | 7.3.3 Operand Field | 7.3.4 Comment
Field | 7.3.5 Special Assembler Symbols | 7.3.6 Indirect Address | 7.3.7 Immediate
Data | 7.3.8 Data Address | 7.3.9 Bit Address | 7.3.10 Code Address | 7.3.11
Generic Jumps and Calls

7.4 Assemble-Time Expression Evaluation 160

7.4.1 Number Bases | 7.4.2 Character Strings | 7.4.3 Arithmetic Operators | 7.4.4
Logical Operators | 7.4.5 Special Operators | 7.4.6 Relational Operators | 7.4.7
Expression Examples | 7.4.8 Operator Precedence

7.5 Assembler Directives 164

7.5.1 Assembler State Control | 7.5.2 Symbol Definition | 7.5.3 Storage
Initialization/Reservation | 7.5.4 Program Linkage | 7.5.5 Segment Selection
Directives

7.6 Assembler Controls 173

7.7 Linker Operation 173

7.8 Annotated Example: Linking Relocatable Segments and Modules 176

7.8.1 ECHO.LST | 7.8.2 IO.LST | 7.8.3 EXAMPLE.M51

7.9 Macros 183

7.9.1 Parameter Passing | 7.9.2 Local Labels | 7.9.3 Repeat Operations | 7.9.4
Control Flow Operations |

Summary 1 8 8

Problems 188

x | CONTENTS

CONTENTS | xi

8 8051 C PROGRAMMING 191

8.1 Introduction 191

8.2 Advantages and Disadvantages of 8051 C 191

8.3 8051 C Compilers 192

8.4 Data Types 193

8.5 Memory Types and Models 197

8.6 Arrays 198

8.7 Structures 199

8.8 Pointers 199

8.8.1 A Pointer's Memory Type V 8.8.2 Typed Pointers |
8.8.3 Untyped Pointers

8.9 Functions 202

8.9.1 Parameter Passing | 8.9.2 Return Values

8.10 Some 8051 C Examples 204

8.10.1 The First Program || 8.10.2 Timers | 8.10.3 Serial Port | 8.10.4
Interrupts

Summary 214

Problems 214

9 PROGRAM STRUCTURE AND DESIGN 217

9.1 Introduction 217

9.2 Advantages and Disadvantages of Structured Programming 219

9.3 The Three Structures 220

9.3.1 Statements | 9.3.2 The Loop Structure | 9.3.3 The Choice Structure

9.4 Pseudo Code Syntax 234

9.5 Assembly Language Programming Style 237

9.5.1 Labels | 9.5.2 Comments || 9.5.3 Comment Blocks | 9.5.4 Saving

Registers on the Stack | 9.5.5 The Use of Equates || 9.5.6 The Use of
Subroutines | 9.5.7 Program Organization

9.6 8051 C Programming Style 243

9.6.1 Comments | 9.6.2 The Use of Defines | 9.6.3 The Use of Functions | 9.6.4
The Use of Arrays and Pointers | 9.6.5 Program Organization

Summary 2 4 5

Problems 2 4 5

xii | CONTENTS

10 TOOLS AND TECHNIQUES FOR PROGRAM
DEVELOPMENT 247
10.1 Introduction 247

10.2 The Development Cycle 247

10.2.1 Software Development | 10.2.2 Hardware Development

10.3 Integration and Verification 251

10.3.1 Software Simulation | 10.3.2 Hardware Emulation | 10.3.3
Execution from RAM | 10.3.4 Execution from EPROM | 10.3.5 The
Factory Mask Process

10.4 Commands and Environments 255

Summary 2 5 7

Problems 2 5 7

11 DESIGN AND INTERFACE EXAMPLES 259
11.1 Introduction 259

11.2 The SBC-51 259

11.3 Hexadecimal Keypad Interface 265

11.4 Interface to Multiple 7-Segment LEDs 267

11.5 Interface to Liquid Crystal Displays (LCDs) 273

11.6 Loudspeaker Interface 276

11.7 Nonvolatile RAM Interface 277

11.8 Input/Output Expansion 282

11.8.1 Using Shift Registers | 11.8.2 Using the 8255

11.9 RS232 (EIA-232) Serial Interface 291

11.10 Centronics Parallel Interface 294

11.11 Analog Output 296

11.12 Analog Input 300

11.13 Interface to Sensors 303

11.14 Interface to Relays 306

11.15 Stepper Motor Interface 310
Summary 315

Problems 3 1 5

12 DESIGN AND INTERFACE EXAMPLES IN C 319

12.1 Introduction 319

12.2 Hexadecimal Keypad Interface 319

12.3 Interface to Multiple 7-Segment LEDs 323

12.4 Interface to Liquid Crystal Displays (LCDs) 325

12.5 Loudspeaker Interface 327

12.6 Nonvolatile RAM Interface 329

12.7 Input/Output Expansion 333

12.8 RS232 (EIA-232) Serial Interface 337

12.9 Centronics Parallel Interface 339

12.10 Analog Output 341

12.11 Analog Input 342

12.12 Interface to Sensors 344

12.13 Interface to Relays 346

12.14 Stepper Motor Interface 347
Problems 350

13 EXAMPLE STUDENT PROJECTS 353

13.1 Introduction 353

13.2 Home Security System 353

13.2.1 Project Description | 13 .2.2 System Specifications
13.2.3 System Design | 13.2.4 Software Design

13.3 Elevator System 355

13.3.1 Project Description | 13 .3.2 System Specifications
13.3.3 System Design | 3.3.4 Software Design

13. 4 Tic- Tac- Toe 358

13.4.1 Project Description | 13 .4.2 System Specifications

13.4.3 Software Design

13.5 Calculator 363

13.5.1 Project Description | 13.5.2 System Specifications

13.5.3 Software Design

13. 6 Micromouse 366
13.6.1 Project Description | 13.6.2 System Specifications
13.6.3 System Design | 13.6.4 Software Design

13.7 A Soccer-Playing Robot 369

13.7.1 Project Description | 13.7.2 System Specifications
13.7.3 System Design | 13.7.4 Software Design

13.8 A Smart Card Application 371

13.8.1 Basic Security Concepts | 13.8.2 Project Description |
13.8.3 System Specifications | 13.8.4 Software Design

Summary 373

Problems 374

CONTENTS | xiii

xiv | CONTENTS

14 8051 DERIVATIVES 377

14.1 Introduction 377

14.2 MCS-151TM TM and MCS-251TM TM 377

14.3 Microcontrollers with Flash Memory and NVRAM 377

14.4 Microcontrollers with ADCs and DACs 378

14.5 High-Speed Microcontrollers 378

14.6 Network Microcontrollers 379

14.7 Secure Microcontrollers 379

Summary 379

Problems 380

APPENDICES
A Quick Reference Chart 381

B Opcode Map 383

C Instruction Definitions 385

D Special Function Registers 431

E 8051 Data Sheet 439

F ASCII Code Chart 455

G MON51—An 8051 Monitor Program 457

H A Guide to Keil's µVision2 IDE 499

I A Guide to the 8052 Simulator 507

J The Advanced Encryption Standard 515

K Sources of 8051 Development Products 521

BIBLIOGRAPHY 527

INDEX 529

#include <AT89X51.H>

void main(void)

 {

 while (1) // two machie cycle

 {

 P1_0 = 1; // one machie cycle

 P1_0 = 0; // one machie cycle

 }

 }

#include <AT89X51.H>

void main(void)

 {

 TMOD = 0x02; // timer 0 8 bit auto reload mode

 TH0 = -50; // -50 reload value in TH0

 TR0 = 1;

 while (1) // endless loop

 {

 while (!TF0); // wait for overflow

 TF0 = 0; // clear timer overflow flag

 P1_0 = ~P1_0; // toggle port bit

 }

 }

#include <AT89X51.H>

void main(void)

 {

 TMOD = 0x01; // 16 bit timer mode

 while (1) // endless loop

 {

 TH0 = 0xFE; // -500 (high byte)

 TL0 = 0x0C; // -500 (low byte)

 TR0 = 1; // start timer 0

 while (!TF0); // wait for overflow

 TR0 = 0; // stop timer

 TF0 = 0; // clear timer overflow flag

 P1_0 = ~P1_0; // toggle port bit

 }

 }

#include <AT89X51.H>

#define HUNDRED 100; // 100 *10000 uS = 1 second

#define COUNT -1000;

char pass;

void DELAY(void); // function prototype

void main(void)

 {

 TMOD = 0x01; // use timer 0 in mode 1

 while (1) // endless loop

 {

 while (!P1_6); // wait for 1 input

 while (P1_6); // wait for 0 input

 P1_7 = 1; // turn buzzer on

 DELAY(); // wait 1 second

 P1_7 = 0; // turn buzzer off

 }

 }

void DELAY(void)

 {

 pass = HUNDRED;

 do

 {

 TH0 = COUNT>>8; // -10000 (high byte)

 TL0 = COUNT&0x00FF; // -10000 (low byte)

 TR0 = 1; // start timer 0

 while (!TF0); // wait for overflow

 TF0 = 0; // clear timer overflow flag

 TR0 = 0; // stop timer

 } while (--pass>0);

 }

#include <AT89X51.H>

void SerialInit(void)

 {

 SCON = 0x52; // Serial port mode 1

 TMOD = 0x20; // timer 1 -> mode 2

 TH1 = -13; // reload count for 2400 Baud

 TR1 = 1; // start timer 1

 }

#include <AT89X51.H>

void SerialOut(unsigned char ASCII)

 {

 while (!TI); // TX empty? No: check again

 TI = 0; // Yes: Clear flag

 SBUF = ASCII; // send character

 }

#include <AT89X51.H>

char SerialIn(void)

 {

 while (!RI); // wait for a character

 RI = 0; // Clear flag

 return SBUF; // read dan return a character

 }

#include <AT89X51.H>

// Timer 0 interrupt service routine

void T0ISR (void) interrupt 1

 {

 P1_0 = ~P1_0; // toggle port bit

 }

void main (void)

 {

 TMOD = 0x02; // timer 0, mode 2

 TH0 = -50; // 50 uS delay

 TR0 = 1; // start timer 0

 IE = 0x82; // enable timer 0 interrupt

 while (1); // do nothing

 }

#include <AT89X51.H>

void main (void)

 {

 // setup Timer 0 for mode 2; Timere1 for mode 1

 TMOD = 0x12;

 TH0 = -71; // 7 kHz using timer 0

 TR0 = 1; // start timer 0

 TF1 = 1; // force timer 1 interrupt

 IE = 0x8A; // enbale both timer interrupt

 while (1);

 }

// Timer 0 Interrupt service routine

void T0ISR (void) interrupt 1

 {

 P1_7 = ~P1_7; // toggle port bit

 }

// Timer 1 Interrupt service routine

void T1ISR (void) interrupt 3

 {

 TR1 = 0;

 // define 1 ms (1000 uS) time constant

 TH1 = (-1000)>>8; // high byte of -1000

 TL1 = (-1000)&0X00FF; // low byte of -1000

 TR1 = 1;

 P1_6 = ~P1_6;

 }

#include <AT89X51.H>

char ASCII;

void main (void)

 {

 // Baudrate generator setup

 TMOD = 0x20; // timer 1, mode 2

 TH1 = -26; // 1200 Baud reload value

 TR1 = 1; // start timer

 // Serial Port setup

 // Mode 1

 // set T1 to force firsy interrupt

 // to send first character

 SCON = 0x42; // 0100 0010

 ASCII = 0x20; // start with SPACE (ASCII code 0x20)

 IE = 0x90; // enable Serial Port interrupt

 // endless loop

 while (1); // do nothing

 }

// Serial Port interrupt service routine

void SPISR (void) interrupt 4

 {

 if (ASCII > 0x7E) // Last character of ASCII code?

 ASCII = 0x20; // start over with SPACE (ASCII code 0x20)

 SBUF = ASCII; // send character to serial port

 ASCII++; // next ASCII character

 TI = 0; // clear interrupt flag

 }

#include <AT89X51.H>

// External 0 interrupt service routine

void EX0ISR (void) interrupt 0

 {

 P1_7 = 0; // turn furnace off

 }

// External 1 interrupt service routine

void EX1ISR (void) interrupt 2

 {

 P1_7 = 1; // turn furnace on

 }

void main (void)

 {

 // setup External 0 & 1 interrupt

 IE = 0x85; // enable external interrupt

 IT0 = 1; // negative edge triggered

 IT1 = 1; // negative edge triggered

 // initial furnace setup

 P1_7 = 1; // turn furnace on

 if (!P3_2) // if T > 21 degrees

 P1_7 = 0; // turn furnace off

 // endless loop

 while (1); // do nothing

 }

#include <AT89X51.H>

char pass;

void main (void)

 {

 // setup External 0 & timer interrupt

 IT0 = 1; // negative edge triggered

 TMOD = 11; // time 0 & 1 ->16 bit timer mode

 IE = 0x81; // enable external 0 interrupt only

 // endless loop

 while (1); // do nothing

 }

// External 0 interrupt service routine

void EX0ISR (void) interrupt 0

 {

 pass = 20; // 20 * 5000 uS = 1 second

 TF0 = 1; // force timer 0 interrupt

 TF1 = 1; // force timer 1 interrupt

 ET0 = 1; // begin tone for 1 second

 ET1 = 1; // enable timer interrupts

 } // timer interrupt will do the work

// Timer 0 interrupt service routine

void T0ISR (void) interrupt 1

 {

 TR0 = 0; // stop timer 0

 if (--pass == 0) // if 20th time

 {

 ET0 = 0; // disable tone

 ET1 = 0; // disable itself

 return;

 }

 // continue making tone

 TH0 = (-50000)>>8; // 0.05 second delay

 TL0 = (-50000)&0x00FF;

 TR0 = 1; // start timer 0

 }

// Timer 1 interrupt service routine

void T1ISR (void) interrupt 3

 {

 TR1 = 0; // stop timer 1

 TH1 = (-1250)>>8; // count for 400 Hz

 TL1 = (-1250)&0x00FF;

 P1_7 = ~P1_7; // music maestro

 TR1 = 1; // start timer 1

 }

