Molecular Cell Biology

EIGHTH EDITION

Harvey Lodish Arnold Berk Chris A. Kaiser Monty Krieger Anthony Bretscher Hidde Ploegh Angelika Amon Kelsey C. Martin

CONTENTS IN BRIEF

Part I Chemical and Molecular Foundations

- 1 Molecules, Cells, and Model Organisms 1
- 2 Chemical Foundations 31
- 3 Protein Structure and Function 67
- 4 Culturing and Visualizing Cells 129

Part II Biomembranes, Genes, and Gene Regulation

- 5 Fundamental Molecular Genetic Mechanisms 167
- 6 Molecular Genetic Techniques 223
- 7 Biomembrane Structure 271
- 8 Genes, Genomics, and Chromosomes 301
- 9 Transcriptional Control of Gene Expression 353
- 10 Post-transcriptional Gene Control 417

Part III Cellular Organization and Function

- 11 Transmembrane Transport of Ions and Small Molecules 473
- 12 Cellular Energetics 513
- 13 Moving Proteins into Membranes and Organelles 583
- 14 Vesicular Traffic, Secretion, and Endocytosis 631
- 15 Signal Transduction and G Protein–Coupled Receptors 673
- 16 Signaling Pathways That Control Gene Expression 719
- 17 Cell Organization and Movement I: Microfilaments 775
- 18 Cell Organization and Movement II: Microtubules and Intermediate Filaments 821
- 19 The Eukaryotic Cell Cycle 873

Part IV Cell Growth and Differentiation

- 20 Integrating Cells into Tissues 921
- 21 Stem Cells, Cell Asymmetry, and Cell Death 975
- 22 Cells of the Nervous System 1025
- 23 Immunology 1079
- 24 Cancer 1135

CONTENTS

Preface

Part I Chemical and Molecular Foundations

vii

1 Molecules, Cells, and Model Organisms	1
1.1 The Molecules of Life	5
Proteins Give Cells Structure and Perform Most Cellular Tasks	7
Nucleic Acids Carry Coded Information for Making Proteins at the Right Time and Place	7
Phospholipids Are the Conserved Building Blocks of All Cellular Membranes	9
1.2 Prokaryotic Cell Structure and Function	10
Prokaryotes Comprise Two Kingdoms: Archaea and Eubacteria	10
Escherichia coli Is Widely Used in Biological Research	11
1.3 Eukaryotic Cell Structure and Function	12
The Cytoskeleton Has Many Important Functions	12
The Nucleus Contains the DNA Genome, RNA Synthetic Apparatus, and a Fibrous Matrix	12
Eukaryotic Cells Contain a Large Number of Internal Membrane Structures	14
Mitochondria Are the Principal Sites of ATP Production in Aerobic Cells	18
Chloroplasts Contain Internal Compartments in Which Photosynthesis Takes Place	18
All Eukaryotic Cells Use a Similar Cycle to Regulate Their Division	18
1.4 Unicellular Eukaryotic Model Organisms	19
Yeasts Are Used to Study Fundamental Aspects of Eukaryotic Cell Structure and Function	19
Mutations in Yeast Led to the Identification of Key Cell Cycle Proteins	21

Studies in the Alga <i>Chlamydomonas reinhardtii</i> Led to the Development of a Powerful Technique to Study Brain Function	22
The Parasite That Causes Malaria Has Novel Organelles That Allow It to Undergo a Remarkable Life Cycle	22
1.5 Metazoan Structure, Differentiation, and Model Organisms	24
Multicellularity Requires Cell-Cell and Cell-Matrix Adhesions	24
Epithelia Originated Early in Evolution	24
Tissues Are Organized into Organs	24
Genomics Has Revealed Important Aspects of Metazoan Evolution and Cell Function	24
Embryonic Development Uses a Conserved Set of Master Transcription Factors	25
Planaria Are Used to Study Stem Cells and Tissue Regeneration	27
Invertebrates, Fish, Mice, and Other Organisms Serve as Experimental Systems for Study of Human Development and Disease	28
Genetic Diseases Elucidate Important Aspects of Cell Function	28
The Following Chapters Present Much Experimental Data That Explains How We Know What We Know About Cell Structure and Function	29
2 Chemical Foundations	31
2.1 Covalent Bonds and Noncovalent Interactions	33
2.1 Covalent Bonds and Noncovalent Interactions The Electronic Structure of an Atom Determines the Number and Geometry of the Covalent Bonds It Can Make	33
2.1 Covalent Bonds and Noncovalent Interactions The Electronic Structure of an Atom Determines the Number and Geometry of the Covalent Bonds It Can Make Electrons May Be Shared Equally or Unequally in Covalent Bonds	33 33 34
2.1 Covalent Bonds and Noncovalent Interactions The Electronic Structure of an Atom Determines the Number and Geometry of the Covalent Bonds It Can Make Electrons May Be Shared Equally or Unequally in Covalent Bonds Covalent Bonds Are Much Stronger and More Stable Than Noncovalent Interactions	33 33 34 36
 2.1 Covalent Bonds and Noncovalent Interactions The Electronic Structure of an Atom Determines the Number and Geometry of the Covalent Bonds It Can Make Electrons May Be Shared Equally or Unequally in Covalent Bonds Covalent Bonds Are Much Stronger and More Stable Than Noncovalent Interactions Ionic Interactions Are Attractions Between Oppositely Charged Ions 	33 33 34 36 36
 2.1 Covalent Bonds and Noncovalent Interactions The Electronic Structure of an Atom Determines the Number and Geometry of the Covalent Bonds It Can Make Electrons May Be Shared Equally or Unequally in Covalent Bonds Covalent Bonds Are Much Stronger and More Stable Than Noncovalent Interactions Ionic Interactions Are Attractions Between Oppositely Charged Ions Hydrogen Bonds Are Noncovalent Interactions That Determine the Water Solubility of Uncharged Molecules 	333 333 34 36 36 37

Caused by Transient Dipoles

38

The Hydrophobic Effect Causes Nonpolar Molecules to Adhere to One Another	39
Molecular Complementarity Due to Noncovalent Interactions Leads to a Lock-and-Key Fit Between	40
Biomolecules	40
2.2 Chemical Building Blocks of Cells	41
Amino Acids Differing Only in Their Side Chains Compose Proteins	42
Five Different Nucleotides Are Used to Build Nucleic Acids	45
Monosaccharides Covalently Assemble into Linear and Branched Polysaccharides	46
Phospholipids Associate Noncovalently to Form the Basic Bilayer Structure of Biomembranes	48
2.3 Chemical Reactions and Chemical Equilibrium	51
A Chemical Reaction Is in Equilibrium When the Rates of the Forward and Reverse Reactions Are Equal	52
The Equilibrium Constant Reflects the Extent of a Chemical Reaction	52
Chemical Reactions in Cells Are at Steady State	52
Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules	53
Biological Fluids Have Characteristic pH Values	54
Hydrogen Ions Are Released by Acids and Taken Up by Bases	55
Buffers Maintain the pH of Intracellular and Extracellular Fluids	55
2.4 Biochemical Energetics	57
Several Forms of Energy Are Important in Biological Systems	57
Cells Can Transform One Type of Energy into Another	58
The Change in Free Energy Determines If a Chemical Reaction Will Occur Spontaneously	58
The $\Delta G^{\circ\prime}$ of a Reaction Can Be Calculated from Its \mathbf{K}_{eq}	60
The Rate of a Reaction Depends on the Activation Energy Necessary to Energize the Reactants into a Transition State	60
Life Depends on the Coupling of Unfavorable Chemical Reactions with Energetically Favorable Ones	61
Hydrolysis of ATP Releases Substantial Free Energy and Drives Many Cellular Processes	61
ATP Is Generated During Photosynthesis and Respiration	62

NAD ⁺ and FAD Couple Many Biological Oxidation and Reduction Reactions	63
3 Protein Structure and Function	67
3.1 Hierarchical Structure of Proteins	69
Arrangement of Amino Acids	69
Secondary Structures Are the Core Elements of Protein Architecture	70
Tertiary Structure Is the Overall Folding of a Polypeptide Chain	72
There Are Four Broad Structural Categories of Proteins	72
Different Ways of Depicting the Conformation of Proteins Convey Different Types of Information	74
Structural Motifs Are Regular Combinations of Secondary Structures	75
Domains Are Modules of Tertiary Structure	76
Multiple Polypeptides Assemble into Quaternary Structures and Supramolecular Complexes	78
Comparing Protein Sequences and Structures Provides Insight into Protein Function and Evolution	79
3.2 Protein Folding	81
Planar Peptide Bonds Limit the Shapes into Which Proteins Can Fold	81
The Amino Acid Sequence of a Protein Determines How It Will Fold	81
Folding of Proteins in Vivo Is Promoted by Chaperones	82
Protein Folding Is Promoted by Proline Isomerases	86
Abnormally Folded Proteins Can Form Amyloids That Are Implicated in Diseases	87
3.3 Protein Binding and Enzyme Catalysis	89
Specific Binding of Ligands Underlies the Functions of Most Proteins	89
Enzymes Are Highly Efficient and Specific Catalysts	90
An Enzyme's Active Site Binds Substrates and Carries Out Catalysis	91
Serine Proteases Demonstrate How an Enzyme's Active Site Works	92
Enzymes in a Common Pathway Are Often Physically Associated with One Another	96
3.4 Regulating Protein Function	97
Regulated Synthesis and Degradation of Proteins Is a Fundamental Property of Cells	97
The Proteasome Is a Molecular Machine Used to Degrade Proteins	97

Ubiquitin Marks Cytosolic Proteins for Degradation in Proteasomes	99
Noncovalent Binding Permits Allosteric, or Cooperative, Regulation of Proteins	100
Noncovalent Binding of Calcium and GTP Are Widely Used as Allosteric Switches to Control Protein Activity	101
Phosphorylation and Dephosphorylation Covalently Regulate Protein Activity	102
Ubiquitinylation and Deubiquitinylation Covalently Regulate Protein Activity	103
Proteolytic Cleavage Irreversibly Activates or Inactivates Some Proteins	104
Higher-Order Regulation Includes Control of Protein Location	105
3.5 Purifying, Detecting, and Characterizing Proteins	105
Centrifugation Can Separate Particles and Molecules That Differ in Mass or Density	106
Electrophoresis Separates Molecules on the Basis of Their Charge-to-Mass Ratio	107
Liquid Chromatography Resolves Proteins by Mass, Charge, or Affinity	109
Highly Specific Enzyme and Antibody Assays Can Detect Individual Proteins	111
Radioisotopes Are Indispensable Tools for Detecting Biological Molecules	114
Mass Spectrometry Can Determine the Mass and Sequence of Proteins	116
Protein Primary Structure Can Be Determined by Chemical Methods and from Gene Sequences	118
Protein Conformation Is Determined by Sophisticated Physical Methods	119
3.6 Proteomics	122
Proteomics Is the Study of All or a Large Subset of Proteins in a Biological System	122
Advanced Techniques in Mass Spectrometry Are Critical to Proteomic Analysis	123
4 Culturing and Visualizing Cells	129
4.1 Growing and Studying Cells in Culture	130
Culture of Animal Cells Requires Nutrient-Rich Media and Special Solid Surfaces	130
Primary Cell Cultures and Cell Strains Have a Finite Life Span	131
Transformed Cells Can Grow Indefinitely in Culture	132
Flow Cytometry Separates Different Cell Types	132

Growth of Cells in Two-Dimensional and Three-Dimensional Culture Mimics the In Vivo Environment	133
Hybridomas Produce Abundant Monoclonal Antibodies	135
A Wide Variety of Cell Biological Processes Can Be Studied with Cultured Cells	136
Drugs Are Commonly Used in Cell Biological Research	136
4.2 Light Microscopy: Exploring Cell Structure and Visualizing Proteins Within Cells	139
The Resolution of the Conventional Light Microscope Is About 0.2 μm	139
Phase-Contrast and Differential-Interference-Contrast Microscopy Visualize Unstained	141
Imaging Subcellular Details Often Requires That	141
Specimens Be Fixed, Sectioned, and Stained Fluorescence Microscopy Can Localize and Quantify	142
Specific Molecules in Live Cells	143
with Ion-Sensitive Fluorescent Dyes	143
Immunofluorescence Microscopy Can Detect Specific Proteins in Fixed Cells	144
Tagging with Fluorescent Proteins Allows the Visualization of Specific Proteins in Live Cells	146
Deconvolution and Confocal Microscopy Enhance Visualization of Three-Dimensional Fluorescent Objects	147
Two-Photon Excitation Microscopy Allows Imaging Deep into Tissue Samples	149
TIRF Microscopy Provides Exceptional Imaging in One Focal Plane	150
FRAP Reveals the Dynamics of Cellular Components	151
FRET Measures Distance Between Fluorochromes	152
Super-Resolution Microscopy Can Localize Proteins to Nanometer Accuracy	153
Light-Sheet Microscopy Can Rapidly Image Cells in Living Tissue	155
4.3 Electron Microscopy: High-Resolution Imaging	156
Single Molecules or Structures Can Be Imaged Using a Negative Stain or Metal Shadowing	157
Cells and Tissues Are Cut into Thin Sections for Viewing by Electron Microscopy	158
Immunoelectron Microscopy Localizes Proteins at the Ultrastructural Level	159
Cryoelectron Microscopy Allows Visualization of Specimens Without Fixation or Staining	160

Scanning Electron Microscopy of Metal-Coated Specimens Reveals Surface Features	161
4.4 Isolation of Cell Organelles	161
Disruption of Cells Releases Their Organelles and Other Contents	162
Centrifugation Can Separate Many Types of Organelles	162
Organelle-Specific Antibodies Are Useful in Preparing Highly Purified Organelles	162
Proteomics Reveals the Protein Composition of Organelles	164
Part II Biomembranes, Genes, and Gene Regulation	

5 Fundamental Molecular Genetic Mechanisms	167
5.1 Structure of Nucleic Acids	169
A Nucleic Acid Strand Is a Linear Polymer with End-to-End Directionality	170
Native DNA Is a Double Helix of Complementary Antiparallel Strands	170
DNA Can Undergo Reversible Strand Separation	172
Torsional Stress in DNA Is Relieved by Enzymes	174
Different Types of RNA Exhibit Various Conformations Related to Their Functions	174
5.2 Transcription of Protein-Coding Genes and Formation of Functional	
mRNA	176
A Template DNA Strand Is Transcribed into a Complementary RNA Chain by RNA Polymerase	176
Organization of Genes Differs in Prokaryotic and Eukaryotic DNA	179
Eukaryotic Precursor mRNAs Are Processed to Form Functional mRNAs	180
Alternative RNA Splicing Increases the Number of Proteins Expressed from a Single Eukaryotic Gene	181
5.3 The Decoding of mRNA by tRNAs	183
Messenger RNA Carries Information from DNA in a Three-Letter Genetic Code	183
The Folded Structure of tRNA Promotes Its Decoding Functions	185
Nonstandard Base Pairing Often Occurs Between Codons and Anticodons	186
Amino Acids Become Activated When Covalently Linked to tRNAs	188

5.4 Stepwise Synthesis of Proteins

on Ribosomes	188
Ribosomes Are Protein-Synthesizing Machines	188
Methionyl-tRNA _i ^{Met} Recognizes the AUG Start Codon	190
Eukaryotic Translation Initiation Usually Occurs at the First AUG Downstream from the 5' End of an mRNA	191
During Chain Elongation Each Incoming Aminoacyl-tRN. Moves Through Three Ribosomal Sites	A 193
Translation Is Terminated by Release Factors When a Stop Codon Is Reached	195
Polysomes and Rapid Ribosome Recycling Increase the Efficiency of Translation	195
GTPase-Superfamily Proteins Function in Several Quality-Control Steps of Translation	195
Nonsense Mutations Cause Premature Termination of Protein Synthesis	196
5.5 DNA Replication	197
DNA Polymerases Require a Primer to Initiate Replication	197
Duplex DNA Is Unwound, and Daughter Strands Are Formed at the DNA Replication Fork	199
Several Proteins Participate in DNA Replication	199
DNA Replication Occurs Bidirectionally from Each Origin	201
5.6 DNA Repair and Recombination	203
DNA Polymerases Introduce Copying Errors and Also Correct Them	203
Chemical and Radiation Damage to DNA Can Lead to Mutations	203
High-Fidelity DNA Excision-Repair Systems Recognize and Repair Damage	204
Base Excision Repairs T-G Mismatches and Damaged Bases	205
Mismatch Excision Repairs Other Mismatches and Small Insertions and Deletions	205
Nucleotide Excision Repairs Chemical Adducts that Distort Normal DNA Shape	206
Two Systems Use Recombination to Repair Double-Strand Breaks in DNA	207
Homologous Recombination Can Repair DNA Damage and Generate Genetic Diversity	209
5.7 Viruses: Parasites of the Cellular Genetic System	212
A Most Viral Host Ranges Are Narrow	212
Viral Capsids Are Regular Arrays of One or a Few Types of Protein	213

Viruses Can Be Cloned and Counted in Plaque Assays	213
Lytic Viral Growth Cycles Lead to Death of Host Cells	213
Viral DNA Is Integrated into the Host-Cell Genome in Some Nonlytic Viral Growth Cycles	216
6 Molecular Genetic Techniques	223
6.1 Genetic Analysis of Mutations to Identify and Study Genes	224
Recessive and Dominant Mutant Alleles Generally Have Opposite Effects on Gene Function	224
Segregation of Mutations in Breeding Experiments Reveals Their Dominance or Recessivity	225
Conditional Mutations Can Be Used to Study Essential Genes in Yeast	227
Recessive Lethal Mutations in Diploids Can Be Identified by Inbreeding and Maintained in Heterozygotes	228
Complementation Tests Determine Whether Different Recessive Mutations Are in the Same Gene	229
Double Mutants Are Useful in Assessing the Order in Which Proteins Function	230
Genetic Suppression and Synthetic Lethality Can Reveal Interacting or Redundant Proteins	231
Genes Can Be Identified by Their Map Position on the Chromosome	232
6.2 DNA Cloning and Characterization	234
Restriction Enzymes and DNA Ligases Allow Insertion of DNA Fragments into Cloning Vectors	234
Isolated DNA Fragments Can Be Cloned into <i>E. coli</i> Plasmid Vectors	236
Yeast Genomic Libraries Can Be Constructed with Shuttle Vectors and Screened by Functional Complementation	237
cDNA Libraries Represent the Sequences of Protein-Coding Genes	238
The Polymerase Chain Reaction Amplifies a Specific DNA Sequence from a Complex Mixture	239
Cloned DNA Molecules Can Be Sequenced Rapidly by Methods Based on PCR	243
6.3 Using Cloned DNA Fragments to Study Gene Expression	246
Hybridization Techniques Permit Detection of Specific DNA Fragments and mRNAs	246
DNA Microarrays Can Be Used to Evaluate the Expression of Many Genes at One Time	247
Cluster Analysis of Multiple Expression Experiments Identifies Co-regulated Genes	248
E. coli Expression Systems Can Produce Large Quantities of Proteins from Cloned Genes	249

Plasmid Expression Vectors Can Be Designed for Use in Animal Cells	251
6.4 Locating and Identifying Human Disease Genes	254
Monogenic Diseases Show One of Three Patterns of Inheritance	254
DNA Polymorphisms Are Used as Markers for Linkage Mapping of Human Mutations	255
Linkage Studies Can Map Disease Genes with a Resolution of About 1 Centimorgan	256
Further Analysis Is Needed to Locate a Disease Gene in Cloned DNA	257
Many Inherited Diseases Result from Multiple Genetic Defects	257
6.5 Inactivating the Function of Specific Genes in Eukaryotes	259
Normal Yeast Genes Can Be Replaced with Mutant Alleles by Homologous Recombination	260
Genes Can Be Placed Under the Control of an Experimentally Regulated Promoter	260
Specific Genes Can Be Permanently Inactivated in the Germ Line of Mice	261
Somatic Cell Recombination Can Inactivate Genes in Specific Tissues	261
Dominant-Negative Alleles Can Inhibit the Function of Some Genes	262
RNA Interference Causes Gene Inactivation by Destroying the Corresponding mRNA	264
Engineered CRISPR–Cas9 Systems Allow Precise Genome Editing	266
7 Biomembrane Structure	271
7.1 The Lipid Bilayer: Composition	072
Phospholipids Spontaneously Form Bilavers	273

-	
Phospholipids Spontaneously Form Bilayers	273
Phospholipid Bilayers Form a Sealed Compartment Surrounding an Internal Aqueous Space	274
Biomembranes Contain Three Principal Classes of Lipids	276
Most Lipids and Many Proteins Are Laterally Mobile in Biomembranes	278
Lipid Composition Influences the Physical Properties of Membranes	279
Lipid Composition Is Different in the Exoplasmic and Cytosolic Leaflets	281
Cholesterol and Sphingolipids Cluster with Specific Proteins in Membrane Microdomains	282
Cells Store Excess Lipids in Lipid Droplets	283

7.2 Membrane Proteins: Structure and Basic Functions

284

310

Proteins Interact with Membranes in Three Different Ways	284
Most Transmembrane Proteins Have Membrane-Spanning α Helices	285
Multiple β Strands in Porins Form Membrane-Spanning "Barrels"	288
Covalently Attached Lipids Anchor Some Proteins to Membranes	288
All Transmembrane Proteins and Glycolipids Are Asymmetrically Oriented in the Bilayer	289
Lipid-Binding Motifs Help Target Peripheral Proteins to the Membrane	290
Proteins Can Be Removed from Membranes by Detergents or High-Salt Solutions	290
7.3 Phospholipids, Sphingolipids, and Cholesterol: Synthesis and Intracellular Movement	293
Fatty Acids Are Assembled from Two-Carbon Building	
Blocks by Several Important Enzymes	293
Small Cytosolic Proteins Facilitate Movement of Fatty Acids	293
Fatty Acids Are Incorporated into Phospholipids Primarily on the ER Membrane	294
Flippases Move Phospholipids from One Membrane Leaflet to the Opposite Leaflet	295
Cholesterol Is Synthesized by Enzymes in the Cytosol and ER Membrane	295
Cholesterol and Phospholipids Are Transported Between Organelles by Several Mechanisms	296

8 Genes, Genomics, and Chromosomes 301

8.1	Eukaryotic Gene Structure	303
Most Eu Enco	ukaryotic Genes Contain Introns and Produce mRNAs oding Single Proteins	303
Simple Are	and Complex Transcription Units Found in Eukaryotic Genomes	303
Protein or B	-Coding Genes May Be Solitary elong to a Gene Family	305
Heavily by N	¹ Used Gene Products Are Encoded Aultiple Copies of Genes	307
Nonpro Fun	otein-Coding Genes Encode ctional RNAs	308
8.2	Chromosomal Organization of Genes and Noncoding DNA	309
Genom	es of Many Organisms Contain Nonfunctional DNA	309
Most Si	mple-Sequence DNAs Are Concentrated in Specific	

Chromosomal Locations

DNA Fingerprinting Depends on Differences in Length of Simple-Sequence DNAs	311
Unclassified Intergenic DNA Occupies a Significant Portion of the Genome	312
8.3 Transposable (Mobile) DNA Elements	312
Movement of Mobile Elements Involves a DNA or an RNA Intermediate	313
DNA Transposons Are Present in Prokaryotes and Eukaryotes	314
LTR Retrotransposons Behave Like Intracellular Retroviruses	316
Non-LTR Retrotransposons Transpose by a Distinct Mechanism	318
Other Retroposed RNAs Are Found in Genomic DNA	321
Mobile DNA Elements Have Significantly Influenced Evolution	321
8.4 Genomics: Genome-Wide Analysis of Gene Structure and Function	323
Stored Sequences Suggest Functions of Newly Identified Genes and Proteins	324
Comparison of Related Sequences from Different Species Can Give Clues to Evolutionary Relationships Among Proteins	325
Genes Can Be Identified Within Genomic DNA Sequences	326
The Number of Protein-Coding Genes in an Organism's Genome Is Not Directly Related to Its Biological Complexity	326
8.5 Structural Organization	
of Eukaryotic Chromosomes	327
Modifications of Histone Tails Control Chromatin	328
Condensation and Function Nonhistone Proteins Organize Long	330
Chromatin Loops Additional Nonhistone Proteins Regulate	335
Transcription and Replication	339
8.6 Morphology and Functional Elements of Eukaryotic	
Chromosomes	341
Chromosome Number, Size, and Shape at Metaphase Are Species-Specific	341
During Metaphase, Chromosomes Can Be Distinguished	341

by Banding Patterns and Chromosome Painting 341 Chromosome Painting and DNA Sequencing Reveal the Evolution of Chromosomes 342

Interphase Polytene Chromosomes Arise by DNA Amplification	343
Three Functional Elements Are Required for Replication and Stable Inheritance of Chromosomes	345
Centromere Sequences Vary Greatly in Length and Complexity	345
Addition of Telomeric Sequences by Telomerase Prevents Shortening of Chromosomes	347

9 Transcriptional Control of Gene Expression 353

9.1 Control of Gene Expression in Bacteria	356
Transcription Initiation by Bacterial RNA Polymerase Requires Association with a Sigma Factor	357
Initiation of <i>lac</i> Operon Transcription Can Be Repressed or Activated	357
Small Molecules Regulate Expression of Many Bacterial Genes via DNA-Binding Repressors and Activators	358
Transcription Initiation from Some Promoters Requires Alternative Sigma Factors	359
Transcription by σ^{54} -RNA Polymerase Is Controlled by Activators That Bind Far from the Promoter	359
Many Bacterial Responses Are Controlled by Two-Component Regulatory Systems	360
Expression of Many Bacterial Operons Is Controlled by Regulation of Transcriptional Elongation	361
9.2 Overview of Eukaryotic Gene Control	363
Regulatory Elements in Eukaryotic DNA Are Found Both Close to and Many Kilobases Away from Transcription Start Sites	364
Three Eukaryotic RNA Polymerases Catalyze Formation of Different RNAs	367
The Largest Subunit in RNA Polymerase II Has an Essential Carboxy-Terminal Repeat	370
9.3 RNA Polymerase II Promoters and General Transcription Factors	371
RNA Polymerase II Initiates Transcription at DNA Sequences Corresponding to the 5' Cap of mRNAs	371
The TATA Box, Initiators, and CpG Islands Function as Promoters in Eukaryotic DNA	371
General Transcription Factors Position RNA Polymerase II at Start Sites and Assist in Initiation	373
Elongation Factors Regulate the Initial Stages of Transcription in the Promoter-Proximal Region	377

9.4 Regulatory Sequences in Protein-Coding Genes and the Proteins Through Which They Function 378

Which They Function	378
Promoter-Proximal Elements Help Regulate Eukaryotic Genes	378
Distant Enhancers Often Stimulate Transcription by RNA Polymerase II	379
Most Eukaryotic Genes Are Regulated by Multiple Transcription-Control Elements	379
DNase I Footprinting and EMSA Detect Protein-DNA Interactions	380
Activators Are Composed of Distinct Functional Domains	381
Repressors Are the Functional Converse of Activators	383
DNA-Binding Domains Can Be Classified into Numerous Structural Types	384
Structurally Diverse Activation and Repression Domains Regulate Transcription	386
Transcription Factor Interactions Increase Gene-Control Options	387
Multiprotein Complexes Form on Enhancers	388

9.5 Molecular Mechanisms of Transcription Repression and Activation 390

Formation of Heterochromatin Silences Gene Expression at Telomeres, near Centromeres, and	
in Other Regions	390
Repressors Can Direct Histone Deacetylation at	
Specific Genes	393
Activators Can Direct Histone Acetylation at Specific Genes	394
Chromatin-Remodeling Complexes Help Activate or Repress	
Transcription	395
Pioneer Transcription Factors Initiate the Process of Gene	
Activation During Cellular Differentiation	395
The Mediator Complex Forms a Molecular Bridge Between	
Activation Domains and Pol II	396

9.6 Regulation of Transcription-Factor Activity

30	2

Factor Activity	550
DNase I Hypersensitive Sites Reflect the Developmental History of Cellular Differentiation	398
Nuclear Receptors Are Regulated by Extracellular Signals	400
All Nuclear Receptors Share a Common Domain Structure	400
Nuclear-Receptor Response Elements Contain Inverted or Direct Repeats	400
Hormone Binding to a Nuclear Receptor Regulates Its Activity as a Transcription Factor	402
Metazoans Regulate the RNA Polymerase II Transition from Initiation to Elongation	402
Termination of Transcription Is Also Regulated	402

9.7 Epigenetic Regulation of	404
Iranscription	404
Mathylation of Spacific Historia Lycinas Is Linked to	404
Epigenetic Mechanisms of Gene Repression	405
Epigenetic Control by Polycomb and Trithorax Complexes	406
Long Noncoding RNAs Direct Epigenetic Repression in Metazoans	409
9.8 Other Eukaryotic Transcription Systems	412
Transcription Initiation by Pol I and Pol III Is Analogous to That by Pol II	412
10 Post-transcriptional Gene Control	417
10.1 Processing of Eukaryotic Pre-mRNA	419
The 5' Cap Is Added to Nascent RNAs Shortly After Transcription Initiation	420
A Diverse Set of Proteins with Conserved RNA-Binding Domains Associate with Pre-mRNAs	421
Splicing Occurs at Short, Conserved Sequences in Pre-mRNAs via Two Transesterification Reactions	423
During Splicing, snRNAs Base-Pair with Pre-mRNA	424
Spliceosomes, Assembled from snRNPs and a Pre-mRNA, Carry Out Splicing	426
Chain Elongation by RNA Polymerase II Is Coupled to the Presence of RNA-Processing Factors	428
SR Proteins Contribute to Exon Definition in Long Pre-mRNAs	428
Self-Splicing Group II Introns Provide Clues to the Evolution of snRNAs	429
3' Cleavage and Polyadenylation of Pre-mRNAs Are Tightly Coupled	430
Nuclear Exoribonucleases Degrade RNA That Is Processed Out of Pre-mRNAs	432
RNA Processing Solves the Problem of Pervasive Transcription of the Genome in Metazoans	432
10.2 Regulation of Pre-mRNA Processing	435
Alternative Splicing Generates Transcripts with Different Combinations of Exons	435
A Cascade of Regulated RNA Splicing Controls Drosophila Sexual Differentiation	435
Splicing Repressors and Activators Control Splicing at Alternative Sites	437

RNA Editing Alters the Sequences of Some Pre-mRNAs	439
10.3 Transport of mRNA Across the Nuclear Envelope	440
Phosphorylation and Dephosphorylation of SR Proteins Imposes Directionality on mRNP Export Across the Nuclear Pore Complex	441
Balbiani Rings in Insect Larval Salivary Glands Allow Direct Visualization of mRNP Export Through NPCs	442
Pre-mRNAs in Spliceosomes Are Not Exported from the Nucleus	443
HIV Rev Protein Regulates the Transport of Unspliced Viral mRNAs	444
10.4 Cytoplasmic Mechanisms of Post-transcriptional	
Control	445
Degradation of mRNAs in the Cytoplasm Occurs by Several Mechanisms	445
Adenines in mRNAs and IncRNAs May Be Post-transcriptionally Modified by N ⁶ Methylation	447
Micro-RNAs Repress Translation and Induce Degradation of Specific mRNAs	447
Alternative Polyadenylation Increases miRNA Control Options	450
RNA Interference Induces Degradation of Precisely Complementary mRNAs	450
Cytoplasmic Polyadenylation Promotes Translation of Some mRNAs	451
Protein Synthesis Can Be Globally Regulated	452
Sequence-Specific RNA-Binding Proteins Control Translation of Specific mRNAs	455
Surveillance Mechanisms Prevent Translation of Improperly Processed mRNAs	456
Localization of mRNAs Permits Production of Proteins at Specific Regions Within the Cytoplasm	457
10.5 Processing of rRNA	4.01
and tKNA	461
Small Nucleolar RNAs Assist in Processing	40 I
Pre-rRNAs	462
Self-Splicing Group I Introns Were the First Examples of Catalytic RNA	466
Pre-tRNAs Undergo Extensive Modification in the Nucleus	466
Nuclear Bodies Are Functionally Specialized Nuclear Domains	468

Part III Cellular Organization and Function

11 Transmembrane Transport of Ions and Small Molecules	473
11.1 Overview of Transmembrane Transport	474
Only Gases and Small Uncharged Molecules Cross Membranes by Simple Diffusion	474
Three Main Classes of Membrane Proteins Transport Molecules and Ions Across Cellular Membranes	475
11.2 Facilitated Transport of Glucose and Water	477
Uniport Transport Is Faster and More Specific than Simple Diffusion	477
The Low K _m of the GLUT1 Uniporter Enables It to Transport Glucose into Most Mammalian Cells	478
The Human Genome Encodes a Family of Sugar-Transporting GLUT Proteins	480
Transport Proteins Can Be Studied Using Artificial Membranes and Recombinant Cells	480
Osmotic Pressure Causes Water to Move Across Membranes	481
Aquaporins Increase the Water Permeability of Cellular Membranes	481
11.3 ATP-Powered Pumps and the Intracellular Ionic Environment	483
There Are Four Main Classes of ATP-Powered Pumps	484
ATP-Powered Ion Pumps Generate and Maintain Ionic Gradients Across Cellular Membranes	485
Muscle Relaxation Depends on Ca ²⁺ ATPases That Pump Ca ²⁺ from the Cytosol into the Sarcoplasmic Reticulum	486
The Mechanism of Action of the Ca ²⁺ Pump Is Known in Detail	486
Calmodulin Regulates the Plasma-Membrane Pumps That Control Cytosolic Ca ²⁺ Concentrations	489
The Na ⁺ /K ⁺ ATPase Maintains the Intracellular Na ⁺ and K ⁺ Concentrations in Animal Cells	489
V-Class H ⁺ ATPases Maintain the Acidity of Lysosomes and Vacuoles	489
ABC Proteins Export a Wide Variety of Drugs and Toxins from the Cell	491
Certain ABC Proteins "Flip" Phospholipids and Other Lipid-Soluble Substrates from One Membrane Leaflet to the Other	493
The ABC Cystic Fibrosis Transmembrane Regulator Is a Chloride Channel, Not a Pump	494

11.4 Nongated Ion Channels and
the Resting Membrane Potential495Selective Movement of Ions Creates

a Transmembrane Electric Gradient	495
The Resting Membrane Potential in Animal Cells Depends Largely on the Outward Flow of K ⁺ lons Through Open K ⁺ Channels	497
Ion Channels Are Selective for Certain Ions by Virtue of a Molecular "Selectivity Filter"	497
Patch Clamps Permit Measurement of Ion Movements Through Single Channels	500
Novel Ion Channels Can Be Characterized by a Combination of Oocyte Expression and Patch Clamping	501
11.5 Cotransport by Symporters and Antiporters	502
Na ⁺ Entry into Mammalian Cells Is Thermodynamically Favored	502
Na ⁺ -Linked Symporters Enable Animal Cells to Import Glucose and Amino Acids Against High Concentration Gradients	503
A Bacterial Na ⁺ /Amino Acid Symporter Reveals How Symport Works	504
A Na ⁺ -Linked Ca ²⁺ Antiporter Regulates the Strength of Cardiac Muscle Contraction	504
Several Cotransporters Regulate Cytosolic pH	505
An Anion Antiporter Is Essential for Transport of CO ₂ by Erythrocytes	506
Numerous Transport Proteins Enable Plant Vacuoles to Accumulate Metabolites and lons	507
11.6 Transcellular Transport	508
Multiple Transport Proteins Are Needed to Move Glucose and Amino Acids Across Epithelia	508
Simple Rehydration Therapy Depends on the Osmotic Gradient Created by Absorption of Glucose and Na ⁺	509
Parietal Cells Acidify the Stomach Contents While Maintaining a Neutral Cytosolic pH	509
Bone Resorption Requires the Coordinated Function of a V-Class Proton Pump and a Specific Chloride Channel	510
12 Cellular Energetics	513
12.1 Einst Stop of Hormosting Ensure	

12.1 First Step of Harvesting Energy from Glucose: Glycolysis	515
During Glycolysis (Stage I), Cytosolic Enzymes Convert Glucose to Pyruvate	516
The Rate of Glycolysis Is Adjusted to Meet the Cell's Need for ATP	516
Glucose Is Fermented When Oxygen Is Scarce	518

12.2 The Structure and Functions of Mitochondria

Mitochondria	520
Mitochondria Are Multifunctional Organelles	520
Mitochondria Have Two Structurally and Functionally Distinct Membranes	520
Mitochondria Contain DNA Located in the Matrix	523
The Size, Structure, and Coding Capacity of mtDNA Vary Considerably Among Organisms	525
Products of Mitochondrial Genes Are Not Exported	526
Mitochondria Evolved from a Single Endosymbiotic Event Involving a <i>Rickettsia</i> -Like Bacterium	527
Mitochondrial Genetic Codes Differ from the Standard Nuclear Code	527
Mutations in Mitochondrial DNA Cause Several Genetic Diseases in Humans	528
Mitochondria Are Dynamic Organelles That Interact Directly with One Another	528
Mitochondria Are Influenced by Direct Contacts with the Endoplasmic Reticulum	529
12.3 The Citric Acid Cycle and Fatty Acid Oxidation	533
In the First Part of Stage II, Pyruvate Is Converted to Acetyl CoA and High-Energy Electrons	533
In the Second Part of Stage II, the Citric Acid Cycle Oxidizes the Acetyl Group in Acetyl CoA to CO ₂ and Generates High-Energy Electrons	533
Transporters in the Inner Mitochondrial Membrane Help Maintain Appropriate Cytosolic and Matrix Concentrations of NAD ⁺ and NADH	535
Mitochondrial Oxidation of Fatty Acids Generates ATP	536
Peroxisomal Oxidation of Fatty Acids Generates No ATP	537
12.4 The Electron-Transport Chain and Generation of the Proton-Motive Force	539
Oxidation of NADH and FADH ₂ Releases a Significant	000
Amount of Energy	539
Electron Transport in Mitochondria Is Coupled to Proton Pumping	539
Electrons Flow "Downhill" Through a Series of Electron Carriers	540
Four Large Multiprotein Complexes Couple Electron Transport to Proton Pumping Across the Inner Mitochondrial Membrane	542
The Reduction Potentials of Electron Carriers in the Electron- Transport Chain Favor Electron Flow from NADH to O_2	546
The Multiprotein Complexes of the Electron-Transport Chain Assemble into Supercomplexes	546
Reactive Oxygen Species Are By-Products of Electron Transport	547

Experiments Using Purified Electron-Transport Chain Complexes Established the Stoichiometry of Proton Pumping	549
The Proton-Motive Force in Mitochondria Is Due Largely to a Voltage Gradient Across the Inner Membrane	550
12.5 Harnessing the Proton-Motive Force to Synthesize ATP	551
The Mechanism of ATP Synthesis Is Shared Among Bacteria, Mitochondria, and Chloroplasts	552
ATP Synthase Comprises F ₀ and F ₁ Multiprotein Complexes	553
Rotation of the $F_1 \gamma$ Subunit, Driven by Proton Movement Through F_0 , Powers ATP Synthesis	554
Multiple Protons Must Pass Through ATP Synthase to Synthesize One ATP	555
F_0 c Ring Rotation Is Driven by Protons Flowing Through Transmembrane Channels	556
ATP-ADP Exchange Across the Inner Mitochondrial Membrane Is Powered by the Proton-Motive Force	556
The Rate of Mitochondrial Oxidation Normally Depends on ADP Levels	558
Mitochondria in Brown Fat Use the Proton-Motive Force to Generate Heat	558
12.6 Photosynthesis and Light- Absorbing Pigments	560
Thylakoid Membranes in Chloroplasts Are the Sites of Photosynthesis in Plants	560
Chloroplasts Contain Large DNAs Often Encoding More Than a Hundred Proteins	560
Three of the Four Stages in Photosynthesis Occur Only During Illumination	561
Photosystems Comprise a Reaction Center and Associated Light-Harvesting Complexes	563
Photoelectron Transport from Energized Reaction-Center Chlorophyll <i>a</i> Produces a Charge Separation	564
Internal Antennas and Light-Harvesting Complexes Increase the Efficiency of Photosynthesis	566
12.7 Molecular Analysis of Photosystems	567
The Single Photosystem of Purple Bacteria Generates a Proton-Motive Force but No O ₂	567
Chloroplasts Contain Two Functionally and Spatially Distinct Photosystems	567
Linear Electron Flow Through Both Plant Photosystems Generates a Proton-Motive Force, O ₂ , and NADPH	568
An Oxygen-Evolving Complex Is Located on the Luminal Surface of the PSII Reaction Center	569
Multiple Mechanisms Protect Cells Against Damage from Reactive Oxygen Species During Photoelectron Transport	570

Cyclic Electron Flow Through PSI Generates a Proton-Motive Force but No NADPH or O ₂	570
Relative Activities of Photosystems I and II	F7 1
Are Regulated	571
12.8 CO_2 Metabolism During	573
Rubisco Fixes CO_2 in the Chloroplast Stroma	573
Synthesis of Sucrose Using Fixed CO ₂ Is Completed	
in the Cytosol	573
Photorespiration Competes with Carbon Fixation and	574
Is Reduced in C ₄ Plants	576
13 Moving Proteins into Membranes	
and Organelles	583
13.1 Targeting Proteins To and Across the ER Membrane	585
Pulse-Chase Experiments with Purified ER Membranes Demonstrated That Secreted Proteins Cross the ER Membrane	586
A Hydrophobic N-Terminal Signal Sequence Targets Nascent Secretory Proteins to the ER	586
Cotranslational Translocation Is Initiated by Two GTP-Hydrolyzing Proteins	588
Passage of Growing Polypeptides Through the Translocon Is Driven by Translation	589
ATP Hydrolysis Powers Post-translational Translocation of Some Secretory Proteins in Yeast	591
13.2 Insertion of Membrane Proteins into the ER	593
Several Topological Classes of Integral Membrane Proteins Are Synthesized on the ER	593
Internal Stop-Transfer Anchor and Signal-Anchor Sequences Determine Topology of Single-Pass Proteins	594
Multipass Proteins Have Multiple Internal Topogenic Sequences	597
A Phospholipid Anchor Tethers Some Cell-Surface Proteins to the Membrane	598
The Topology of a Membrane Protein Can Often Be Deduced from Its Sequence	599
13.3 Protein Modifications, Folding, and Quality Control in the ER	601
A Preformed N-Linked Oligosaccharide Is Added to Many Proteins in the Rough ER	601
Oligosaccharide Side Chains May Promote Folding and Stability of Glycoproteins	602

Disulfide Bonds Are Formed and Rearranged by Proteins in the ER Lumen	603
Chaperones and Other ER Proteins Facilitate Folding and Assembly of Proteins	604
Improperly Folded Proteins in the ER Induce Expression of Protein-Folding Catalysts	606
Unassembled or Misfolded Proteins in the ER Are Often Transported to the Cytosol for Degradation	607
13.4 Targeting of Proteins to Mitochondria and Chloroplasts	608
Amphipathic N-Terminal Targeting Sequences Direct Proteins to the Mitochondrial Matrix	609
Mitochondrial Protein Import Requires Outer-Membrane Receptors and Translocons in Both Membranes	610
Studies with Chimeric Proteins Demonstrate Important Features of Mitochondrial Protein Import	612
Three Energy Inputs Are Needed to Import Proteins into Mitochondria	613
Multiple Signals and Pathways Target Proteins to Submitochondrial Compartments	613
Import of Chloroplast Stromal Proteins Is Similar to Import of Mitochondrial Matrix Proteins	617
Proteins Are Targeted to Thylakoids by Mechanisms Related to Bacterial Protein Translocation	617
13.5 Targeting of Peroxisomal Proteins	619
A Cytosolic Receptor Targets Proteins with an SKL Sequence at the C-Terminus to the Peroxisomal Matrix	619
Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways	621
 Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways 13.6 Transport Into and Out of the Nucleus 	621 622
 Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways 13.6 Transport Into and Out of the Nucleus Large and Small Molecules Enter and Leave the Nucleus via Nuclear Pore Complexes 	621 622 622
 Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways 13.6 Transport Into and Out of the Nucleus Large and Small Molecules Enter and Leave the Nucleus via Nuclear Pore Complexes Nuclear Transport Receptors Escort Proteins Containing Nuclear-Localization Signals into the Nucleus 	621 622 622 624
 Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways 13.6 Transport Into and Out of the Nucleus Large and Small Molecules Enter and Leave the Nucleus via Nuclear Pore Complexes Nuclear Transport Receptors Escort Proteins Containing Nuclear-Localization Signals into the Nucleus A Second Type of Nuclear Transport Receptor Escorts Proteins Containing Nuclear-Export Signals Out of the Nucleus 	621 622 622 624
 Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways 13.6 Transport Into and Out of the Nucleus Large and Small Molecules Enter and Leave the Nucleus via Nuclear Pore Complexes Nuclear Transport Receptors Escort Proteins Containing Nuclear-Localization Signals into the Nucleus A Second Type of Nuclear Transport Receptor Escorts Proteins Containing Nuclear-Export Signals Out of the Nucleus Most mRNAs Are Exported from the Nucleus by a Ran-Independent Mechanism 	621 622 622 624 625 627
 Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways 13.6 Transport Into and Out of the Nucleus Large and Small Molecules Enter and Leave the Nucleus via Nuclear Pore Complexes Nuclear Transport Receptors Escort Proteins Containing Nuclear-Localization Signals into the Nucleus A Second Type of Nuclear Transport Receptor Escorts Proteins Containing Nuclear-Export Signals Out of the Nucleus Most mRNAs Are Exported from the Nucleus by a Ran-Independent Mechanism 14 Vesicular Traffic, Secretion, and 	621 622 624 625 627
 Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways 13.6 Transport Into and Out of the Nucleus Large and Small Molecules Enter and Leave the Nucleus via Nuclear Pore Complexes Nuclear Transport Receptors Escort Proteins Containing Nuclear-Localization Signals into the Nucleus A Second Type of Nuclear Transport Receptor Escorts Proteins Containing Nuclear-Export Signals Out of the Nucleus Most mRNAs Are Exported from the Nucleus by a Ran-Independent Mechanism 14 Vesicular Traffic, Secretion, and Endocytosis 	 621 622 624 625 627
 Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways 13.6 Transport Into and Out of the Nucleus Large and Small Molecules Enter and Leave the Nucleus via Nuclear Pore Complexes Nuclear Transport Receptors Escort Proteins Containing Nuclear-Localization Signals into the Nucleus A Second Type of Nuclear Transport Receptor Escorts Proteins Containing Nuclear-Export Signals Out of the Nucleus Most mRNAs Are Exported from the Nucleus by a Ran-Independent Mechanism 14.1 Techniques for Studying the Secretory Pathway 	 621 622 624 625 627 631 634

Yeast Mutants Define Major Stages and Many Components in Vesicular Transport	635
Cell-Free Transport Assays Allow Dissection of Individual	627
Steps in vesicular Transport	637
14.2 Molecular Mechanisms of Vesicle Budding and Fusion	638
Assembly of a Protein Coat Drives Vesicle Formation and Selection of Cargo Molecules	638
A Conserved Set of GTPase Switch Proteins Controls the Assembly of Different Vesicle Coats	639
Targeting Sequences on Cargo Proteins Make Specific Molecular Contacts with Coat Proteins	641
Rab GTPases Control Docking of Vesicles on Target Membranes	641
Paired Sets of SNARE Proteins Mediate Fusion of Vesicles with Target Membranes	642
Dissociation of SNARE Complexes After Membrane Fusion Is Driven by ATP Hydrolysis	644
14.3 Early Stages of the Secretory Pathway	645
COPII Vesicles Mediate Transport from the ER to the Golgi	645
COPI Vesicles Mediate Retrograde Transport Within the Golgi and from the Golgi to the ER	647
Anterograde Transport Through the Golgi Occurs by Cisternal Maturation	648
14.4 Later Stages of the Secretory Pathway	650
Vesicles Coated with Clathrin and Adapter Proteins Mediate Transport from the <i>trans</i> -Golgi	651
Dynamin Is Required for Pinching Off of Clathrin-Coated Vesicles	652
Mannose 6-Phosphate Residues Target Soluble Proteins to Lysosomes	653
Study of Lysosomal Storage Diseases Revealed Key Components of the Lysosomal Sorting Pathway	655
Protein Aggregation in the <i>trans</i> -Golgi May Function in Sorting Proteins to Regulated Secretory Vesicles	655
Some Proteins Undergo Proteolytic Processing After Leaving the <i>trans</i> -Golgi	656
Several Pathways Sort Membrane Proteins to the Apical or Basolateral Region of Polarized Cells	657
14.5 Receptor-Mediated Endocytosis	659
Cells Take Up Lipids from the Blood in the Form of Large, Well-Defined Lipoprotein Complexes	
	659

The Acidic pH of Late Endosomes Causes Most Receptor-Ligand Complexes to Dissociate	662	
The Endocytic Pathway Delivers Iron to Cells Without Dissociation of the Transferrin–Transferrin Receptor Complex in Endosomes	663	
14.6 Directing Membrane Proteins and Cytosolic Materials to the Lysosome	665	
Multivesicular Endosomes Segregate Membrane Proteins Destined for the Lysosomal Membrane from Proteins Destined for Lysosomal Degradation	665	
Retroviruses Bud from the Plasma Membrane by a Process Similar to Formation of Multivesicular Endosomes	666	
The Autophagic Pathway Delivers Cytosolic Proteins or Entir Organelles to Lysosomes	re 667	
15 Signal Transduction and G Protein-		
Coupled Receptors	673	
15.1 Signal Transduction: From Extracellular Signal to		
Cellular Response	675	
Signaling Molecules Can Act Locally or at a Distance	675	
Receptors Bind Only a Single Type of Hormone or a Group of Closely Related Hormones	676	
Protein Kinases and Phosphatases Are Employed in Many Signaling Pathways	676	

Many Signaling Fathways	070
GTP-Binding Proteins Are Frequently Used in	
Signal Transduction Pathways as On/Off Switches	677
Intracellular "Second Messengers" Transmit Signals	
from Many Receptors	678

Signal Transduction Pathways Can Amplify the	
Effects of Extracellular Signals	679

15.2 Studying Cell-Surface Receptors and Signal Transduction Proteins 681

8	
The Dissociation Constant Is a Measure of the Affinity of a Receptor for Its Ligand	681
Binding Assays Are Used to Detect Receptors and Determine Their Affinity and Specificity for Ligands	681
Near-Maximal Cellular Response to a Signaling Molecule Usually Does Not Require Activation of All Receptors	682
Sensitivity of a Cell to External Signals Is Determined by the Number of Cell-Surface Receptors and Their Affinity for Ligand	683
Hormone Analogs Are Widely Used as Drugs	683
Receptors Can Be Purified by Affinity Chromatography Techniques	683
Immunoprecipitation Assays and Affinity Techniques Can Be Used to Study the Activity of Signal Transduction Proteins	684

15.3	G Protein–Coupled Receptors: Structure and Mechanism	686
All G Pro Basic	tein–Coupled Receptors Share the Same Structure	686
Ligand-/ Excha Hete	Activated G Protein–Coupled Receptors Catalyze ange of GTP for GDP on the α Subunit of a rotrimeric G Protein	689
Differen and I	t G Proteins Are Activated by Different GPCRs n Turn Regulate Different Effector Proteins	691
15.4	G Protein–Coupled Receptors That Regulate Ion Channels	693
Acetylch G Pro	oline Receptors in the Heart Muscle Activate a otein That Opens K ⁺ Channels	693
Light Ac Cells	tivates Rhodopsin in Rod of the Eye	694
Activatio cGMI	on of Rhodopsin by Light Leads to Closing of P-Gated Cation Channels	695
Signal A Trans	mplification Makes the Rhodopsin Signal duction Pathway Exquisitely Sensitive	696
Rapid Te Pathy	ermination of the Rhodopsin Signal Transduction way Is Essential for the Temporal Resolution of Visio	n 697
Rod Cell Intra	s Adapt to Varying Levels of Ambient Light by cellular Trafficking of Arrestin and Transducin	698
15.5	G Protein–Coupled Receptors That Activate or Inhibit Adenylyl Cyclase	699
Adenyly Rece	l Cyclase Is Stimulated and Inhibited by Different ptor-Ligand Complexes	699
Structur Activ	al Studies Established How $G_{\alpha s}$ ·GTP Binds to and ates Adenylyl Cyclase	701
cAMP Ao Subu	ctivates Protein Kinase A by Releasing Inhibitory nits	701
Glycoge Horm	n Metabolism Is Regulated by none-Induced Activation of PKA	702
cAMP-M Resp	ediated Activation of PKA Produces Diverse onses in Different Cell Types	703
Signal A	mplification Occurs in the cAMP-PKA Pathway	704
CREB Lir Trans	iks cAMP and PKA to Activation of Gene scription	704
Anchori Spec	ng Proteins Localize Effects of cAMP to ific Regions of the Cell	705
Multiple GPCF	Mechanisms Suppress Signaling from the R/cAMP/PKA Pathway	706
15.6	G Protein–Coupled Receptors That Trigger Elevations in Cytosolic and Mitochondrial Calcium	708
Calcium	Concentrations in the Mitochondrial Matrix,	
ER, a Fluor	nd Cytosol Can Be Measured with Targeted escent Proteins	709

Activated Phospholipase C Generates Two Key Second Messengers Derived from the Membrane Lipid Phosphatidylinositol 4,5-Bisphosphate	709
The Ca ²⁺ -Calmodulin Complex Mediates Many Cellular Responses to External Signals	713
DAG Activates Protein Kinase C	714
Integration of Ca ²⁺ and cAMP Second Messengers Regulates Glycogenolysis	714
Signal-Induced Relaxation of Vascular Smooth Muscle Is Mediated by a Ca ²⁺ -Nitric Oxide-cGMP-Activated Protein Kinase G Pathway	714
16 Signaling Pathways That Control	
Gene Expression	719
16.1 Receptor Serine Kinases That Activate Smads	722
TGF- β Proteins Are Stored in an Inactive Form in the Extracellular Matrix	722
Three Separate TGF- β Receptor Proteins Participate in Binding TGF- β and Activating Signal Transduction	722
Activated TGF-β Receptors Phosphorylate Smad Transcription Factors	724
The Smad3/Smad4 Complex Activates Expression of Different Genes in Different Cell Types	724
Negative Feedback Loops Regulate TGF-β/Smad Signaling	725
16.2 Cytokine Receptors and the JAK/STAT Signaling Pathway	726
Cytokines Influence the Development of Many Cell Types	727
Binding of a Cytokine to Its Receptor Activates One or More Tightly Bound JAK Protein Tyrosine Kinases	728
Phosphotyrosine Residues Are Binding Surfaces for Multiple Proteins with Conserved Domains	730
SH2 Domains in Action: JAK Kinases Activate STAT Transcription Factors	731
Multiple Mechanisms Down-Regulate Signaling from Cytokine Receptors	731
16.3 Receptor Tyrosine Kinases	734
Binding of Ligand Promotes Dimerization of an RTK and Leads to Activation of Its Intrinsic Tyrosine Kinase	734
Homo- and Hetero-oligomers of Epidermal Growth Factor Receptors Bind Members of the Epidermal Growth Factor Family	735
Activation of the EGF Receptor Results in the Formation of an Asymmetric Active Kinase Dimer	736
Multiple Mechanisms Down-Regulate Signaling from RTKs	737

16.4 The Ras/MAP Kinase Pathway	739
Ras, a GTPase Switch Protein, Operates Downstream of Most RTKs and Cytokine Receptors	739
Genetic Studies in <i>Drosophila</i> Identified Key Signal- Transducing Proteins in the Ras/MAP Kinase Pathway	739
Receptor Tyrosine Kinases Are Linked to Ras by Adapter Proteins	741
Binding of Sos to Inactive Ras Causes a Conformational Change That Triggers an Exchange of GTP for GDP	742
Signals Pass from Activated Ras to a Cascade of Protein Kinases Ending with MAP Kinase	742
Phosphorylation of MAP Kinase Results in a Conformational Change That Enhances Its Catalytic Activity and Promotes Its Dimerization	744
MAP Kinase Regulates the Activity of Many Transcription Factors Controlling Early Response Genes	745
G Protein–Coupled Receptors Transmit Signals to MAP Kinase in Yeast Mating Pathways	746
Scaffold Proteins Separate Multiple MAP Kinase Pathways in Eukaryotic Cells	746
16.5 Phosphoinositide Signaling Pathways	748
Phospholipase C _γ Is Activated by Some RTKs and Cytokine Receptors	749
Recruitment of PI-3 Kinase to Activated Receptors Leads to Synthesis of Three Phosphorylated Phosphatidylinositols	749
Accumulation of PI 3-Phosphates in the Plasma Membrane Leads to Activation of Several Kinases	750
Activated Protein Kinase B Induces Many Cellular Responses	750
The PI-3 Kinase Pathway Is Negatively Regulated by PTEN Phosphatase	751
 16.6 Signaling Pathways Controlled by Ubiquitinylation and Protein Degradation: Wnt, Hedgehog, and NF-κB 	751
Wnt Signaling Triggers Release of a Transcription Factor from a Cytosolic Protein Complex	752
Concentration Gradients of Wnt Protein Are Essential for Many Steps in Development	753
Hedgehog Signaling Relieves Repression of Target Genes	754
Hedgehog Signaling in Vertebrates Requires Primary Cilia	757
Degradation of an Inhibitor Protein Activates the NF-κB Transcription Factor	757
Polyubiquitin Chains Serve as Scaffolds Linking Receptors to Downstream Proteins in the NF-кВ Pathway	760

16.7	Signaling Pathways Controlled by
	Protein Cleavage: Notch/Delta,
	SREBP, and Alzheimer's Disease

761

On Binding Delta, the Notch Receptor Is Cleaved, Releasing a Component Transcription Factor	761
Matrix Metalloproteases Catalyze Cleavage of Many Signaling Proteins from the Cell Surface	763
Inappropriate Cleavage of Amyloid Precursor Protein Can Lead to Alzheimer's Disease	763
Regulated Intramembrane Proteolysis of SREBPs Releases a Transcription Factor That Acts to Maintain Phospholipid and Cholesterol Levels	763
16.8 Integration of Cellular Responses to Multiple Signaling Pathways: Insulin Action	766
Insulin and Glucagon Work Together to Maintain a Stable Blood Glucose Level	766
A Rise in Blood Glucose Triggers Insulin Secretion from the $\boldsymbol{\beta}$ Islet Cells	767
In Fat and Muscle Cells, Insulin Triggers Fusion of Intracellular Vesicles Containing the GLUT4 Glucose Transporter to the Plasma Membrane	767
Insulin Inhibits Glucose Synthesis and Enhances Storage of Glucose as Glycogen	769
Multiple Signal Transduction Pathways Interact to Regulate Adipocyte Differentiation Through PPARγ, the Master Transcriptional Regulator	770
Inflammatory Hormones Cause Derangement of Adipose Cell Function in Obesity	770

17 Cell Organization and Movement I: Microfilaments 775

17.1 Microfilaments and Actin Structures 778

Actin Is Ancient, Abundant, and Highly Conserved	778
G-Actin Monomers Assemble into Long, Helical F-Actin Polymers	779
F-Actin Has Structural and Functional Polarity	780
17.2 Dynamics of Actin Filaments	781
Actin Polymerization In Vitro Proceeds in Three Steps	781
Actin Filaments Grow Faster at (+) Ends Than at (-) Ends	782
Actin Filament Treadmilling Is Accelerated by Profilin and Cofilin	784
Thymosin-β ₄ Provides a Reservoir of Actin for Polymerization	785
Capping Proteins Block Assembly and Disassembly at Actin Filament Ends	785
17.3 Mechanisms of Actin Filament Assembly	786

Formins Assemble Unbranched Filaments	786
---------------------------------------	-----

The Arp2/3 Complex Nucleates Branched Filament Assembly	787
Intracellular Movements Can Be Powered by Actin Polymerization	789
Microfilaments Function in Endocytosis	790
Toxins That Perturb the Pool of Actin Monomers Are Useful for Studying Actin Dynamics	791
17.4 Organization of Actin-Based Cellular Structures	793
Cross-Linking Proteins Organize Actin Filaments into Bundles or Networks	793
Adapter Proteins Link Actin Filaments to Membranes	793
17.5 Myosins: Actin-Based Motor Proteins	796
Myosins Have Head, Neck, and Tail Domains with Distinct Functions	797
Myosins Make Up a Large Family of Mechanochemical Motor Proteins	798
Conformational Changes in the Myosin Head Couple ATP Hydrolysis to Movement	800
Myosin Heads Take Discrete Steps Along Actin Filaments	802
17.6 Myosin-Powered Movements	803
17.6 Myosin-Powered Movements Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction	803
17.6 Myosin-Powered Movements Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins	803 803 805
 17.6 Myosin-Powered Movements Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins Contraction of Skeletal Muscle Is Regulated by Ca²⁺ and Actin-Binding Proteins 	803 803 805 805
 17.6 Myosin-Powered Movements Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins Contraction of Skeletal Muscle Is Regulated by Ca²⁺ and Actin-Binding Proteins Actin and Myosin II Form Contractile Bundles in Nonmuscle Cells 	803 803 805 805 807
 17.6 Myosin-Powered Movements Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins Contraction of Skeletal Muscle Is Regulated by Ca²⁺ and Actin-Binding Proteins Actin and Myosin II Form Contractile Bundles in Nonmuscle Cells Myosin-Dependent Mechanisms Regulate Contraction in Smooth Muscle and Nonmuscle Cells 	803 803 805 805 807 808
 17.6 Myosin-Powered Movements Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins Contraction of Skeletal Muscle Is Regulated by Ca²⁺ and Actin-Binding Proteins Actin and Myosin II Form Contractile Bundles in Nonmuscle Cells Myosin-Dependent Mechanisms Regulate Contraction in Smooth Muscle and Nonmuscle Cells Myosin V-Bound Vesicles Are Carried Along Actin Filaments 	803 803 805 805 807 808 808
 17.6 Myosin-Powered Movements Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins Contraction of Skeletal Muscle Is Regulated by Ca²⁺ and Actin-Binding Proteins Actin and Myosin II Form Contractile Bundles in Nonmuscle Cells Myosin-Dependent Mechanisms Regulate Contraction in Smooth Muscle and Nonmuscle Cells Myosin V-Bound Vesicles Are Carried Along Actin Filaments 17.7 Cell Migration: Mechanism, Signaling, and Chemotaxis 	803 803 805 805 807 808 808 808
 17.6 Myosin-Powered Movements Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins Contraction of Skeletal Muscle Is Regulated by Ca²⁺ and Actin-Binding Proteins Actin and Myosin II Form Contractile Bundles in Nonmuscle Cells Myosin-Dependent Mechanisms Regulate Contraction in Smooth Muscle and Nonmuscle Cells Myosin V-Bound Vesicles Are Carried Along Actin Filaments 17.7 Cell Migration: Mechanism, Signaling, and Chemotaxis Cell Migration Coordinates Force Generation with Cell Adhesion and Membrane Recycling 	803 803 805 805 807 808 808 808 808
 17.6 Myosin-Powered Movements Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins Contraction of Skeletal Muscle Is Regulated by Ca²⁺ and Actin-Binding Proteins Actin and Myosin II Form Contractile Bundles in Nonmuscle Cells Myosin-Dependent Mechanisms Regulate Contraction in Smooth Muscle and Nonmuscle Cells Myosin V-Bound Vesicles Are Carried Along Actin Filaments 17.7 Cell Migration: Mechanism, Signaling, and Chemotaxis Cell Migration Coordinates Force Generation with Cell Adhesion and Membrane Recycling The Small GTP-Binding Proteins Cdc42, Rac, and Rho Control Actin Organization 	803 803 805 805 807 808 808 808 811 811
 17.6 Myosin-Powered Movements Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins Contraction of Skeletal Muscle Is Regulated by Ca²⁺ and Actin-Binding Proteins Actin and Myosin II Form Contractile Bundles in Nonmuscle Cells Myosin-Dependent Mechanisms Regulate Contraction in Smooth Muscle and Nonmuscle Cells Myosin V-Bound Vesicles Are Carried Along Actin Filaments 17.7 Cell Migration: Mechanism, Signaling, and Chemotaxis Cell Migration Coordinates Force Generation with Cell Adhesion and Membrane Recycling The Small GTP-Binding Proteins Cdc42, Rac, and Rho Control Actin Organization Cell Migration Involves the Coordinate Regulation of Cdc42, Rac, and Rho 	803 803 805 805 807 808 808 808 811 811 811 813

18 Cell Organization and Movement II: Microtubules and Intermediate	
Filaments	821
18.1 Microtubule Structure and Organization	822
Microtubule Walls Are Polarized Structures Built from αβ-Tubulin Dimers	822
Microtubules Are Assembled from MTOCs to Generate Diverse Configurations	824
18.2 Microtubule Dynamics	827
Individual Microtubules Exhibit Dynamic Instability	827
Localized Assembly and "Search and Capture" Help Organize Microtubules	829
Drugs Affecting Tubulin Polymerization Are Useful Experimentally and in Treatment of Diseases	829
18.3 Regulation of Microtubule	
Structure and Dynamics	830
Microtubules Are Stabilized by Side-Binding Proteins	830
+TIPs Regulate the Properties and Functions of the Microtubule (+) End	831
Other End-Binding Proteins Regulate Microtubule Disassembly	832
18.4 Kinesins and Dyneins: Microtubule-Based Motor Proteins	833
Organelles in Axons Are Transported Along Microtubules in Both Directions	833
Kinesin-1 Powers Anterograde Transport of Vesicles Down Axons Toward the (+) Ends of Microtubules	835
The Kinesins Form a Large Protein Superfamily with Diverse Functions	835
Kinesin-1 Is a Highly Processive Motor	836
Dynein Motors Transport Organelles Toward the (–) Ends of Microtubules	838
Kinesins and Dyneins Cooperate in the Transport of Organelles Throughout the Cell	841
Tubulin Modifications Distinguish Different Classes of Microtubules and Their Accessibility to Motors	842
18.5 Cilia and Flagella: Microtubule- Based Surface Structures	844
Eukaryotic Cilia and Flagella Contain Long Doublet Microtubules Bridged by Dynein Motors	844

Ciliary and Flagellar Beating Are Produced by Controlled Sliding of Outer Doublet Microtubules	844
Intraflagellar Transport Moves Material Up and Down Cilia and Flagella	845
Primary Cilia Are Sensory Organelles on Interphase Cells	847
Defects in Primary Cilia Underlie Many Diseases	848
18.6 Mitosis	849
Centrosomes Duplicate Early in the Cell Cycle in Preparation for Mitosis	849
Mitosis Can Be Divided into Six Stages	850
The Mitotic Spindle Contains Three Classes of Microtubules	851
Microtubule Dynamics Increase Dramatically in Mitosis	852
Mitotic Asters Are Pushed Apart by Kinesin-5 and Oriented by Dynein	853
Chromosomes Are Captured and Oriented During Prometaphase	853
Duplicated Chromosomes Are Aligned by Motors and Microtubule Dynamics	854
The Chromosomal Passenger Complex Regulates Microtubule Attachment at Kinetochores	855
Anaphase A Moves Chromosomes to Poles by Microtubule Shortening	857
Anaphase B Separates Poles by the Combined Action of Kinesins and Dynein	858
Additional Mechanisms Contribute to Spindle Formation	858
Cytokinesis Splits the Duplicated Cell in Two	859
Plant Cells Reorganize Their Microtubules and Build a New Cell Wall in Mitosis	860
18.7 Intermediate Filaments	861
Intermediate Filaments Are Assembled from Subunit Dimers	861
Intermediate Filaments Are Dynamic	861
Cytoplasmic Intermediate Filament Proteins Are Expressed in a Tissue-Specific Manner	862
Lamins Line the Inner Nuclear Envelope To Provide Organization and Rigidity to the Nucleus	865
Lamins Are Reversibly Disassembled by Phosphorylation During Mitosis	866
18.8 Coordination and Cooperation Between Cytoskeletal Elements	867
Intermediate Filament–Associated Proteins Contribute to Cellular Organization	867
Microfilaments and Microtubules Cooperate to Transport Melanosomes	867
Cdc42 Coordinates Microtubules and Microfilaments During Cell Migration	867

Advancement of Neural Growth Cones Is Coordinated by Microfilaments and Microtubules

19 The Eukaryotic Cell Cycle	873
19.1 Overview of the Cell Cycle and Its Control	875
The Cell Cycle Is an Ordered Series of Events Leading to Cell Replication	875
Cyclin-Dependent Kinases Control the Eukaryotic Cell Cycle	876
Several Key Principles Govern the Cell Cycle	876
19.2 Model Organisms and Methods of Studying the Cell Cycle	877
Budding and Fission Yeasts Are Powerful Systems for Genetic Analysis of the Cell Cycle	877
Frog Oocytes and Early Embryos Facilitate Biochemical Characterization of the Cell Cycle Machinery	878
Fruit Flies Reveal the Interplay Between Development and the Cell Cycle	879
The Study of Tissue Culture Cells Uncovers Cell Cycle Regulation in Mammals	880
Researchers Use Multiple Tools to Study the Cell Cycle	881
19.3 Regulation of CDK Activity	882
Cyclin-Dependent Kinases Are Small Protein Kinases That Require a Regulatory Cyclin Subunit for Their Activity	883
Cyclins Determine the Activity of CDKs	884
Cyclin Levels Are Primarily Regulated by Protein Degradation	885
CDKs Are Regulated by Activating and Inhibitory Phosphorylation	886
CDK Inhibitors Control Cyclin-CDK Activity	886
Genetically Engineered CDKs Led to the Discovery of CDK Functions	887
19.4 Commitment to the Cell Cycle and DNA Replication	887
Cells Are Irreversibly Committed to Division at a Cell Cycle Point Called START or the Restriction Point	888
The E2F Transcription Factor and Its Regulator Rb Control the G1-S Phase Transition in Metazoans	880
Extracellular Signals Govern Cell Cycle Entry	889
Degradation of an S Phase CDK Inhibitor Triggers DNA Replication	890

893
893
895
000
896
897
0.77
899
901
001
901
907
903
04
905
905
905
908
000
909
911
912
912
915
917
917

Part IV Cell Growth and Differentiation

20 Integrating Cells into Tissues	921
20.1 Cell-Cell and Cell–Extracellular Matrix Adhesion: An Overview	923
Cell-Adhesion Molecules Bind to One Another and to Intracellular Proteins	923
The Extracellular Matrix Participates in Adhesion, Signaling, and Other Functions	925
The Evolution of Multifaceted Adhesion Molecules Made Possible the Evolution of Diverse Animal Tissues	928
Cell-Adhesion Molecules Mediate Mechanotransduction	929
20.2 Cell-Cell and Cell–Extracellular Junctions and Their Adhesion Molecules	931
Epithelial Cells Have Distinct Apical, Lateral, and Basal Surfaces	931
Three Types of Junctions Mediate Many Cell-Cell and Cell-ECM Interactions	932
Cadherins Mediate Cell-Cell Adhesions in Adherens Junctions and Desmosomes	933
Integrins Mediate Cell-ECM Adhesions, Including Those in Epithelial-Cell Hemidesmosomes	938
Tight Junctions Seal Off Body Cavities and Restrict Diffusion of Membrane Components	939
Gap Junctions Composed of Connexins Allow Small Molecules to Pass Directly Between the Cytosols of Adjacent Cells	942
20.3 The Extracellular Matrix I: The Basal Lamina	945
The Basal Lamina Provides a Foundation for Assembly of Cells into Tissues	945
Laminin, a Multi-adhesive Matrix Protein, Helps Cross-Link Components of the Basal Lamina	947
Sheet-Forming Type IV Collagen Is a Major Structural Component of the Basal Lamina	948
Perlecan, a Proteoglycan, Cross-Links Components of the Basal Lamina and Cell-Surface Receptors	950
20.4 The Extracellular Matrix II: Connective Tissue	951
Fibrillar Collagens Are the Major Fibrous Proteins in the ECM of Connective Tissues	951
Fibrillar Collagen Is Secreted and Assembled into Fibrils Outside the Cell	951
Type I and II Collagens Associate with Nonfibrillar Collagens to Form Diverse Structures	952

Proteoglycans and Their Constituent GAGs Play Diverse Roles in the ECM	953
Hyaluronan Resists Compression, Facilitates Cell Migration, and Gives Cartilage Its Gel-Like Properties	956
Fibronectins Connect Cells and ECM, Influencing Cell Shape, Differentiation, and Movement	956
Elastic Fibers Permit Many Tissues to Undergo Repeated Stretching and Recoiling	959
Metalloproteases Remodel and Degrade the Extracellular Matrix	960
20.5 Adhesive Interactions in Motile and Nonmotile Cells	961
Integrins Mediate Adhesion and Relay Signals Between Cells and Their Three-Dimensional Environment	961
Regulation of Integrin-Mediated Adhesion and Signaling Controls Cell Movement	962
Connections Between the ECM and Cytoskeleton Are Defective in Muscular Dystrophy	964
IgCAMs Mediate Cell-Cell Adhesion in Neural and Other Tissues	965
Leukocyte Movement into Tissues Is Orchestrated by a Precisely Timed Sequence of Adhesive Interactions	966
20.6 Plant Tissues	968
The Plant Cell Wall Is a Laminate of Cellulose Fibrils in a Matrix of Glycoproteins	968
Loosening of the Cell Wall Permits Plant Cell Growth	969
Plasmodesmata Directly Connect the Cytosols of Adjacent Cells	969
Tunneling Nanotubes Resemble Plasmodesmata and Transfer Molecules and Organelles Between Animal Cells	970
Only a Few Adhesion Molecules Have Been Identified in Plants	971
94	

Stem Cells, Cell Asymmetry, and Cell Death

- / /	
	075
	9/5

21.1 Early Mammalian Development	977
Fertilization Unifies the Genome	977
Cleavage of the Mammalian Embryo Leads to the First Differentiation Events	979
21.2 Embryonic Stem Cells and Induced Pluripotent Stem Cells	980
21.2 Embryonic Stem Cells and Induced Pluripotent Stem Cells The Inner Cell Mass Is the Source of ES Cells	980 980
21.2 Embryonic Stem Cells and Induced Pluripotent Stem Cells The Inner Cell Mass Is the Source of ES Cells Multiple Factors Control the Pluripotency of ES Cells	980 980 981
21.2 Embryonic Stem Cells and Induced Pluripotent Stem Cells The Inner Cell Mass Is the Source of ES Cells Multiple Factors Control the Pluripotency of ES Cells Animal Cloning Shows That Differentiation Can Be Reversed	980 980 981 983

Somatic Cells Can Generate iPS Cells	983
ES and iPS Cells Can Generate Functional Differentiated Human Cells	986
21.3 Stem Cells and Niches in Multicellular Organisms	987
Adult Planaria Contain Pluripotent Stem Cells	988
Multipotent Somatic Stem Cells Give Rise to Both Stem Cells and Differentiating Cells	988
Stem Cells for Different Tissues Occupy Sustaining Niches	988
Germ-Line Stem Cells Produce Sperm or Oocytes	990
Intestinal Stem Cells Continuously Generate All the Cells of the Intestinal Epithelium	991
Hematopoietic Stem Cells Form All Blood Cells	994
Rare Types of Cells Constitute the Niche for Hematopoietic Stem Cells	996
Meristems Are Niches for Stem Cells in Plants	996
A Negative Feedback Loop Maintains the Size of the Shoot Apical Stem-Cell Population	998
The Root Meristem Resembles the Shoot Meristem in Structure and Function	999
21.4 Mechanisms of Cell Polarity and Asymmetric Cell Division	1000
The Intrinsic Polarity Program Depends on a Positive Feedback Loop Involving Cdc42	1000
Cell Polarization Before Cell Division Follows a Common Hierarchy of Steps	1002
Polarized Membrane Traffic Allows Yeast to Grow Asymmetrically During Mating	1003
The Par Proteins Direct Cell Asymmetry in the Nematode Embryo	1003
The Par Proteins and Other Polarity Complexes Are Involved in Epithelial-Cell Polarity	1007
The Planar Cell Polarity Pathway Orients Cells Within an Epithelium	1008
The Par Proteins Are Involved in Asymmetric Division of Stem Cells	1008
21.5 Cell Death and Its Regulation	1011
Most Programmed Cell Death Occurs Through Apoptosis	1012
Evolutionarily Conserved Proteins Participate in the Apoptotic Pathway	1013
Caspases Amplify the Initial Apoptotic Signal and Destroy Key Cellular Proteins	1015
Neurotrophins Promote Survival of Neurons	1015
Mitochondria Play a Central Role in Regulation of Apoptosis in Vertebrate Cells	1017
The Pro-apoptotic Proteins Bax and Bak Form Pores and Holes in the Outer Mitochondrial Membrane	1018

Release of Cytochrome <i>c</i> and SMAC/DIABLO Proteins from Mitochondria Leads to Formation of the Apoptosome and Caspase Activation	1018
Trophic Factors Induce Inactivation of Bad, a Pro-apoptotic BH3-Only Protein	1018
Vertebrate Apoptosis Is Regulated by BH3-Only Pro-apopto Proteins That Are Activated by Environmental Stresses	otic 1020
Two Types of Cell Murder Are Triggered by Tumor Necrosis Factor, Fas Ligand, and Related Death Signals	1021
22 Cells of the Nervous System	1025
22.1 Neurons and Glia: Building Blocks of the Nervous System	1026
Information Flows Through Neurons from Dendrites to Axons	1027
Information Moves Along Axons as Pulses of Ion Flow Called Action Potentials	1027
Information Flows Between Neurons via Synapses	1028
The Nervous System Uses Signaling Circuits Composed	1028
Glial Cells Form Myelin Sheaths and Support Neurons	1020
Neural Stem Cells Form Nerve and Glial Cells in the Central Nervous System	1021
	1001
22.2 Voltage-Gated Ion Channels and the Propagation of Action Potentials	1034
The Magnitude of the Action Potential Is Close to $E_{\rm Na}$ and Is Caused by Na ⁺ Influx Through Open Na ⁺ Channels	1034
Sequential Opening and Closing of Voltage-Gated Na ⁺ and K ⁺ Channels Generate Action Potentials	1035
Action Potentials Are Propagated Unidirectionally Without Diminution	1037
Nerve Cells Can Conduct Many Action Potentials in the Absence of ATP	1039
All Voltage-Gated Ion Channels Have Similar Structures	1039
Voltage-Sensing S4 α Helices Move in Response to Membrane Depolarization	1039
Movement of the Channel-Inactivating Segment into the Open Pore Blocks Ion Flow	1042
Myelination Increases the Velocity of Impulse Conduction	1043
Action Potentials "Jump" from Node to Node in Myelinated Axons	1043
Two Types of Glia Produce Myelin Sheaths	1044
Light-Activated Ion Channels and Optogenetics	1046
22.3 Communication at Synapses	1048
Formation of Synapses Requires Assembly of Presynaptic and Postsynaptic Structures	1048
Neurotransmitters Are Transported into Synaptic Vesicles by H ⁺ -Linked Antiport Proteins	1052

Three Pools of Synaptic Vesicles Loaded with Neurotransmitter Are Present in the Presynaptic Termina	al 1054
Influx of Ca ²⁺ Triggers Release of Neurotransmitters	1054
A Calcium-Binding Protein Regulates Fusion of Synaptic Vesicles with the Plasma Membrane	1055
Fly Mutants Lacking Dynamin Cannot Recycle Synaptic Vesicles	1056
Signaling at Synapses Is Terminated by Degradation or Reuptake of Neurotransmitters	1057
Opening of Acetylcholine-Gated Cation Channels Leads to Muscle Contraction	1057
All Five Subunits in the Nicotinic Acetylcholine Receptor Contribute to the Ion Channel	1058
Nerve Cells Integrate Many Inputs to Make an All-or-None Decision to Generate an Action Potential	1059
Gap Junctions Allow Direct Communication Between Neurons and Between Glia	1060
22.4 Sensing the Environment:	
Touch, Pain, Taste, and Smell	1061
Mechanoreceptors Are Gated Cation Channels	1061
Pain Receptors Are Also Gated Cation Channels	1062
Five Primary Tastes Are Sensed by Subsets of Cells in Each Taste Bud	1064
A Plethora of Receptors Detect Odors	1066
Each Olfactory Receptor Neuron Expresses a Single Type of Odorant Receptor	1068
22.5 Forming and Storing Memories	1070
Memories Are Formed by Changing the Number or Strength of Synapses Between Neurons	1070
The Hippocampus Is Required for Memory Formation	1071
Multiple Molecular Mechanisms Contribute to Synaptic Plasticity	1072
Formation of Long-Term Memories Requires Gene Expression	1074
23 Immunology	1079
23.1 Overview of Host Defenses	1081
Pathogens Enter the Body Through Different Routes and Replicate at Different Sites	1081
Leukocytes Circulate Throughout the Body and Take Up Residence in Tissues and Lymph Nodes	1082
Mechanical and Chemical Boundaries Form a First Layer of Defense Against Pathogens	1083
Innate Immunity Provides a Second Line of Defense	1084
Inflammation Is a Complex Response to Injury That Encompasses Both Innate and Adaptive Immunity	1086
Adaptive Immunity, the Third Line of Defense,	

1088

Exhibits Specificity

23.2 Immunoglobulins: Structure	
and Function	1089
Immunoglobulins Have a Conserved Structure Consisting of Heavy and Light Chains	1089
Multiple Immunoglobulin Isotypes Exist, Each with Different Functions	1090
Each Naive B Cell Produces a Unique Immunoglobulin	1091
Immunoglobulin Domains Have a Characteristic Fold Composed of Two β Sheets Stabilized by a Disulfide Bond	1093
An Immunoglobulin's Constant Region Determines Its Functional Properties	1094
23.3 Generation of Antibody Diversity and B-Cell Development	1095
A Functional Light-Chain Gene Requires Assembly of V and J Gene Segments	1096
Rearrangement of the Heavy-Chain Locus Involves V, D, and J Gene Segments	1099
Somatic Hypermutation Allows the Generation and Selection of Antibodies with Improved Affinities	1099
B-Cell Development Requires Input from a Pre-B-Cell Receptor	1100
During an Adaptive Response, B Cells Switch from Making Membrane-Bound Ig to Making Secreted Ig	1101
B Cells Can Switch the Isotype of Immunoglobulin They Make	1102
23.4 The MHC and Antigen Presentation	1104

The MHC Determines the Ability of Two Unrelated Individuals of the Same Species to Accept or Reject Grafts	1104
The Killing Activity of Cytotoxic T Cells Is Antigen Specific and MHC Restricted	1105
T Cells with Different Functional Properties Are Guided by Two Distinct Classes of MHC Molecules	1105
MHC Molecules Bind Peptide Antigens and Interact with the T-Cell Receptor	1107
Antigen Presentation Is the Process by Which Protein Fragments Are Complexed with MHC Products and Posted to the Cell Surface	1109
The Class I MHC Pathway Presents Cytosolic Antigens	1110
The Class II MHC Pathway Presents Antigens Delivered to the Endocytic Pathway	1112
23.5 T Cells, T-Cell Receptors, and T-Cell Development	1115
The Structure of the T-Cell Receptor Resembles the F(ab) Portion of an Immunoglobulin	1115
TCR Genes Are Rearranged in a Manner Similar to Immunoglobulin Genes	1116

Many of the Variable Residues of TCRs Are Encoded in t Junctions Between V, D, and J Gene Segments	he 1118
Signaling via Antigen-Specific Receptors Triggers Proliferation and Differentiation of T and B Cells	1118
T Cells Capable of Recognizing MHC Molecules Develog Through a Process of Positive and Negative Selectio	o n 1120
T Cells Commit to the CD4 or CD8 Lineage in the Thymus	1121
T Cells Require Two Types of Signals for Full Activation	1122
Cytotoxic T Cells Carry the CD8 Co-receptor and Are Specialized for Killing	1122
T Cells Produce an Array of Cytokines That Provide Signals to Other Immune-System Cells	1123
Helper T Cells Are Divided into Distinct Subsets Based on Their Cytokine Production and Expression of Surface Markers	1124
Leukocytes Move in Response to Chemotactic Cues Provided by Chemokines	1124
23.6 Collaboration of Immune-System Cells in the Adaptive Response	1125
Toll-Like Receptors Perceive a Variety of Pathogen-Derived Macromolecular Patterns	1125
Engagement of Toll-Like Receptors Leads to Activation of Antigen-Presenting Cells	1127
Production of High-Affinity Antibodies Requires Collaboration Between B and T cells	1128
Vaccines Elicit Protective Immunity Against a Variety of Pathogens	1130
The Immune System Defends Against Cancer	1131

24 Cancer

24.1 How Tumor Cells Differ from	
Normal Cells	1136
The Genetic Makeup of Most Cancer Cells Is Dramatically Altered	1137
Cellular Housekeeping Functions Are Fundamentally Altered in Cancer Cells	1137
Uncontrolled Proliferation Is a Universal Trait of Cancer	1139
Cancer Cells Escape the Confines of Tissues	1140
Tumors Are Heterogeneous Organs That Are Sculpted by Their Environment	1140
Tumor Growth Requires Formation of New Blood Vessels	1141
Invasion and Metastasis Are Late Stages of Tumorigenesis	1141

24.2 The Origins and Development
of Cancer1143

Carcinogens Induce Cancer by Damaging DNA	1143
Some Carcinogens Have Been Linked to Specific Cancers	1144

The Multi-hit Model Can Explain the Progress of Cancer	1145
Successive Oncogenic Mutations Can Be Traced in Colon Cancers	1146
Cancer Development Can Be Studied in Cultured Cells and in Animal Models	1146
24.3 The Genetic Basis of Cancer	1149
Gain-of-Function Mutations Convert Proto-oncogenes into Oncogenes	1149
Cancer-Causing Viruses Contain Oncogenes or Activate Cellular Proto-oncogenes	1152
Loss-of-Function Mutations in Tumor-Suppressor Genes Are Oncogenic	1152
Inherited Mutations in Tumor-Suppressor Genes Increase Cancer Risk	1153
Epigenetic Changes Can Contribute to Tumorigenesis	1155
Micro-RNAs Can Promote and Inhibit Tumorigenesis	1155
Researchers Are Identifying Drivers of Tumorigenesis	1156
Molecular Cell Biology Is Changing How Cancer Is Diagnosed and Treated	1157
24.4 Misregulation of Cell Growth and Death Pathways in Cancer	1159
Oncogenic Receptors Can Promote Proliferation in the Absence of External Growth Factors	1159

Many Oncogenes Encode Constitutively Active Signal-Transducing Proteins	1160
Inappropriate Production of Nuclear Transcription Factors Can Induce Transformation	1160
Aberrations in Signaling Pathways That Control Development Are Associated with Many Cancers	1161
Genes That Regulate Apoptosis Can Function as Proto-oncogenes or Tumor-Suppressor Genes	1163
24.5 Deregulation of the Cell Cycle	
and Genome Maintenance	1100
and Genome Maintenance Pathways in Cancer	1163
and Genome Maintenance Pathways in Cancer Mutations That Promote Unregulated Passage from G1 to S Phase Are Oncogenic	1163 1164
and Genome Maintenance Pathways in Cancer Mutations That Promote Unregulated Passage from G1 to S Phase Are Oncogenic Loss of p53 Abolishes the DNA Damage Checkpoint	1163 1164 1165
and Genome Maintenance Pathways in Cancer Mutations That Promote Unregulated Passage from G ₁ to S Phase Are Oncogenic Loss of p53 Abolishes the DNA Damage Checkpoint Loss of DNA-Repair Systems Can Lead to Cancer	1163 1164 1165 1166
and Genome Maintenance Pathways in Cancer Mutations That Promote Unregulated Passage from G ₁ to S Phase Are Oncogenic Loss of p53 Abolishes the DNA Damage Checkpoint Loss of DNA-Repair Systems Can Lead to Cancer GLOSSARY	1163 1164 1165 1166 G-1