Strategic Implementation of Continuous Improvement Approach

Improving the Performance of Small and Medium-Sized Enterprises

Preface

In this competitive world, industrial organizations are focusing to enhance their productivity through system simplification, organization potential, and incremental improvements by using modern techniques like continuous improvement (CI) or KAIZEN. The present book seems to fulfill an obvious need to write for a variety of reasons. Firstly, although the concept of KAIZEN is familiar to engineers, their treatment of it has always been narrowly focused. Secondly, many people, including engineers, are still wrestling with the difficulties associated with the concept, its applications, and implementation on the shop floors. Thirdly, the role of engineers seems to be more and more positively enhanced nowadays. Their involvement is much more widely spread than previously thought. As KAIZEN tends to focus on business organizations as total dynamic systems, its portrayal in the present form should help engineers appreciate the level of penetration and wide implications. KAIZEN is an evolutionary but umbrella concept that covers all aspects of business units.

KAIZEN is a means to drive the business rather than just being a loose input. It is unfortunate that cynics who consider CI to be just a craze have failed to visualize the evolutionary process by which considerable growth in possible.

This book aims to present a comprehensive approach which is intended to broaden the knowledge of engineers and others concerned with KAIZEN and its implications on their working environment. It is also intended for students and researchers who have to wrestle with this concept in the course of their various studies.

Nonetheless, the authors are grateful to all the people whose ideas have helped shed some light on specific areas of KAIZEN and whose contributions in this field are valued and greatly appreciated by all those who aspire to progress and advancement.

The authors are also grateful to their parents for their support and understanding at all stages of writing this book. Finally, the authors devote this work to THE ALMIGHTY GOD, the only one who has granted them the willingness and ability to successfully complete this book.

Jalandhar, Punjab, India Ludhiana, Punjab, India Jagdeep Singh Harwinder Singh

Contents

1	Intr	oduction	1		
	1.1	Meaning and History of KAIZEN Approach	1		
	1.2	KAIZEN and Innovation	2		
	1.3	SMEs in Indian Context	3		
	1.4	Definitions of Continuous Improvement Approach	5		
	1.5	Different CI Strategies	6		
2	Lite	rature Review	9		
	2.1	Introduction	9		
	2.2	Ongoing Continuous Improvement Process	9		
	2.3	PDCA and SDCA Cycles of Continuous Improvement	11		
	2.4	Principles of CI Approach	11		
	2.5	Literature Survey	13		
		2.5.1 Literature Related to Conceptual Framework	14		
		2.5.2 Literature Related to Case Studies	15		
		2.5.3 Literature Survey Related to Surveys/Empirical			
		Research	19		
	2.6	Benefits of Implementing CI Approach	23		
	2.7	Concluding Remarks			
3	Des	ign of Study	25		
	3.1	Introduction	25		
	3.2	Problem Formulation	25		
	3.3	Phases of Research	26		
		3.3.1 Identification of Industrial Units	26		
		3.3.2 Options Field Methodology	27		
		3.3.3 Options Profile Methodology	27		
		3.3.4 Analytic Hierarchy Process	27		
		3.3.5 Structural Equation Modeling	28		
	3.4	Overall Equipment Effectiveness (OEE)	28		

viii Contents

	3.5	Objectives and Issues of the Study	29
		3.5.1 Objectives of the Study	29
		3.5.2 Issues of the Study	29
	3.6	Overall Methodology	29
4	Anal	lysis of Preliminary Data	31
	4.1	Introduction	31
	4.2	Methodology	31
		4.2.1 Creation of Industry Database	31
		4.2.2 Pilot Testing of Questionnaire	32
		4.2.3 Filling of Questionnaire	32
		4.2.4 Hypotheses for the Study: From the Literature	
		the Following Hypotheses Have Been Framed	33
	4.3	Level of Usage of CI Strategies	34
		4.3.1 Discussion of Level of Usage of Eight (08)	
		Main CI Strategies	34
	4.4	Level of Usage of Sub-strategies of CI Approach	36
		4.4.1 Discussion of Level of Usage of Sub-strategies	
		of CI Approach	36
	4.5	Input and Output Variables (CI Strategies and Performance	
		Parameters)	36
		4.5.1 Reliability Analysis of Input and Output Factor	36
	4.6	Level of Importance of Sub-strategies of CI Approach	37
		4.6.1 Result Discussion of Level of Importance	
		of Strategic Implementation of CI Approach	39
	4.7	Correlation Between Input and Output Variables	
		(Validation of Hypotheses: H1)	39
		4.7.1 Result Discussion of Correlation Between	
		Input and Output Factors	40
	4.8	Role of Key Enablers in Improving the Performance	
		of SMEs	42
	4.9	Level of Importance of Enablers and Sub-enablers	
			43
		4.9.1 Result Discussion of Level of Importance	
		of Key Enablers and Sub-enablers of CI Approach	43
	4.10	Correlation Between CI Enablers and Manufacturing	
		Performance Parameters (Validation of Hypotheses: H2)	44
		4.10.1 Result Discussion of Correlation Between	
		CI Enablers and Manufacturing	
		Performance Parameters	46
	4.11	Benefits of CI Approach	46
		4.11.1 Result Discussion of the Findings	
		for Important Benefits of CI Approach	46

Contents ix

	4.12	Validation of Hypothesis H3: Improvement	
		in Manufacturing Performance Is a Function	
		of Experience Gained by Manufacturing Organizations	
		over an Extended Time Period	48
			50
	4.13	Important Barriers in Implementing CI Strategies	51
		4.13.1 Result Discussion of Important Barriers	
		in Implementing CI Strategies	52
	4.14	Concluding Remarks	52
5	Case	e Studies	53
	5.1	Introduction	53
	5.2	Case Study I: Highways Industries Limited,	
			53
			53
	5.3	KIP1: To Reduce Quality Rejection of Crankshaft P19	
			54
			54
		5.3.2 Measure Phase	55
		5.3.3 Analyze Phase	56
			56
		5.3.5 Control Phase	56
	5.4	KIP2: To Reduce Setup Time Using Single-Minute	
			59
			59
			62
		5.4.3 OEE Improvement and Validation	
			62
	5.5		62
			62
			64
		5.5.3 Analyze Phase	65
			67
			67
	5.6		68
	5.7		69
	5.8		70
	5.9	SAP-LAP Analysis for Case Study I	70
			70
			70
			71
			71
			71
			71

x Contents

	5.10		Study II: Farm Parts Industries Ltd., Ludhiana	72
			Introduction to the Industry and Company Strategy	72
	5.11		trix for Policy Deployment	72
		5.11.1	KIP 1: To Achieve 63% OEE	76
		5.11.2	KIP2: To Reduce Rejections to 2000 ppm	76
		5.11.3	KIP3: To Improve the Breakdown Hours (Table 5.21)	77
		5.11.4	KIP4: To Increase MTBF of Various Machines	78
		5.11.5	Increase in MTBF and Validation of Increase	
			in MTBF	81
		5.11.6	KIP5: To Increase Operator Efficiency	
			by Technical Training	81
	5.12	Maint	enance Job Card	82
			up of OEE and Rejection	82
			Cause-Wise Breakup for OEE: The Percentage	
			Breakup of CNC Machine Is Given Below	82
		5.13.2	Cause-Wise Breakage of Rejection	83
	5.14		LAP on Case Study III	83
			Situation	83
			Actors.	83
			Process	84
			Learning Issues	84
			Actions Suggested	84
			Performance Expected	84
	5.15		arison of Case Studies	85
6	•		ng of Data	87
	6.1		uction	87
	6.2		odology Adopted	87
		6.2.1	Step 6.2.1: Degree of Preference	87
		6.2.2	Step 6.2.2: Normalized Matrix	0.0
			of Different Sub-objectives	88
		6.2.3	Step 6.2.3: Do Consistency Check	88
		6.2.4	Step 6.2.4: Priority Weights for Alternatives	
			with Respect to Attribute	91
	6.3		romise Ranking Method	91
		6.3.1	Step 6.3.1: Determine the Values of <i>Ei</i> and <i>Fi</i>	92
		6.3.2	Step 6.3.2: Calculation of <i>Pi</i> Values	92
	6.4		odology for Modeling	93
		6.4.1	Synthesis of Learning Issues	93
	6.5		ent Methods for Modeling	95
		6.5.1	Options Field Methodology (OFM)	95
		6.5.2	Formation of Categories.	96
		6.5.3	Options Profile Methodology (OPM)	98
		6.5.4	Fuzzy Set Theory	99

Contents xi

	6.6	.6 Structural Equation Modeling	
		6.6.1 Measurement Model for Improving	
		the Performance of SMEs	106
		6.6.2 Validation of Hypotheses Framed	107
7	Con	iclusions, Limitations, and Scope for Future Work	111
	7.1	Conclusions	111
		7.1.1 Conclusions from the Survey	111
		7.1.2 Conclusions from the Case Studies	112
		7.1.3 Conclusions from Implementation Plan	113
	7.2	Limitations of the Study	114
	7.3		114
App	endix	x: KAIZEN Questionnaire	115
Bib	liogra	nphy	123

About the Authors

Jagdeep Singh holds a bachelor's degree in mechanical engineering, master's degree in production engineering, and Ph.D. in mechanical engineering. The author has published a good number of research papers in international and national journals. The author is working as an assistant professor in the Industrial and Production Engineering Department at Dr B.R. Ambedkar NIT Jalandhar, Punjab. The field of interest of the author is management of production systems and operations management.

Harwinder Singh holds a bachelor's degree in mechanical engineering, master's degree in production engineering, master's degree in business administration, and Ph.D. in mechanical engineering. The author has published a good number of research papers in international and national journals. The author is working as a professor in the Department of Mechanical Engineering at Guru Nanak Dev Engineering College, Ludhiana, Punjab. The field of interest of the author is management of production systems, operations management, and decision making.

Abstract

Continuous improvement (CI) is a technique to improve the performance at every level of operation, in every functional area of an organization, by maximum utilization of available resources. It is a management approach that focus on enhancement of manufacturing processes through incremental changes. It is a management approach of identifying and eliminating waste (all non-value-added activities) through incremental improvements by reducing the time associated with setup in pursuit of perfection. CI programs have evolved from traditional manufacturing focused systems that concentrate on the production line to reduce waste and improve the product quality, into comprehensive, systematic methodologies that is focused on the entire organization. To achieve excellence in every sphere of the world is not a fortnightly process. If it is not taken care of, the competencies gained by the organization might fade away with the passage of time. The organization must consistently send a strong message to employees that continuous improvement strategies are the core values of the company. Different strategies of CI approach are being used by the manufacturing organizations to improve the performance of current manufacturing system processes.

The present study is an attempt to check the performance of KAIZEN technique in small—medium enterprises (SMEs) of Northern India. A survey of 101 SMEs has been performed in Northern India. The level of usage, level of importance of different strategies, level of importance of different enablers, and the important benefits achieved from KAIZEN implementation have been identified. Correlation analysis shows significant relationship between different CI strategies and benefits of CI approach. SMEs use total quality management (TQM) strategies to its highest maturity level. Two case studies have been performed to ascertain the important benefits occurred after CI strategic implementation. CI strategies including value stream analysis, redesign, suggestion system, failure mode effect analysis, process flow mapping, recognition, minor stoppage elimination, and customer quality, cost and delivery analysis (QCD) through holistic CI implementation program can significantly contribute in harnessing incremental improvements in the organization, thereby providing a sound platform for the organization to compete effectively in the dynamic environment. CI activities through strategic implementation can

contribute towards quality enhancements by eliminating deteriorations in production systems but also have negative impact on the safety-related issues of employees. The study critically reveals the contributions of CI strategic implementation for achieving manufacturing performance improvement through quality initiatives in the SMEs of Northern India. The study reported in this work has revealed that there is a benefit of CI strategic implementation in the Indian industry and there is a need to develop an implementation plan to foster CI implementation practices and procedures. Overall equipment effectiveness (OEE) parameters seek to encourage the setting of ambitious, but attainable, realistic goals for raising the OEE by focusing on the losses related to availability, performance, and quality of a system. It prepares the plant to meet the challenges of competitive manufacturing by adoption and implementation of a well-conceived plan with the help of preventive maintenance teams for effective equipment maintenance.

Strategic implementation of CI approach systematically aims at improving the OEE using setup time reduction. Six Sigma approach is helpful in achieving process improvement and thereby achieving different goals of productivity and the organization. The successful implementation of single-minute exchange of die (SMED) and other CI strategies are the key to a competitive advantage for any manufacturer that produces, prepares, processes, or packages a variety of products. The reduction of defective part million opportunity (DPMO) level from 75655.25 to 455.26 has been obtained to enhance the performance of manufacturing unit. The net savings of 17.65 lacs per year have been obtained after the successful implementation of the DMAIC approach. Six Sigma provides an effective mechanism to focus on customer requirements, through improvement of process quality. CI has proven to be a means to supplement the concerted improvement efforts by addressing equipment and other related problems that affect the performance of the manufacturing system.

CI implementation in the enterprise has demonstrated the effective realization of optimized equipment effectiveness, minor stoppage elimination, and promotion of autonomous operator maintenance through day-to-day activities involving the total workforce. CI has helped the enterprise in improving the synergy between the production department and rest of the improvement functions, resulting in elimination of defects, improved process reliability like OEE, affecting cost reductions thereby strengthening sustainability efforts of the organization to meet cut-throat global competition for business excellence. It therefore becomes pertinent for the successful organizations to integrate improvement initiatives into their manufacturing strategy for realization of organizational objectives. The successful CI implementation program can facilitate the manufacturing organization's quest for achieving enhanced manufacturing performance leading to the firm's performance improvement. Thus, in today's competitive environment CI approach has proven to be an effective global strategy, for Indian organizations, rendering firms a consistent enhancement of performance in terms of achieving manufacturing performance improvement.

Abstract xvii

Implementation plan reveals that the implementation of CI strategies leads to the success of the organization by focusing on the losses related to availability, performance, and quality of a system. Structural equation modeling (SEM) shows dependency of one initiative on other initiative of CI approach. SEM is a powerful tool that enables researchers to go beyond factor analysis into the arena of determining whether one set of unobserved constructs is related to another set of constructs. Customer and supplier relations play a significant role in improving the performance of the firm and hence improve the manufacturing system processes showing high positive correlation. SEM investigates the impact of three sets of antecedent factors on the firm performance. Customer satisfaction regarding cost, delivery, and quality plays an role important role in improving the firm performance by obtaining different benefits including organization achievement, increased productivity, improved quality, reducing cost, improving safety, and timely delivery of the product manufactured.