WASTEWATER MICROBIOLOGY

Third Edition

GABRIEL BITTON

Department of Environmental Engineering Sciences University of Florida, Gainesville, Florida

CONTENTS

	Preface	ix
	Preface to the First Edition	xi
	Preface to the Second Edition	xiii
PAF	RT A. FUNDAMENTALS OF MICROBIOLOGY	1
1.	The Microbial World	3
2.	Microbial Metabolism and Growth	45
3.	Role of Microorganisms in Biogeochemical Cycles	75
PAF	RT B. PUBLIC HEALTH MICROBIOLOGY	107
4.	Pathogens and Parasites in Domestic Wastewater	109
5.	Microbial Indicators of Fecal Contamination	153
6.	Water and Wastewater Disinfection	173
PAF	RT C. MICROBIOLOGY OF WASTEWATER TREATMENT	211
7.	Introduction to Wastewater Treatment	213
8.	Activated Sludge Process	225
9.	Bulking and Foaming in Activated Sludge Plants	259
10.	Processes Based on Attached Microbial Growth	291
11.	Waste Stabilization Ponds	307
12.	Sludge Microbiology	321
13.	Anaerobic Digestion of Wastewater and Biosolids	345
14.	Biological aerosols and Bioodors from Wastewater Treatment Plants	371
	Treatment Flants	371
PAF	RT D. MICROBIOLOGY OF DRINKING WATER TREATMENT	395
15.	Microbiological Aspects of Drinking Water Treatment	397
16.	Microbiological Aspects of Drinking Water Distribution	419
17.	Bioterrorism and Drinking Water Safety	457
PAF	RT E. BIOTECHNOLOGY IN WASTEWATER TREATMENT	471
18.	Pollution Control Biotechnology	473
		vii

CONT	ENTS
------	------

PAF	RT F. FATE AND TOXICITY OF CHEMICALS IN WASTEWATER TREATMENT PLANTS	499
19.	Fate of Xenobiotics and Toxic Metals in Wastewater Treatment Plants	501
20.	Toxicity Testing in Wastewater Treatment Plants Using Microorganisms	527
PAF	RT G. MICROBIOLOGY AND PUBLIC HEALTH ASPECTS OF WASTEWATER EFFLUENTS AND BIOSOLIDS	
	DISPOSAL AND REUSE	545
21.	Public Health Aspects of Wastewater and Biosolids Disposal on Land	547
22.	Public Health Aspects of Wastewater and Biosolids Disposal	
23.	in the Marine Environment Wastewater Reuse	573 589
	References	609
	Index	729

viii

PREFACE

I would like to mention some of the changes and additions that have been included in the third edition of *Wastewater Microbiology*. In general, every chapter of the book has been revised (up to July 2004) to include the latest developments in the field, and I will highlight only the major ones.

A review of the most important molecular techniques has been added to Chapter 1, while the most recent methodology for measuring microbial biomass in environmental samples is described in Chapter 2. New developments in enhanced biological phosphorus removal (EBPR) are covered in Chapter 3. Chapter 4 covers new findings on old and emerging (e.g., *Helicobacter pylori, Cyclospora*, Microsporidia) microbial pathogens and parasites. Much progress has been made concerning the detection of *Cryptosporidium* and *Giardia* in environmental samples, including wastewater. The improved methodology is also covered in Chapter 4. As regards disinfection of water and wastewater, research efforts are now focusing on UV disinfection in industrialized countries and on the use of solar radiation in developing countries (Chapter 6).

Armed with new molecular tools and microsensor/microelectrode technology, investigators are making progress in understanding the microbial ecology and the surface properties of activated sludge flocs. The methodology used is similar to that used in biofilms. These advances will help us to better understand the flocculation process in activated sludge (Chapter 8). Concerning bulking and foaming in activated sludge plants, most of the recent studies have focused on the characterization and phylogeny of filamentous microorganisms (Chapter 9).

In the last few years we have witnessed an increased interest in biofilm microbiology. Biofilms develop on biological and nonbiological surfaces and are ubiquitous in natural aquatic environments and engineered systems (e.g., fixed-film bioreactors). Their beneficial role in fixed-film bioreactors has been known for years (chapter 10). However, the impact of biofilms on drinking water distribution systems has been the subject of increased research activity around the world (chapter 16). This interest is further heightened by the findings that biofilms are the source of medical problems such as dental plaques or colonization of artificial implants, leading to increased rate of infection in patients. The discovery of communication among members of the biofilm community (i.e., quorum sensing using signaling chemicals such as homoserine lactones) may lead to potential means of controlling biofouling of surfaces.

Chapter 13 shows that new procedures, particularly molecular techniques, have helped shed light on the phylogeny of methanogens and other Archaea.

Part D (Microbiology of Drinking Water Treatment) of the third edition now comprises three chapters instead of two as in the second edition. The third chapter (Chapter 17) introduces the reader to bioterrorism microbial agents and their potential impact on drinking water safety.

In Chapter 18 (Biotechnology of Waste Treatment: Pollution Control Biotechnology), I have added some information about membrane bioreactors (MBR technology), while in Chapter 21, new developments in the area of bioremediation have been included. Finally, in Chapter 23 (Wastewater Reuse), I have made an attempt to introduce the reader to the microbiological aspects of the treatment of wastewater effluents by natural and constructed wetlands and by the use of attached algae for polishing wastewater effluents.

Since the World Wide Web is increasingly becoming an integral part of the learning process at education institutions, I have added some Web resources to each chapter of the book to help students increase their knowledge or satisfy their curiosity about topics discussed in a given chapter. I have also included questions at the end of each chapter. These questions can help students in studying the material or can be used as homework.

I thank Jorge Gomez Moreno for drawing several of the new figures for the third edition of this book. His attention to detail is much appreciated.

I am grateful to Nancy, Julie, Natalie, Jonathan, my entire family, and friends for their love and moral support.

GABRIEL BITTON Gainesville, Florida