FAO ANIMAL PRODUCTION AND HEALTH guidelines

THE FEED ANALYSIS LABORATORY: ESTABLISHMENT AND QUALITY CONTROL

Setting up a feed analysis laboratory, and implementing a quality assurance system compliant with ISO/IEC 17025:2005

Authors

L.H. de Jonge Animal Nutrition Group Wageningen University The Netherlands

F.S. Jackson Manager, Nutrition Laboratory Massey University New Zealand

Editor

Harinder P.S. Makkar

Contents

Contents	iii
Foreword	vii
Abbreviations	viii
Acknowledgements	ix
CHAPTER 1 Introduction	1
1.1 Background	1
1.2 Aim	1
1.3 A road map of the document	2
CHAPTER 2 Development of a business plan	3
2.1 Introduction	3
2.2 Approach for development of a business plan	3
2.2.1 Type of laboratory to be developed	3
2.2.2 Market analysis for potential customers and their needs	4
2.2.3 Types of analyses	6
2.2.4 Market analysis for available laboratory services	6
2.2.5 Evaluation and decision making	7
CHAPTER 3	44
Setting up and running the laboratory	11
3.1 Introduction	11
3.2 Physical realization of the laboratory	11
3.2.1 The analytical process	12
3.2.2 Methods to be made operational	13
3.2.3 Building and facilities	18
3.2.4 Equipment	24
3.2.5 Organizational structure and responsibilities of personnel	26
3.3 Realization of the laboratory – Procedures	27
3.4 Continuity and improvement of the laboratory	28

CHAPTER 4 Implementation of a Quality Management System and the	
road to accreditation	31
4.1 Introduction	31
4.2 Basic principles of quality	31
4.2.1 Technical level	32
4.2.2 Organization level	37
4.2.3 Commercial level	40
4.3 Reading and interpretation of ISO/IEC 17025:2005.	41
4.4 A road map for building a high quality system	50
4.5 First situation: Routine stand-alone feed analysis laboratory	50
4.5.1 Introduction	50
4.5.2 Initial phase	51
4.5.3 First year	52
4.5.4 Second year	52
4.5.5 Third year	54
4.5.6 Fourth year	56
4.6 Second situation: Routine laboratory connected to a feed manufacturer	58
4.7 Third situation: Laboratory as part of a research organization	59
4.8 Fourth situation: Government or reference laboratories	60
Sources used	63
APPENDIX A Ensuring quality analytical performance	65
APPENDIX B First line of quality control and the use of Shewhart charts	73
APPENDIX C Validation requirements	77
APPENDIX D Calculation of uncertainty of measurement	79
APPENDIX E An example of technical records for a determination	81

APPENDIX I Trend analysis	89
APPENDIX H Procedure for traceability of volumetric calibration	87
APPENDIX G An example of a training record	85
APPENDIX F An example of a maintenance and calibration document	83

Foreword

Feed has a fundamental influence on productivity, health and welfare of the animal. Feed quality influences animal product quality and safety, and the environment. To achieve balance among these parameters, the animal's nutritional requirements must be properly met.

Confidence in the nutritional information on any feed or feed ingredient provided by suppliers is critical for buyers because it provides a guarantee of feed quality. Current reports from many countries suggest that manufacturers and buyers do not always have confidence in the data provided from non-accredited laboratories, which can negatively affect market prices and international trade. It is therefore important that laboratories work towards adopting a Quality Assurance System for all of their routine feed analyses. This has been detailed in two FAO *Animal Production and Health Manuals:* No. 14, *Quality Assurance for Animal Feed Analysis Laboratories*, and No. 16, *Quality Assurance for Microbiology in Feed Analysis Laboratories*.

Not only must the methods used be of an internationally recognized standard, but all steps in the process, from the initial sample submission through to the final report preparation, must be traceable. An internationally accredited laboratory gives producers and buyers of feed a great deal of confidence in the data they receive. This provides wider market possibilities for feed manufacturers. Also, the right nutritional information about feed ingredients and feeds will enable preparation of balanced diets that meet the nutritional requirements to match the physiological stage of animals and to satisfy the farmer's husbandry objectives.

This document presents a step-by-step process to guide the laboratory management team through the various stages, from planning the feed analysis laboratory building and layout, to hiring suitable staff and choosing which methods to set up, with appropriate equipment requirements. A detailed guideline for initiating a Quality Management System starts with validation of methods, personnel and training; addresses systematic equipment maintenance, calibration, proficiency testing and quality control procedures; and final reporting and auditing, all culminating in a final accreditation inspection within an estimated four-year time frame.

The authors have extensive laboratory experience as well as personal experience with successfully bringing non-accredited laboratories up to an internationally recognized accreditation standard. The content of the document has been peer reviewed by a large number of experts and their suggestions incorporated. The guidelines presented will assist governments and feed manufacturers, as well as a range of institutions, including research and education, to work towards establishment of a feed analysis laboratory – whether as an integral unit or as an independent commercial laboratory – with internationally recognized accreditation.

Berhe G. Tekola

Director

Animal Production and Health Division