

FOURTH EDITION

I. Scott MacKenzie

York University

Raphael C.-W. Phan

Swinburne University of Technology (Sarawak Campus)

Pearson Education International

This book examines the hardware and software features of the MCS-51 family of microcontrollers. The intended audience is college or university students of electronics, computer technology, and electrical or computer engineering, or practicing technicians or engineers interested in learning about microcontrollers.

The means to effectively fulfill that audience's informational needs were tested and refined in the development of this book. In its prototype form, *The 8051 Microcontroller* was the basis of a fifth-semester course for college students in computer engineering. As detailed in Chapter 11, students built an 8051 single-board computer as part of this course. That computer, in turn, has been used as the target system for a final, sixth-semester "project" course in which students design, implement, and document a "product" controlled by the 8051 microcontroller and incorporating original software and hardware.

Because the 8051—like all microcontrollers—contains a high degree of functionality, the book emphasizes architecture and programming rather than electrical details. The software topics are delivered in the context of Intel's assembler (ASM51) and linker/ locator (RL51).

Four new chapters are included in this edition, and the main additional feature is the information about using 8051 C programming as an alternative to the assembly language used in earlier editions. Programming in C allows for structured programs and is especially useful in coding big and complex 8051-based projects.

All examples are annotated to assist both the student and the teacher. The examples begin by stating a problem followed by a straightforward solution. Then, following the solution, there is a discussion that explores the inner workings of the problem and the solution. The approach is to explain and to elaborate, taking into account different perspectives that enter into the example.

It is our view that courses on microprocessors or microcontrollers are inherently more difficult to deliver than courses in, for example, digital systems, because a linear sequence of topics is hard to devise. The very first program that is demonstrated to students brings with it significant assumptions, such as a knowledge of the CPU's programming model and addressing modes, the distinction between an address and the content of an address, and so on. For this reason, a course based on this book should not attempt to follow strictly the sequence presented. Chapter 1 is a good starting point, however. It serves as a general introduction to microcontrollers, with particular emphasis on the distinctions between microcontrollers and microprocessors. Chapter 2 introduces the hardware architecture of the 8051 microcontroller and its counterparts that form the MCS-51 family. Concise examples are presented using short sequences of instructions. Instructors should be prepared at this point to introduce, in parallel, topics from Chapters 3 and 7 and Appendices A and C to support the requisite software knowledge in these examples. Appendix A is particularly valuable, since it contains in a single figure the entire 8051 instruction set.

Chapter 3 introduces the instruction set, beginning with definitions of the 8051's addressing modes. The instruction set has convenient categories of instructions (data transfer, branch, etc.) that facilitate a step-wise presentation. Numerous brief examples demonstrate each addressing mode and each type of instruction.

Chapters 4, 5, and 6 progress through the 8051's on-chip features, beginning with the timers, advancing to the serial port (which requires a timer as a baud rate generator), and concluding with interrupts. The examples in these chapters are longer and more complex than those presented earlier. Instructors are wise not to rush into these chapters; it is essential that students gain solid understanding of the 8051's hardware architecture and instruction set before advancing to these topics.

Many of the topics in Chapter 7 will be covered, by necessity, in progressing through the first six chapters. Nevertheless, this chapter is perhaps the most important for developing in students the potential to undertake large-scale projects. Advanced topics such as assemble-time expression evaluation, modular programming, linking and locating, and macro programming will be a significant challenge for many students. At this point, the importance of hands-on experience cannot be overemphasized. Students should be encouraged to experiment by entering the examples in the chapter into the computer and observing the output and error messages provided by ASM51, RL51, and the object-to-hex conversion utility (OH).

Chapter 8 lays the foundation for C programming the 8051. It highlights differences between this higher-level language compared to assembly language, and differences between conventional C language for computer systems and C for an embedded microcontroller such as the 8051.

Some advanced topics relating to programming methods, style, and the development environment are presented in Chapters 9 and 10. These chapters address larger, more conceptual topics important in professional development environments.

Chapter 11 presents several design examples incorporating selected hardware with supporting software. The software is fully annotated and is the real focus in these examples. The fourth edition includes several additional interfaces: a liquid crystal display (LCD), the 8255, an RS-232 serial interface, a Centronics parallel interface, sensors, relays, and a stepper motor. One of the designs in Chapter 11 is the SBC-51 - the 8051 single-board computer. The SBC-51 can form the basis of a course on the 8051 microcontroller. A short monitor program is included (see Appendix G), which is sufficient to get "up and running." A development environment also requires a host computer, which doubles as a dumb terminal for controlling the SBC-51 after programs have been downloaded for execution.

Many dozens of students have wire-wrapped prototype versions of the SBC during years that Scott has taught 8051-based courses to computer engineering students. Raphael also thanks his Microprocessor Fundamentals, Microprocessor Applications, and Embedded

Microcontrollers students, who enthusiastically undertook assignments and projects based on the 8051.

There is also a new chapter, Chapter 12, on the design and interface examples given in Chapter 11, but with the solutions in C rather than in assembly language.

Chapter 13 presents some more advanced examples of 8051 projects for students and concentrates on the discussion of design choices and the importance of pseudo code in the design process, prior to the actual coding.

Chapter 14 talks briefly about some 8051 derivative devices that are descendants of the 8051 but with enhancements such as increases in speed and memory size, additional built-in peripherals, and enhanced network capabilities and security mechanisms.

Also worth mentioning is the treatment of smart cards and data security in this edition, notably in Chapters 12, 13, and 14, and in Appendix J. This information is included because of the increasing popularity of smart cards using 8-bit microcontrollers such as the 8051 to run security software to protect confidential information.

The book makes extensive use of and builds on Intel's literature on the MCS-51 devices. In particular, Appendix C contains the definitions of all 8051 instructions, and Appendix E contains the 8051 data sheet. Intel's cooperation is gratefully acknowledged.

All the 8051 C examples in this edition have been compiled, debugged, and tested with Keil's ,µision2 IDE, available for download at <u>http://www.keil.com</u>. We also thank the following for their review and invaluable comments, criticism, and suggestions: Dwight Egbert, University of Nevada; Marty Kaliski, Cal Polytech State University; Claude Kansaku, Oregon Institute of Technology; and Ron Tinkham, Santa Fe Community College. Raphael thanks his wife, Grace, for her understanding and patience, and for sacrificing all the nights, weekends, and public holidays to keep him company in writing this edition. In fact, without her gentle nudges, this edition would not have been completed. This edition is dedicated to her.

I. Scott MacKenzie Raphael C.-W. Phan

CONTENTS

1 INTRODUCTION TO MICROCONTROLLERS 1

1.1 Introduction 1 1.2 Terminology 3 1.3 The Central Processing Unit 4 1.4 Semiconductor Memory: RAM and ROM 5 1.5 The Buses: Address, Data, and Control 6 1.6 Input/Output Devices 7 1.6.1 Mass Storage Devices | 1.6.2 Human Interface Devices | 1.6.3 Control/Monitor Devices 1.7 Programs: Big and Small 8 1.8 Micros, Minis, and Mainframes 9 1.9 Microprocessors vs. Microcontrollers 10 1.9.1 Hardware Architecture | 1.9.2 Applications | 1.9.3 Instruction Set Features 1.10 New Concepts 12 Gains and Losses: A Design Example 13 1.11 Problems 14

2 HARDWARE SUMMARY 17

- 2.1 MCS-51 Family Overview 17
- 2.2 Once Around the Pins 18
 2.2.1 Port 0 | 2.2.2 Port 1 | 2.2.3 Port 2 | 2.2.4 Port 3 |
 2.2.5 PSEN (Program Store Enable) | 2.2.6 ALE (Address Latch Enable) | 2.2.7 EA (External Access) | 2.2.8 RST (Reset) | 2.2.9 On-Chip Oscillator Inputs |
 2.2.10 Power Connections
- 2.3 I/O Port Structure 22
- 2.4 Timing and the Machine Cycle 23
- 2.5 Memory Organization 24

	2.5.1 General-Purpose RAM 2.5.2 Bit-Addressable RAM 2.5.3 Register Banks
2.6	Special Function Registers282.6.1 Program Status Word 2.6.2 B Register 2.6.3 Stack Pointer 2.6.4 DataPointer 2.6.5 Port Registers 2.6.6 Timer Registers 2.6.7 Serial Port Registers 2.6.8 Interrupt Registers 2.6.9 Power Control Register
2.7	External Memory362.7.1 Accessing External Code Memory 2.7.2 Accessing External Memory 2.7.3Address Decoding 2.7.4 Overlapping the External Code and Data Spaces
2.8	8032/8052 Enhancements 41
2.9	Reset Operation 43

Problems 44

3 INSTRUCTION SET SUMMARY 49

3.1	Introduction 49
3.2	Addressing Modes503.2.1 Register Addressing 3.2.2 Direct Addressing 3.2.3 IndirectAddressing 3.2.4 Immediate Addressing 3.2.5 Relative Addressing 3.2.6Absolute Addressing 3.2.7 Long Addressing 3.2.8 Indexed Addressing
3.3	Instruction Types593.3.1 Arithmetic Instructions 3.3.2 Logical Instructions 3.3.3 Data TransferInstructions 3.3.4 Boolean Instructions 3.3.5 Program Branching Instructions
Summary	78
Problems	78

4 TIMER OPERATION 87

4.1	Introduction 87
4.2	Timer Mode Register (TMOD)89
4.3	Timer Control Register (TCON)89
4.4	Timer Modes and the Overflow Flag 90
	4.4.1 13-Bit Timer Mode (Mode 0) 4.4.2 16-Bit Timer Mode (Mode 1) 4.4.3 8- Bit Auto-Reload Mode (Mode 2) 4.4.4 Split Timer Mode (Mode 3)
4.5	Clocking Sources 92
	4.5.1 Interval Timing 4.5.2 Event Counting

- 4.6 Starting, Stopping, and Controlling the Timers 93
- 4.7 Initializing and Accessing Timer Registers 954.7.1 Reading a Timer "on the Fly"
- 4.8 Short, Medium, and Long Intervals 96
- 4.9 Producing Exact Frequencies 102
 4.9.1 Eliminating Round-off Errors | 4.9.2 Compensating for Overhead Due to Instructions
- 4.10 8052 Timer 2 105 4.10.1 Auto-Reload Mode | 4.10.2 Capture Mode

4.11 Baud Rate Generation 106

Summary 107

Problems 107

5 SERIAL PORT OPERATION 111

5.1	Introduction 111
5.2	Serial Communication 111
5.3	Serial Port Buffer Register (SBUF) 112
5.4	Serial Port Control Register (SCON) 113
5.5	Modes of Operation 113
	5.5.1 8-Bit Shift Register (Mode 0) 5.5.2 8-Bit UART with Variable Baud Rate (Mode 1) 5.5.3 9-Bit UART with Fixed Baud Rate (Mode 2) 5.5.4 9-Bit UART with Variable Baud Rate (Mode 3)
5.6	Full Duplex Serial Communication: Issues 117
5.7	Initialization and Accessing Serial Port Registers1185.7.1 Receiver Enable 5.7.2 The Ninth Data Bit 5.7.3 Adding a Parity Bit 5.7.4 Interrupt Flags
5.8	Multiprocessor Communications 119
5.9	Serial Port Baud Rates1205.9.1 Using Timer 1 as the Baud Rate Clock
Summar	y 127

Problems 128

6 INTERRUPTS 131

- 6.1 Introduction 131
- 6.2 8051 Interrupt Organization 132
 6.2.1 Enabling and Disabling Interrupts | 6.2.2 Interrupt Priority | 6.2.3 Polling Sequence

x | CONTENTS

6.3	Processing Interrupts	136		
	6.3.1 Interrupt Vectors	3		
6.4	Program Design Using	g Interrupts 137		
	6.4.1 Small Interrupt S	Service Routines 6.4.2 Large Interrupt Service		
	Routines			
6.5	Timer Interrupts	139		
6.6	Serial Port Interrupts	142		
6.7	External Interrupts	143		
6.8	Interrupt Timings	148		
Summary 149				
Proble	Problems 150			

7 ASSEMBLY LANGUAGE PROGRAMMING 151

7.1	Introduction 151		
7.2	Assembler Operation 152 7.2.1 Pass One 7.2.2 Pass Two		
7.3	Assembly Language Program Format1557.3.1 Label Field 7.3.2 Mnemonic Field 7.3.3 Operand Field 7.3.4 CommentField 7.3.5 Special Assembler Symbols 7.3.6 Indirect Address 7.3.7 ImmediateData 7.3.8 Data Address 7.3.9 Bit Address 7.3.10 Code Address 7.3.11Generic Jumps and Calls		
7.4	Assemble-Time Expression Evaluation1607.4.1 Number Bases 7.4.2 Character Strings 7.4.3 Arithmetic Operators 7.4.4Logical Operators 7.4.5 Special Operators 7.4.6 Relational Operators 7.4.7Expression Examples 7.4.8 Operator Precedence		
7.5	Assembler Directives 164 7.5.1 Assembler State Control 7.5.2 Symbol Definition 7.5.3 Storage Initialization/Reservation 7.5.4 Program Linkage 7.5.5 Segment Selection Directives		
7.6	Assembler Controls 173		
7.7	Linker Operation 173		
7.8	Annotated Example: Linking Relocatable Segments and Modules1767.8.1 ECHO.LST 7.8.2 IO.LST 7.8.3 EXAMPLE.M51176		
7.9	Macros 183 7.9.1 Parameter Passing 7.9.2 Local Labels 7.9.3 Repeat Operations 7.9.4 Control Flow Operations		
Summa	ry 188		
Problem	ns 188		

8 8051 C PROGRAMMING 191

8.1	Introduction 191
8.2	Advantages and Disadvantages of 8051 C 191
8.3	8051 C Compilers 192
8.4	Data Types 193
8.5	Memory Types and Models 197
8.6	Arrays 198
8.7	Structures 199
8.8	Pointers1998.8.1 A Pointer's Memory Type V 8.8.2 Typed Pointers 8.8.3 Untyped Pointers
8.9	Functions2028.9.1 Parameter Passing 8.9.2 Return Values
8.10	Some 8051 C Examples 204 8.10.1 The First Program 8.10.2 Timers 8.10.3 Serial Port 8.10.4 Interrupts
Summa	ry 214
D 11	214

Problems 214

9 PROGRAM STRUCTURE AND DESIGN 217

9.1	Introduction 217
9.2	Advantages and Disadvantages of Structured Programming 219
9.3	The Three Structures2209.3.1 Statements 9.3.2 The Loop Structure 9.3.3 The Choice Structure
9.4	Pseudo Code Syntax 234
9.5	Assembly Language Programming Style 237
	9.5.1 Labels 9.5.2 Comments 9.5.3 Comment Blocks 9.5.4 Saving Registers on the Stack 9.5.5 The Use of Equates 9.5.6 The Use of Subroutines 9.5.7 Program Organization
9.6	8051 C Programming Style 243
	9.6.1 Comments 9.6.2 The Use of Defines 9.6.3 The Use of Functions 9.6.4 The Use of Arrays and Pointers 9.6.5 Program Organization
Summa	ary 245

Problems 245

10 TOOLS AND TECHNIQUES FOR PROGRAM DEVELOPMENT 247

10.1	Introduction 247			
10.2	The Development Cycle 247			
	10.2.1 Software Development 10.2.2 Hardware Development			
10.3	Integration and Verification 251			
	10.3.1 Software Simulation 10.3.2 Hardware Emulation 10.3.3			
	Execution from RAM 10.3.4 Execution from EPROM 10.3.5 The			
	Factory Mask Process			
10.4	Commands and Environments 255			
Summary 257				
Problem	is 257			

11 DESIGN AND INTERFACE EXAMPLES 259

11.1	Introduction 259
11.2	The SBC-51 259
11.3	Hexadecimal Keypad Interface 265
11.4	Interface to Multiple 7-Segment LEDs 267
11.5	Interface to Liquid Crystal Displays (LCDs) 273
11.6	Loudspeaker Interface 276
11.7	Nonvolatile RAM Interface 277
11.8	Input/Output Expansion 282
	11.8.1 Using Shift Registers 11.8.2 Using the 8255
11.9	RS232 (EIA-232) Serial Interface 291
11.10	Centronics Parallel Interface 294
11.11	Analog Output 296
11.12	Analog Input 300
11.13	Interface to Sensors 303
11.14	Interface to Relays 306
11.15 Summa	Stepper Motor Interface 310 ry 315

Problems 315

12 DESIGN AND INTERFACE EXAMPLES IN C 319

12.1	Introduction	319		
12.2	Hexadecimal Ke	ypad Interface	319	
12.3	Interface to Mult	tiple 7-Segment LE	EDs	323

12.4	Interface to Liquid Crystal Display	ys (LCDs)	325
12.5	Loudspeaker Interface 327		
12.6	Nonvolatile RAM Interface	329	
12.7	Input/Output Expansion 333	;	
12.8	RS232 (EIA-232) Serial Interface	337	
12.9	Centronics Parallel Interface	339	
12.10	Analog Output	341	
12.11	Analog Input	342	
12.12	Interface to Sensors	344	
12.13	Interface to Relays	346	
12.14 Probler	Stepper Motor Interface ms 350	347	

13 EXAMPLE STUDENT PROJECTS 353

13.1	Introduction 555	
13.2	Home Security System35313.2.1 Project Description 13 .2.2 System Specifications13.2.3 System Design 13.2.4 Software Design	
13.3	Elevator System35513.3.1 Project Description 13 .3.2 System Specifications13.3.3 System Design 3.3.4 Software Design	
13.4	Tic-Tac-Toe 358 13.4.1 Project Description 13 .4.2 System Specifications 13.4.3 Software Design	
13.5	Calculator 363 13.5.1 Project Description 13.5.2 System Specifications 13.5.3 Software Design	
13.6	Micromouse 366 13.6.1 Project Description 13.6.2 System Specifications 13.6.3 System Design 13.6.4 Software Design	
13.7	A Soccer-Playing Robot 369 13.7.1 Project Description 13.7.2 System Specifications 13.7.3 System Design 13.7.4 Software Design	
13.8	A Smart Card Application 371 13.8.1 Basic Security Concepts 13.8.2 Project Description 13.8.3 System Specifications 13.8.4 Software Design	
Summary 373		

Problems 374

14 8051 DERIVATIVES 377

- 14.1 Introduction 377
- 14.2 MCS-151TM $^{\text{TM}}$ and MCS-251TM $^{\text{TM}}$ 377
- 14.3 Microcontrollers with Flash Memory and NVRAM 377
- 14.4 Microcontrollers with ADCs and DACs 378
- 14.5 High-Speed Microcontrollers 378
- 14.6 Network Microcontrollers 379
- 14.7 Secure Microcontrollers 379

Summary 379

Problems 380

APPENDICES

А	Quick Reference Chart	381
В	Opcode Map	383
С	Instruction Definitions	385
D	Special Function Registers	431
E	8051 Data Sheet	439
F	ASCII Code Chart 455	
G	MON51—An 8051 Monitor	Program 457
Н	A Guide to Keil's µVision2	2 IDE 499
Ι	A Guide to the 8052 Simul	ator 507
J	The Advanced Encryption	Standard 515
K	Sources of 8051 Developme	ent Products 521

BIBLIOGRAPHY 527

INDEX 529