MOLECULAR CELL BIOLOGY

SEVENTH EDITION

Harvey Lodish Arnold Berk Chris A. Kaiser Monty Krieger Anthony Bretscher Hidde Ploegh Angelika Amon Matthew P. Scott

W. H. Freeman and Company New York

CONTENTS IN BRIEF

Part I Chemical and Molecular Foundations

- 1 Molecules, Cells, and Evolution 1
- 2 Chemical Foundations 23
- 3 Protein Structure and Function 59

Part II Genetics and Molecular Biology

- 4 Basic Molecular Genetic Mechanisms 115
- 5 Molecular Genetic Techniques 171
- 6 Genes, Genomics, and Chromosomes 223
- 7 Transcriptional Control of Gene Expression 279
- 8 Post-transcriptional Gene Control 345

Part III Cell Structure and Function

- 9 Culturing, Visualizing, and Perturbing Cells 397
- 10 Biomembrane Structure 443
- 11 Transmembrane Transport of Ions and Small Molecules 473
- 12 Cellular Energetics 517
- 13 Moving Proteins into Membranes and Organelles 577
- 14 Vesicular Traffic, Secretion, and Endocytosis 627
- 15 Signal Transduction and G Protein–Coupled Receptors 673
- 16 Signaling Pathways That Control Gene Activity 721
- 17 Cell Organization and Movement I: Microfilaments 773
- 18 Cell Organization and Movement II: Microtubules and Intermediate Filaments 821
- 19 The Eukaryotic Cell Cycle 873

Part IV Cell Growth and Development

- 20 Integrating Cells Into Tissues 925
- 21 Stem Cells, Cell Asymmetry, and Cell Death 977
- 22 Nerve Cells 1019
- 23 Immunology 1059
- 24 Cancer 1113

CONTENTS

Preface

Part I Chemical and Molecular Foundations

1 1	lolecules, Cells, and Evolution	1
1.1	The Molecules of Life	4
Protei	ns Give Cells Structure and Perform Most Cellular Tasks	6
	ic Acids Carry Coded Information for Making oteins at the Right Time and Place	7
	holipids Are the Conserved Building Blocks All Cellular Membranes	10
1.2	Genomes, Cell Architecture, and Cell Function	10
Proka	ryotes Comprise True Bacteria and Archaea	10
	ichia coli Is Widely Used in Biological Research	13
	karyotic Cells Have Many of the Same Organelles	15
	d Other Subcellular Structures	13
Cellula	ar DNA Is Packaged Within Chromosomes	15
	karyotic Cells Utilize a Similar Cycle to Regulate eir Division	15
1.3	Cells into Tissues: Unicellular and Metazoan Organisms Used for Molecular Cell Biology Investigations	16
Fui	-Celled Eukaryotes Are Used to Study ndamental Aspects of Eukaryotic Cell Structure d Function	16
	ions in Yeast Led to the Identification of Key Cell cle Proteins	17
Multic	ellularity Requires Cell-Cell and Cell Matrix Adhesions	17
Tissue	s Are Organized into Organs	18
	Plan and Rudimentary Tissues Form Early Embryonic Development	18
a5	ebrates, Fish, and Other Organisms Serve Experimental Systems for Study of Human velopment	19
	Are Frequently Used to Generate Models Human Disease	20
	s Are Cellular Parasites That Are Widely ployed in Molecular Cell Biology Research	21

Genetic Diseases Elucidate Important Aspects of Cell Function 22 The Following Chapters Present Much Experimental Data

vii

That Explains How We Know What We Know About Cell	
Structure and Function	22

2 Chemical Foundations	23
2.1 Covalent Bonds and Noncovalent	
Interactions	24
The Electronic Structure of an Atom Determines the Number and Geometry of Covalent Bonds It Can Make	25
Electrons May Be Shared Equally or Unequally in Covalent Bonds	26
Covalent Bonds Are Much Stronger and More Stable Than Noncovalent Interactions	28
Ionic Interactions Are Attractions Between Oppositely Charged Ions	28
Hydrogen Bonds Are Noncovalent Interactions That Determine the Water Solubility of Uncharged Molecules	28
Van der Waals Interactions Are Weak Attractive Interactions Caused by Transient Dipoles	30
The Hydrophobic Effect Causes Nonpolar Molecules to Adhere to One Another	31
Molecular Complementarity Due to Noncovalent Interactions Leads to a Lock-and-Key Fit Between Biomolecules	32
2.2 Chemical Building Blocks of Cells	33
Amino Acids Differing Only in Their Side Chains Compose Proteins	33
Five Different Nucleotides Are Used to Build Nucleic Acids	36
Monosaccharides Covalently Assemble into Linear and Branched Polysaccharides	37
Phospholipids Associate Noncovalently to Form the Basic Bilayer Structure of Biomembranes	40
2.3 Chemical Reactions and Chemical	17
Equilibrium	43
A Chemical Reaction Is in Equilibrium When the Rates of the Forward and Reverse Reactions Are Equal	43
The Equilibrium Constant Reflects the Extent of a Chemical Reaction	44

XV

Chemical Reactions in Cells Are at Steady State	44
Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules	44
Biological Fluids Have Characteristic pH Values	45
Hydrogen lons Are Released by Acids and Taken Up by Bases	46
Buffers Maintain the pH of Intracellular and Extracellular Fluids	47
2.4 Biochemical Energetics	48
Several Forms of Energy Are Important in Biological	
Systems	48
Cells Can Transform One Type of Energy into Another	49
The Change in Free Energy Determines If a Chemical Reaction Will Occur Spontaneously	49
The $\Delta G^{\circ\prime}$ of a Reaction Can Be Calculated from Its $K_{ m eq}$	51
The Rate of a Reaction Depends on the Activation Energy Necessary to Energize the Reactants into a Transition State	51
Life Depends on the Coupling of Unfavorable Chemical Reactions with Energetically Favorable Ones	52
Hydrolysis of ATP Releases Substantial Free Energy and Drives Many Cellular Processes	52
ATP Is Generated During Photosynthesis and Respiration	54
NAD ⁺ and FAD Couple Many Biological Oxidation and Reduction Reactions	54

3 Protein Structure and Function	on 59
3.1 Hierarchical Structure of Protein	s 61
The Primary Structure of a Protein Is Its Linear Arrangement of Amino Acids	61
Secondary Structures Are the Core Elements of	Protein
Architecture	62
Tertiary Structure Is the Overall Folding of a Pol	ypeptide
Chain	64
Different Ways of Depicting the Conformation o	of Proteins
Convey Different Types of Information	64
Structural Motifs Are Regular Combinations of Structures	Secondary 65
Domains Are Modules of Tertiary Structure	67
Multiple Polypeptides Assemble into Quaternal	ry Structures
and Supramolecular Complexes	68
Members of Protein Families Have a Common E	volutionary
Ancestor	69
3.2 Protein Folding	70
Planar Peptide Bonds Limit the Shapes into Wh	ich Proteins
Can Fold	71
The Amino Acid Sequence of a Protein Determi	ines
How It Will Fold	71

Folding of Proteins in Vivo Is Promoted b	y Chaperones 72	
Alternatively Folded Proteins Are Implica	ted in Diseases 76	
3.3 Protein Binding and Enzym	e Catalysis 77	
Specific Binding of Ligands Underlies the of Most Proteins	Functions 77	
Enzymes Are Highly Efficient and Specific	122 Kir (9) Kir (2)	
An Enzyme's Active Site Binds Substrates Out Catalysis	and Carnes 79	
Serine Proteases Demonstrate How an Er Site Works	nzyme's Active 80	
Enzymes in a Common Pathway Are Ofte Associated with One Another	n Physically 84	
3.4 Regulating Protein Function	n 85	
Regulated Synthesis and Degradation of Is a Fundamental Property of Cells	Proteins 85	
The Proteasome Is a Molecular Machine I Proteins	Used to Degrade 85	
Ubiquitin Marks Cytosolic Proteins for De in Proteasomes	gradation 87	
Noncovalent Binding Permits Allosteric, o Regulation of Proteins	88	
Noncovalent Binding of Calcium and GTF Used as Allosteric Switches to Control	Protein Activity 88	
Phosphorylation and Dephosphorylation Regulate Protein Activity	90	
Ubiquitination and Deubiquitination Cov Protein Activity	valently Regulate 90	
Proteolytic Cleavage Irreversibly Activate Some Proteins	s or Inactivates 92	
Higher-Order Regulation Includes Contro Location and Concentration	ol of Protein 92	
3.5 Purifying, Detecting, and C Proteins	haracterizing 93	
Centrifugation Can Separate Particles and That Differ in Mass or Density	d Molecules 93	
Electrophoresis Separates Molecules on t of Their Charge-to-Mass Ratio	the Basis 94	
Liquid Chromatography Resolves Protein or Binding Affinity	s by Mass, Charge, 96	
Highly Specific Enzyme and Antibody As Individual Proteins	says Can Detect 97	
Radioisotopes Are Indispensable Tools fo Biological Molecules	or Detecting 99	
Mass Spectrometry Can Determine the N of Proteins	Aass and Sequence 101	
Protein Primary Structure Can Be Determ by Chemical Methods and from Gene		
Protein Conformation Is Determined by 9 Physical Methods	Sophisticated 104	

3.6 Proteomics

Proteomics Is the Study of All or a Large Subset	100
of Proteins in a Biological System	106
Advanced Techniques in Mass Spectrometry	
Are Critical to Proteomic Analysis	108

106

Part II Genetics and Molecular Biology

Basic Molecular Genetic Mechanisms 1 115 4.1 Structure of Nucleic Acids 117 A Nucleic Acid Strand Is a Linear Polymer with End-to-End Directionality 117 Native DNA Is a Double Helix of Complementary Antiparallel Strands 118 DNA Can Undergo Reversible Strand Separation 120 Torsional Stress in DNA Is Relieved by Enzymes 121 Different Types of RNA Exhibit Various Conformations **Related to Their Functions** 122 4.2 Transcription of Protein-Coding Genes and Formation of Functional mRNA 124 A Template DNA Strand Is Transcribed into a Complementary RNA Chain by RNA Polymerase 124 Organization of Genes Differs in Prokaryotic and Eukaryotic DNA 126 Eukaryotic Precursor mRNAs Are Processed to Form Functional mRNAs 128 Alternative RNA Splicing Increases the Number of Proteins Expressed from a Single Eukaryotic Gene 129 4.3 The Decoding of mRNA by tRNAs 131 Messenger RNA Carries Information from DNA in a Three-Letter Genetic Code 131 The Folded Structure of tRNA Promotes Its Decoding Functions 133 Nonstandard Base Pairing Often Occurs Between Codons and Anticodons 134 Amino Acids Become Activated When Covalently Linked to tRNAs 135 4.4 Stepwise Synthesis of Proteins on Ribosomes 136 **Ribosomes are Protein-Synthesizing Machines** 136 Methionyl-tRNA,^{Met} Recognizes the AUG Start Codon 137 Eukaryotic Translation Initiation Usually Occurs at the First AUG Closest to the 5' End of an mRNA 137 During Chain Elongation Each Incoming Aminoacyl-tRNA Moves Through Three Ribosomal Sites 140

5.1	Genetic Analysis of Mutations to Identify	
5 M	olecular Genetic Techniques	17
	NA Is Integrated into the Host-Cell Genome iome Nonlytic Viral Growth Cycles	16
	iral Growth Cycles Lead to Death of Host Cells	16
	s Can Be Cloned and Counted in Plaque Assays	16
of	apsids Are Regular Arrays of One or a Few Types Protein	16
	/iral Host Ranges Are Narrow	16
	Genetic System	16
4.7	Viruses: Parasites of the Cellular	22
	logous Recombination Can Repair DNA Damage I Generate Genetic Diversity	15
	stems Utilize Recombination to Repair uble-Strand Breaks in DNA	15
	atide Excision Repairs Chemical Adducts t Distort Normal DNA Shape	15
	tch Excision Repairs Other Mismatches I Small Insertions and Deletions	15
Base E	xcision Repairs T-G Mismatches and Damaged Bases	15
	idelity DNA Excision Repair Systems Recognize I Repair Damage	15
to l	cal and Radiation Damage to DNA Can Lead Mutations	15
and	olymerases Introduce Copying Errors I Also Correct Them	15
4.6	DNA Repair and Recombination	15
	eplication Occurs Bidirectionally from Each Origin	14
	Proteins Participate in DNA Replication	14
Are	Formed at the DNA Replication Fork	14
	olymerases Require a Primer to Initiate Replication CDNA Is Unwound, and Daughter Strands	19
4.5	DNA Replication	14
	nse Mutations Cause Premature Termination Protein Synthesis	14
Qu	e-Superfamily Proteins Function in Several ality Control Steps of Translation	14
	mes and Rapid Ribosome Recycling Increase Efficiency of Translation	14
Wh	ation Is Terminated by Release Factors en a Stop Codon Is Reached	14

and study denes	172
Recessive and Dominant Mutant Alleles Generally Have Opposite Effects on Gene Function	172
Segregation of Mutations in Breeding Experiments Reveals Their Dominance or Recessivity	173

	ional Mutations Can Be Used to Study Essential nes in Yeast	175
	ive Lethal Mutations in Diploids Can Be Identified nbreeding and Maintained in Heterozygotes	176
	ementation Tests Determine Whether Different essive Mutations Are in the Same Gene	177
	e Mutants Are Useful in Assessing the Order Vhich Proteins Function	178
	c Suppression and Synthetic Lethality Can Reveal eracting or Redundant Proteins	179
	Can Be Identified by Their Map Position on the omosome	180
5.2	DNA Cloning and Characterization	182
	tion Enzymes and DNA Ligases Allow Insertion	183
	Plasmid Vectors Are Suitable for Cloning Isolated	104
	A Fragments Libraries Represent the Sequences of Protein-Coding	184
Ger		185
	Prepared by Reverse Transcription of Cellular NAs Can Be Cloned to Generate cDNA Libraries	186
	ibraries Can Be Screened by Hybridization In Oligonucleotide Probe	188
	Senomic Libraries Can Be Constructed with Shuttle tors and Screened by Functional Complementation	188
	ctrophoresis Allows Separation of Vector DNA n Cloned Fragments	191
	lymerase Chain Reaction Amplifies a Specific A Sequence from a Complex Mixture	192
	I DNA Molecules Are Sequenced Rapidly Methods Based on PCR	195
5.3	Using Cloned DNA Fragments to Study Gene Expression	198
	ization Techniques Permit Detection of Specific DNA gments and mRNAs	198
	licroarrays Can Be Used to Evaluate the Expression Aany Genes at One Time	199
	Analysis of Multiple Expression Experiments ntifies Co-regulated Genes	200
	Expression Systems Can Produce Large Quantities Proteins from Cloned Genes	201
	d Expression Vectors Can Be Designed Use in Animal Cells	203
5.4	Locating and Identifying Human Disease Genes	206
	genic Diseases Show One of Three Patterns nheritance	206
	olymorphisms Are Used as Markers for kage-Mapping of Human Mutations	207

6.1 Eukaryotic Gene Structure	225		
6 Genes, Genomics, and Chromosomes	223		
RNA Interference Causes Gene Inactivation by Destroying the Corresponding mRNA	216		
Dominant-Negative Alleles Can Functionally Inhibit Some Genes	215		
Normal Yeast Genes Can Be Replaced with Mutant Alleles by Homologous Recombination Transcription of Genes Ligated to a Regulated Promoter Can Be Controlled Experimentally Specific Genes Can Be Permanently Inactivated in the Germ Line of Mice Somatic Cell Recombination Can Inactivate Genes in Specific Tissues			
		5.5 Inactivating the Function of Specific Genes in Eukaryotes	212
		Many inherited Diseases Result from Multiple Genetic Defects	210
		Further Analysis Is Needed to Locate a Disease Gene in Cloned DNA	
Linkage Studies Can Map Disease Genes with a Resolution of About 1 Centimorgan			

Most Eukaryotic Genes Contain Introns and Produce mRNAs Encoding Single Proteins	225
Simple and Complex Transcription Units Are Found in Eukaryotic Genomes	225
Protein-Coding Genes May Be Solitary or Belong to a Gene Family	227
Heavily Used Gene Products Are Encoded by Multiple Copies of Genes	229
Nonprotein-Coding Genes Encode Functional RNAs	230
6.2 Chromosomal Organization of Genes and Noncoding DNA	231
Genomes of Many Organisms Contain Nonfunctional DNA	231
Most Simple-Sequence DNAs Are Concentrated in Specific Chromosomal Locations	232
DNA Fingerprinting Depends on Differences in Length of Simple-Sequence DNAs	233
Unclassified Spacer DNA Occupies a Significant Portion of the Genome	233
6.3 Transposable (Mobile) DNA Elements	234
Movement of Mobile Elements Involves a DNA or an RNA Intermediate	235
DNA Transposons Are Present in Prokaryotes and Eukaryotes	236
LTR Retrotransposons Behave Like Intracellular Retroviruse	5 238

Non-LTR Retrotransposons Transpose by a Distinct Mechanism	240
Other Retroposed RNAs Are Found in Genomic DNA	243
Mobile DNA Elements Have Significantly Influenced	
Evolution	243
6.4 Organelle DNAs	245
Mitochondria Contain Multiple mtDNA Molecules	245
mtDNA Is Inherited Cytoplasmically	246
The Size, Structure, and Coding Capacity of mtDNA Vary Considerably Between Organisms	y 246
Products of Mitochondrial Genes Are Not Exported	248
Mitochondria Evolved from a Single Endosymbiotic Eve Involving a <i>Rickettsia</i> -like Bacterium	ent 249
Mitochondrial Genetic Codes Differ from the Standard	
Nuclear Code	249
Mutations in Mitochondrial DNA Cause Several Genetic Diseases in Humans	250
Chloroplasts Contain Large DNAs Often Encoding More Than a Hundred Proteins	251
6.5 Genomics: Genome-wide Analysis	
of Gene Structure and Expression	252
Stored Sequences Suggest Functions of Newly Identifie Genes and Proteins	ed 252
Comparison of Related Sequences from Different Speci Can Give Clues to Evolutionary Relationships Among Proteins	
Genes Can Be Identified Within Genomic DNA Sequences	253
The Number of Protein-Coding Genes in an Organism's Genome Is Not Directly Related to Its Biological Complexity	254
6.6 Structural Organization	
of Eukaryotic Chromosomes	256
Chromatin Exists in Extended and Condensed Forms	256
Modifications of Histone Tails Control Chromatin Condensation and Function	258
Nonhistone Proteins Organize Long Chromatin Loops	263
Additional Nonhistone Proteins Regulate Transcription and Replication	265
6.7 Morphology and Functional Elements of Eukaryotic Chromosomes	266
Chromosome Number, Size, and Shape at Metaphase	200
Are Species-Specific	266
During Metaphase, Chromosomes Can Be Distinguishe by Banding Patterns and Chromosome Painting	d 267
Chromosome Painting and DNA Sequencing Reveal the Evolution of Chromosomes	268

7 Transcriptional Control	
Addition of Telomeric Sequences by Telomerase Prevents Shortening of Chromosomes	273
Centromere Sequences Vary Greatly in Length and Complexity	27
Three Functional Elements Are Required for Replication and Stable Inheritance of Chromosomes	27(
Interphase Polytene Chromosomes Arise by DNA Amplification	269

/	Transcri	ptional Control
	of Gene	Expression

7.1	Control of Gene Expression	
	in Bacteria	282
	ription Initiation by Bacterial RNA Polymerase quires Association with a Sigma Factor	282
	on of <i>lac</i> Operon Transcription Can Be Repressed d Activated	282
Bag	Molecules Regulate Expression of Many cterial Genes via DNA-Binding Repressors d Activators	284
	ription Initiation from Some Promoters quires Alternative Sigma Factors	285
	ription by o ⁵⁴ -RNA Polymerase Is Controlled Activators That Bind Far from the Promoter	285
	Bacterial Responses Are Controlled Two-Component Regulatory Systems	285
10.00	ol of Transcription Elongation	286
7.2	Overview of Eukaryotic Gene Control	288
Bo	atory Elements in Eukaryotic DNA Are Found th Close to and Many Kilobases Away m Transcription Start Sites	289
	Eukaryotic RNA Polymerases Catalyze Formation Different RNAs	290
	argest Subunit in RNA Polymerase II Has an Essential rboxyl-Terminal Repeat	293
7.3	RNA Polymerase II Promoters and General Transcription Factors	295
	olymerase II Initiates Transcription at DNA Sequences rresponding to the 5' Cap of mRNAs	295
The TA	ATA Box, Initiators, and CpG Islands Function Promoters in Eukaryotic DNA	295
	al Transcription Factors Position RNA Polymerase II Start Sites and Assist in Initiation	297
	o Transcription Initiation by RNA Polymerase II quires Additional Proteins	301

7.4	Regulatory Sequences in Protein-Coding	
	Genes and the Proteins Through Which	
	They Function	302
	ter-Proximal Elements Help Regulate	
	aryotic Genes	302
	t Enhancers Often Stimulate Transcription RNA Polymerase II	303
	ukaryotic Genes Are Regulated by Multiple nscription-Control Elements	304
	inting and Gel-Shift Assays Detect Protein-DNA eractions	305
	tors Promote Transcription and Are Composed Distinct Functional Domains	305
	sors Inhibit Transcription and Are the Functional overse of Activators	307
	inding Domains Can Be Classified into Numerous uctural Types	308
	urally Diverse Activation and Repression Domains	
	ulate Transcription	311
	ription Factor Interactions Increase Gene-Control	
0.0360	tions	312
Multip	rotein Complexes Form on Enhancers	314
7.5	Molecular Mechanisms of Transcription	
	Repression and Activation	315
	tion of Heterochromatin Silences Gene Expression elomeres, Near Centromeres, and in Other Regions	315
	sors Can Direct Histone Deacetylation specific Genes	318
Activa	tors Can Direct Histone Acetylation at Specific Genes	318
	atin-Remodeling Factors Help Activate or Repress nscription	319
The M	ediator Complex Forms a Molecular Bridge Between	
Act	ivation Domains and Pol II	320
The Ye	ast Two-Hybrid System	321
7.6	Regulation of Transcription-Factor Activity	323
All Nu	clear Receptors Share a Common Domain Structure	324
	ir-Receptor Response Elements Contain Inverted Direct Repeats	324
	one Binding to a Nuclear Receptor Regulates Activity as a Transcription Factor	325
	oans Regulate the Pol II Transition from Initiation Flongation	325
Pol II T	ermination Is Also Regulated	326
7.7	Epigenetic Regulation of Transcription	327
Epiger	etic Repression by DNA Methylation	327
	e Methylation at Other Specific Lysines Are Linked pigenetic Mechanisms of Gene Repression	328
	etic Control by Polycomb and Trithorax Complexes	330

in Metazoans	331
Plants and Fission Yeast Use Short RNA-Directed	
Methylation of Histones and DNA	333
7.8 Other Eukaryotic Transcription Systems	s 336
Transcription Initiation by Pol I and Pol III Is Analogous to That by Pol II	336
Mitochondrial and Chloroplast DNAs Are Transcribed	187.8
by Organelle-Specific RNA Polymerases	338
8 Post-transcriptional Gene Control	345
8.1 Processing of Eukaryotic Pre-mRNA	348
The 5' Cap Is Added to Nascent RNAs Shortly After Transcription Initiation	240
	348
A Diverse Set of Proteins with Conserved RNA-Binding Domains Associate with Pre-mRNAs	349
Splicing Occurs at Short, Conserved Sequences in Pre-mRNAs via Two Transesterification Reactions	351
During Splicing, snRNAs Base-Pair with Pre-mRNA	352
Spliceosomes, Assembled from snRNPs and a Pre-mRN	
Carry Out Splicing	353
Chain Elongation by RNA Polymerase II Is Coupled	256
to the Presence of RNA-Processing Factors	356
SR Proteins Contribute to Exon Definition in Long Pre-mRNAs	356
Self-Splicing Group II Introns Provide Clues to the Evolution of snRNAs	357
3' Cleavage and Polyadenylation of Pre-mRNAs Are Tightly Coupled	358
Nuclear Exonucleases Degrade RNA That Is Processed	550
Out of Pre-mRNAs	359
8.2 Regulation of Pre-mRNA Processing	360
Alternative Splicing Generates Transcripts with Differen	t
Combinations of Exons	361
A Cascade of Regulated RNA Splicing Controls	
Drosophila Sexual Differentiation	361
Splicing Repressors and Activators Control Splicing at Alternative Sites	362
RNA Editing Alters the Sequences of Some Pre-mRNAs	364
8.3 Transport of mRNA Across the Nuclear	
Envelope	365
Macromolecules Exit and Enter the Nucleus Through Nuclear Pore Complexes	365
Pre-mRNAs in Spliceosomes Are Not Exported from	
the Nucleus	367
HIV Rev Protein Regulates the Transport of Unspliced Viral mRNAs	368

Noncoding RNAs Direct Epigenetic Repression

8.4 Cytoplasmic Mechanisms	
of Post-transcriptional Control	370
Micro RNAs Repress Translation of Specific mRNAs	371
RNA Interference Induces Degradation of Precisely Complementary mRNAs	373
Cytoplasmic Polyadenylation Promotes Translation of Some mRNAs	374
Degradation of mRNAs in the Cytoplasm Occurs by Several Mechanisms	375
Protein Synthesis Can Be Globally Regulated	376
Sequence-Specific RNA-Binding Proteins Control Specific mRNA Translation	379
Surveillance Mechanisms Prevent Translation of Improperl Processed mRNAs	y 380
Localization of mRNAs Permits Production of Proteins at Specific Regions Within the Cytoplasm	380
8.5 Processing of rRNA and tRNA	384
Pre-rRNA Genes Function as Nucleolar Organizers and Are Similar in All Eukaryotes	384
Small Nucleolar RNAs Assist in Processing Pre-rRNAs	385
Self-Splicing Group I Introns Were the First Examples of Catalytic RNA	389
Pre-tRNAs Undergo Extensive Modification in the Nucleus	390
Nuclear Bodies Are Functionally Specialized Nuclear Domains	391

Part III Cell Structure and Function

	ulturing, Visualizing,	
a	nd Perturbing Cells	397
9.1	Growing Cells in Culture	398
	e of Animal Cells Requires Nutrient-Rich Media d Special Solid Surfaces	398
Primai	ry Cell Cultures and Cell Strains Have a Finite Life Span	399
Transf	ormed Cells Can Grow Indefinitely in Culture	400
Flow (ytometry Separates Different Cell Types	400
	h of Cells in Two-Dimensional and Three-Dimensional ture Mimics the In Vivo Environment	401
1.	i Cells Called Hybridomas Produce Abundant noclonal Antibodies	402
9.2	Light Microscopy: Exploring Cell Structure and Visualizing Proteins Within Cells	404
The Re	esolution of the Light Microscope Is About 0.2 μm	404
	Contrast and Differential-Interference-Contrast croscopy Visualize Unstained Living Cells	405

Imaging Subcellular Details Often Requires That the Samples Be Fixed, Sectioned, and Stained	408
Fluorescence Microscopy Can Localize and Quantify Specific Molecules In Live Cells	408
Determination of Intracellular Ca ²⁺ and H ⁺ Levels with Ion-Sensitive Fluorescent Dyes	409
Immunofluorescence Microscopy Can Detect Specific Proteins in Fixed Cells	409
Tagging with Fluorescent Proteins Allows the Visualization of Specific Proteins in Living Cells	411
Deconvolution and Confocal Microscopy Enhance Visualization of Three-Dimensional Fluorescent Objects	411
TIRF Microscopy Provides Exceptional Imaging in One Focal Plane	415
FRAP Reveals the Dynamics of Cellular Components	415
FRET Measures Distance Between Chromophores	416
Super-Resolution Microscopy Can Localize Proteins to Nanometer Accuracy	418

9.3	Electron Microscopy: High-Resolution	
	Imaging	419
	Molecules or Structures Can Be Imaged After a Neg in or Metal Shadowing	ative 419
	nd Tissues Are Cut into Thin Sections for Viewing Electron Microscopy	420
	noelectron Microscopy Localizes Proteins the Ultrastructural Level	421
	lectron Microscopy Allows Visualization Specimens Without Fixation or Staining	421
	ing Electron Microscopy of Metal-Coated ecimens Reveals Surface Features	423

9.4	Isolation and Characterization of Cell	
	Organelles	424
Organ	elles of the Eukaryotic Cell	424
100	tion of Cells Releases Their Organelles and Other ntents	427
Centrif	fugation Can Separate Many Types of Organelles	427
	elle-Specific Antibodies Are Useful in Preparing hly Purified Organelles	429
Proteo	mics Reveals the Protein Composition of Organelles	430
9.5	Perturbing Specific Cell Functions	430
Drugs	Are Commonly Used in Cell Biology	430
Chemi	cal Screens Can Identify New Specific Drugs	430
	nterfering RNAs (siRNAs) Can Knock Down ression of Specific Proteins	432
Genon	nic Screens Using siRNA in the Nematode C. elegans	434
CLAS	SIC EXPERIMENT 9.1 Separating Organelles	441

10 Biomembrane Structure	443
10.1 The Lipid Bilayer: Composition	
and Structural Organization	445
Phospholipids Spontaneously Form Bilayers	445
Phospholipid Bilayers Form a Sealed Compartment Surrounding an Internal Aqueous Space	446
Biomembranes Contain Three Principal Classes of Lipids	448
Most Lipids and Many Proteins Are Laterally Mobile in Biomembranes	450
Lipid Composition Influences the Physical Properties of Membranes	452
Lipid Composition Is Different in the Exoplasmic and Cytosolic Leaflets	453
Cholesterol and Sphingolipids Cluster with Specific Proteins in Membrane Microdomains	454
Cells Store Excess Lipids in Lipid Droplets	455
10.2 Membrane Proteins: Structure	
and Basic Functions	455
Proteins Interact with Membranes in Three Different Ways	456
Most Transmembrane Proteins Have Membrane- Spanning α Helices	456
Multiple β Strands in Porins Form Membrane-Spanning "Barrels"	460
Covalently Attached Lipids Anchor Some Proteins to Membranes	460
All Transmembrane Proteins and Glycolipids Are Asymmetrically Oriented in the Bilayer	461
Lipid-Binding Motifs Help Target Peripheral Proteins to the Membrane	462
Proteins Can Be Removed from Membranes by Detergents or High-Salt Solutions	462
10.3 Phospholipids, Sphingolipids,	
and Cholesterol: Synthesis and Intracellular Movement	464
Fatty Acids Are Assembled from Two-Carbon Building Blocks by Several Important Enzymes	465
Small Cytosolic Proteins Facilitate Movement of Fatty Acids	465
Fatty Acids Are Incorporated into Phospholipids Primarily	
on the ER Membrane	465
Flippases Move Phospholipids from One Membrane Leaflet to the Opposite Leaflet	467
Cholesterol Is Synthesized by Enzymes in the Cytosol and ER Membrane	467
Cholesterol and Phospholipids Are Transported Between Organelles by Several Mechanisms	468

and Small Molecules	473
11.1 Overview of Transmembrane Transport	474
Only Gases and Small Uncharged Molecules Cross Membranes by Simple Diffusion	474
Three Main Classes of Membrane Proteins Transport Molecules and Ions Across Biomembranes	475
11.2 Facilitated Transport of Glucose and Water	477
Uniport Transport Is Faster and More Specific than Simple Diffusion	477
The Low K _m of the GLUT1 Uniporter Enables It to Transport Glucose into Most Mammalian Cells	478
The Human Genome Encodes a Family of Sugar- Transporting GLUT Proteins	479
Transport Proteins Can Be Studied Using Artificial	472
Membranes and Recombinant Cells	480
Osmotic Pressure Causes Water to Move Across Membranes	480
Aquaporins Increase the Water Permeability of Cell Membranes	481
11.3 ATP-Powered Pumps and the Intracellular	
Ionic Environment	483
There are Four Main Classes of ATP-Powered Pumps	483
ATP-Powered Ion Pumps Generate and Maintain Ionic Gradients Across Cellular Membranes	485
Muscle Relaxation Depends on Ca ²⁺ ATPases That Pump Ca ²⁺ from the Cytosol into the Sarcoplasmic Reticulum	486
The Mechanism of Action of the Ca ²⁺ Pump Is Known in Detail	486
Calmodulin Regulates the Plasma Membrane Pumps That Control Cytosolic Ca ²⁺ Concentrations	487
Na ⁺ /K ⁺ ATPase Maintains the Intracellular Na ⁺ and K ⁺ Concentrations in Animal Cells	489
V-Class H ⁺ ATPases Maintain the Acidity of Lysosomes and Vacuoles	490
ABC Proteins Export a Wide Variety of Drugs and Toxins	
from the Cell	491
Certain ABC Proteins "Flip" Phospholipids and Other Lipid-Soluble Substrates from One Membrane Leaflet to the Other	492
The ABC Cystic Fibrosis Transmembrane Regulator (CFTR)	
Is a Chloride Channel, Not a Pump	494
11.4 Nongated Ion Channels and the Resting Membrane Potential	495
Selective Movement of Ions Creates a Transmembrane Electric Gradient	495

11 Transmembrane Transport of Ions

The Resting Membrane Potential in Animal Cells Depends Largely on the Outward Flow of K ⁺ Ions Through Open K ⁺ Channels	497
Ion Channels Are Selective for Certain Ions by Virtue of a Molecular "Selectivity Filter"	497
	431
Patch Clamps Permit Measurement of Ion Movements Through Single Channels	499
Novel Ion Channels Can Be Characterized by a Combination of Oocyte Expression and Patch Clamping	501
11.5 Cotransport by Symporters and Antiporters	502
Na ⁺ Entry into Mammalian Cells Is Thermodynamically Favored	502
Na ⁺ -Linked Symporters Enable Animal Cells to Import Glucose and Amino Acids Against High Concentration Gradients	502
A Bacterial Na [®] /Amino Acid Symporter Reveals How Symport Works	504
A Na ⁺ -Linked Ca ²⁺ Antiporter Regulates the Strength of Cardiac Muscle Contraction	504
Several Cotransporters Regulate Cytosolic pH	505
An Anion Antiporter Is Essential for Transport of CO ₂ by Red Blood Cells	506
Numerous Transport Proteins Enable Plant Vacuoles to Accumulate Metabolites and Ions	507
11.6 Transcellular Transport	508
Multiple Transport Proteins Are Needed to Move Glucose and Amino Acids Across Epithelia	508
Simple Rehydration Therapy Depends on the Osmotic Gradient Created by Absorption of Glucose and Na ⁺	509
Parietal Cells Acidify the Stomach Contents While Maintaining a Neutral Cytosolic pH	509
Bone Resorption Requires Coordinated Function	
of a V-Class Proton Pump and a Specific Chloride Channel Protein	510
CLASSIC EXPERIMENT 11.1 Stumbling upon	
Active Transport	515
12 Cellular Energetics	517
12.1 First Step of Harvesting Energy	
from Glucose: Glycolysis	519
During Glycolysis (Stage I), Cytosolic Enzymes Convert Glucose to Pyruvate	520
The Rate of Glycolysis Is Adjusted to Meet the Cell's Need for ATP	520
Glucose Is Fermented When Oxygen Is Scarce	522

12.2 Mitochondria and the Citric Acid Cycle	524
Mitochondria Are Dynamic Organelles with Two Structurally and Functionally Distinct Membranes	524
In the First Part of Stage II, Pyruvate Is Converted to Acetyl CoA and High-Energy Electrons	526
In the Second Part of Stage II, the Citric Acid Cycle Oxidizes the Acetyl Group in Acetyl CoA to CO ₂ and Generates High-Energy Electrons	527
Transporters in the Inner Mitochondrial Membrane Help Maintain Appropriate Cytosolic and Matrix Concentrations of NAD ⁺ and NADH	529
Mitochondrial Oxidation of Fatty Acids Generates ATP	529
Peroxisomal Oxidation of Fatty Acids Generates No ATP	531
12.3 The Electron Transport Chain and Generation of the Proton-Motive Force	532
Oxidation of NADH and FADH ₂ Releases a Significant Amount of Energy	532
Electron Transport in Mitochondria Is Coupled to Proton	533
Pumping Electrons Flow "Downhill" Through a Series of Electron	
Carriers Four Large Multiprotein Complexes Couple Electron Transport to Proton Pumping Across the Mitochondrial	534
Inner Membrane Reduction Potentials of Electron Carriers in the Electron Transport Chain Favor Electron Flow from NADH to O ₂	535 539
The Multiprotein Complexes of the Electron Transport Chain Assemble into Supercomplexes	540
Reactive Oxygen Species (ROS) Are Toxic By-products of Electron Transport That Can Damage Cells	541
Experiments Using Purified Electron Transport Chain Complexes Established the Stoichiometry of Proton Pumping	542
The Proton-Motive Force in Mitochondria Is Due Largely to a Voltage Gradient Across the Inner Membrane	542
12.4 Harnessing the Proton-Motive Force to Synthesize ATP	544
The Mechanism of ATP Synthesis Is Shared Among Bacteria, Mitochondria, and Chloroplasts	544
ATP Synthase Comprises F ₀ and F ₁ Multiprotein Complexes	546
Rotation of the F ₁ γ Subunit, Driven by Proton Movement Through F ₀ , Powers ATP Synthesis	547
Multiple Protons Must Pass Through ATP Synthase to Synthesize One ATP	549
F ₀ c Ring Rotation Is Driven by Protons Flowing Through Transmembrane Channels	549
ATP-ADP Exchange Across the Inner Mitochondrial Membrane Is Powered by the Proton-Motive	
Force	550

Rate of Mitochondrial Oxidation Normally Depends	551
Brown-Fat Mitochondria Use the Proton-Motive Force to Generate Heat	551
	551
12.5 Photosynthesis and Light-Absorbing Pigments	552
Thylakoid Membranes in Chloroplasts Are the Sites of Photosynthesis in Plants	553
Three of the Four Stages in Photosynthesis Occur Only During Illumination	553
Each Photon of Light Has a Defined Amount of Energy	555
Photosystems Comprise a Reaction Center and Associated Light-Harvesting Complexes	555
Photoelectron Transport from Energized Reaction-Center Chlorophyll <i>a</i> Produces a Charge Separation	556
Internal Antenna and Light-Harvesting Complexes	550
Increase the Efficiency of Photosynthesis	557
12.6 Molecular Analysis of Photosystems	559
The Single Photosystem of Purple Bacteria Generates a Proton-Motive Force but No O ₂	559
Chloroplasts Contain Two Functionally and Spatially Distinct Photosystems	561
Linear Electron Flow Through Both Plant Photosystems, PSII and PSI, Generates a Proton-Motive Force, O ₂ , and NADPH	561
An Oxygen-Evolving Complex Is Located on the Luminal Surface of the PSII Reaction Center	562
Multiple Mechanisms Protect Cells Against Damage from Reactive Oxygen Species During Photoelectron Transport	563
Cyclic Electron Flow Through PSI Generates a Proton-Motive Force but No NADPH or O ₂	564
Relative Activities of Photosystems I and II Are Regulated	565
12.7 CO ₂ Metabolism During Photosynthesis	567
Rubisco Fixes CO ₂ in the Chloroplast Stroma	567
Synthesis of Sucrose Using Fixed CO ₂ Is Completed	
in the Cytosol	567
Light and Rubisco Activase Stimulate CO ₂ Fixation	569
Photorespiration Competes with Carbon Fixation and Is Reduced in C ₄ Plants	569
13 Moving Proteins into Membranes and Organelles	577
13.1 Targeting Proteins to and Across the ER Membrane	579
Pulse-Labeling Experiments with Purified ER Membranes Demonstrated That Secreted Proteins Cross the ER Membrane	579
the chimemorane	219

A Hydrophobic N-Terminal Signal Sequence Targets Nascent Secretory Proteins to the ER	580	
Cotranslational Translocation Is Initiated by		
Two GTP-Hydrolyzing Proteins	582	
Passage of Growing Polypeptides Through the Translocon Is Driven by Translation	583	
ATP Hydrolysis Powers Post-translational Translocation of Some Secretory Proteins in Yeast	584	
13.2 Insertion of Membrane Proteins into the ER	587	
Several Topological Classes of Integral Membrane Proteins Are Synthesized on the ER	587	
Internal Stop-Transfer and Signal-Anchor Sequences Determine Topology of Single-PassProteins	588	
Multipass Proteins Have Multiple Internal Topogenic Sequences	591	
A Phospholipid Anchor Tethers Some Cell-Surface Proteins to the Membrane	592	
The Topology of a Membrane Protein Often Can Be Deduced from Its Sequence	592	
13.3 Protein Modifications, Folding, and Quality Control in the ER	594	
A Preformed N-Linked Oligosaccharide Is Added to Many Proteins in the Rough ER	595	
Oligosaccharide Side Chains May Promote Folding and Stability of Glycoproteins	596	
Disulfide Bonds Are Formed and Rearranged by Proteins in the ER Lumen	596	
Chaperones and Other ER Proteins Facilitate Folding and Assembly of Proteins	598	
Improperly Folded Proteins in the ER Induce Expression of Protein-Folding Catalysts	599	
Unassembled or Misfolded Proteins in the ER Are Often Transported to the Cytosol for Degradation	600	
13.4 Targeting of Proteins to Mitochondria and Chloroplasts	601	
Amphipathic N-Terminal Signal Sequences Direct Proteins to the Mitochondrial Matrix	603	
Mitochondrial Protein Import Requires Outer-Membrane Receptors and Translocons in Both Membranes	603	
Studies with Chimeric Proteins Demonstrate Important Features of Mitochondrial Import	605	
Three Energy Inputs Are Needed to Import Proteins into Mitochondria	606	
Multiple Signals and Pathways Target Proteins to Submitochondrial Compartments	606	
Targeting of Chloroplast Stromal Proteins is Similar to Import of Mitochondrial Matrix Proteins	610	

Proteins Are Targeted to Thylakoids by Mechanisms Related to Translocation Across the Bacterial	
Cytoplasmic Membrane	610
13.5 Targeting of Peroxisomal Proteins	612
Cytosolic Receptor Targets Proteins with an SKL Sequence at the C-Terminus into the Peroxisomal Matrix	612
Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways	613
13.6 Transport into and out of the Nucleus	615
Large and Small Molecules Enter and Leave the Nucleus via Nuclear Pore Complexes	615
Nuclear Transport Receptors Escort Proteins Containing Nuclear-Localization Signals into the Nucleus	617
A Second Type of Nuclear Transport Receptors Escort Proteins Containing Nuclear-Export Signals out of the Nucleus	619
Most mRNAs Are Exported from the Nucleus by a Ran-Independent Mechanism	619
14 Vesicular Traffic, Secretion, and Endocytosis	627
and Endotytosis	947
14.1 Techniques for Studying the Secretory Pathway	629
Transport of a Protein Through the Secretory Pathway Can Be Assayed in Living Cells	629
Yeast Mutants Define Major Stages and Many Components in Vesicular Transport	632
Cell-Free Transport Assays Allow Dissection of Individual Steps in Vesicular Transport	633
14.2 Molecular Mechanisms of Vesicle	
Budding and Fusion	634
Assembly of a Protein Coat Drives Vesicle Formation and Selection of Cargo Molecules	634
A Conserved Set of GTPase Switch Proteins Controls Assembly of Different Vesicle Coats	635
Targeting Sequences on Cargo Proteins Make Specific Molecular Contacts with Coat Proteins	636
Rab GTPases Control Docking of Vesicles on Target Membranes	638
Paired Sets of SNARE Proteins Mediate Fusion of Vesicles with Target Membranes	639
Dissociation of SNARE Complexes After Membrane Fusion Is Driven by ATP Hydrolysis	639
14.3 Early Stages of the Secretory Pathway	640
COPII Vesicles Mediate Transport from the ER to the Golgi	640
COPI Vesicles Mediate Retrograde Transport Within	0.0
the Golgi and from the Golgi to the ER	642

15 Signal Transduction and G Protein- Coupled Receptors	673
CLASSIC EXPERIMENT 14.1 Following a Protein Out of the Cell	67
The Autophagic Pathway Delivers Cytosolic Proteins or Entire Organelles to Lysosomes	66
Retroviruses Bud from the Plasma Membrane by a Process Similar to Formation of Multivesicular Endosomes	66
Multivesicular Endosomes Segregate Membrane Proteins Destined for the Lysosomal Membrane from Proteins Destined for Lysosomal Degradation	66
14.6 Directing Membrane Proteins and Cytosolic Materials to the Lysosome	66
Without Dissociation of the Receptor-Transferrin Complex in Endosomes	65
The Acidic pH of Late Endosomes Causes Most Receptor-Ligand Complexes to Dissociate The Endocytic Pathway Delivers Iron to Cells	65
Receptors for Low-Density Lipoprotein and Other Ligands Contain Sorting Signals That Target Them for Endocytosis	65
Cells Take Up Lipids from the Blood in the Form of Large, Well-Defined Lipoprotein Complexes	65
14.5 Receptor-Mediated Endocytosis	654
Several Pathways Sort Membrane Proteins to the Apical or Basolateral Region of Polarized Cells	65
Some Proteins Undergo Proteolytic Processing After Leaving the trans-Golgi	65
Protein Aggregation in the trans-Golgi May Function In Sorting Proteins to Regulated Secretory Vesicles	65
itudy of Lysosomal Storage Diseases Revealed Key Components of the Lysosomal Sorting Pathway	64
Vannose 6-Phosphate Residues Target Soluble Proteins to Lysosomes	64
Oynamin Is Required for Pinching Off of Clathrin Vesicles	64
/esicles Coated with Clathrin and/or Adapter Proteins Mediate Transport from the <i>trans</i> -Golgi	64
14.4 Later Stages of the Secretory Pathway	64
by Cisternal Maturation	64

Signal to Cellular Response	675
Signaling Molecules Can Act Locally or at a Distance	675
Binding of Signaling Molecules Activates Receptors	
on Target Cells	676

Protein Kinases and Phosphatases Are Employed in Virtually All Signaling Pathways	677	10
	017	
GTP-Binding Proteins Are Frequently Used in Signal Transduction as On/Off Switches	678	0
Intracellular "Second Messengers" Transmit and Amplify		1
Signals from Many Receptors	679	
15.2 Studying Cell-Surface Receptors		- 1
and Signal Transduction Proteins	681	3
The Dissociation Constant Is a Measure of the Affinity of a Receptor for Its Ligand	681	(
Binding Assays Are Used to Detect Receptors and Determine Their Affinity and Specificity for Ligands	682	
Maximal Cellular Response to a Signaling Molecule Usually Does Not Require Activation of All Receptors	683	1
Sensitivity of a Cell to External Signals Is Determined by the Number of Surface Receptors and Their		
Affinity for Ligand	684	
Receptors Can Be Purified by Affinity Techniques	685	
Immunoprecipitation Assays and Affinity Techniques		
Can Be Used to Study the Activity of Signal		
Transduction Proteins	685	
15.3 G Protein-Coupled Receptors:		3
Structure and Mechanism	687	200
All G Protein-Coupled Receptors Share the Same		
Basic Structure	687	1
Ligand-Activated G Protein–Coupled Receptors Catalyze Exchange of GTP for GDP on the α Subunit of a Trimeric G Protein	689	
	005	
Different G Proteins Are Activated by Different GPCRs and In Turn Regulate Different Effector Proteins	691	1
15.4 G Protein-Coupled Receptors		
That Regulate Ion Channels	693	
Acetylcholine Receptors in the Heart Muscle Activate		
a G Protein That Opens K ⁺ Channels	693	2
Light Activates G Protein–Coupled Rhodopsins in Rod Cells of the Eye	694	
Activation of Rhodopsin by Light Leads to Closing of cGMP-Gated Cation Channels	695	3
Signal Amplification Makes the Rhodopsin Signal Transduction Pathway Exquisitely Sensitive	696	2
Rapid Termination of the Rhodopsin Signal Transduction Pathway Is Essential for Acute Vision	696	1
Rod Cells Adapt to Varying Levels of Ambient Light		
by Intracellular Trafficking of Arrestin and Transducin	698	
15 5 C Protein Counted Persenters That		2
15.5 G Protein–Coupled Receptors That Activate or Inhibit Adenylyl Cyclase	699	ŧ,
	022	
Adenylyl Cyclase Is Stimulated and Inhibited by Different Receptor-Ligand Complexes	699	

Structural Studies Established How G _{as} - GTP Binds to and Activates Adenylyl Cyclase	700
cAMP Activates Protein Kinase A by Releasing Inhibitory Subunits	701
Glycogen Metabolism Is Regulated by Hormone-Induced Activation of Protein Kinase A	701
cAMP-Mediated Activation of Protein Kinase A Produces Diverse Responses in Different Cell Types	702
Signal Amplification Occurs in the cAMP–Protein Kinase A Pathway	703
CREB Links cAMP and Protein Kinase A to Activation of Gene Transcription	703
Anchoring Proteins Localize Effects of cAMP to Specific Regions of the Cell	704
Multiple Mechanisms Down-Regulate Signaling from the GPCR/cAMP/PKA Pathway	705
15.6 G Protein–Coupled Receptors That Trigger Elevations in Cytosolic Ca ²⁺	707
Activated Phospholipase C Generates Two Key Second Messe Derived from the Membrane Lipid Phosphatidylinositol	engers 708
The Ca ²⁺ -Calmodulin Complex Mediates Many Cellular Responses to External Signals	711
Signal-Induced Relaxation of Vascular Smooth Muscle Is Mediated by a Ca ²⁺ -Nitric Oxide-cGMP-Activated	
Protein Kinase G Pathway	711
Integration of Ca ²⁺ and cAMP Second Messengers Regulates Glycogenolysis	711
CLASSIC EXPERIMENT 15.1 The Infancy	
of Signal Transduction—GTP Stimulation of cAMP Synthesis	719

16 Signaling Pathways That Control	
Gene Expression	721
16.1 Receptors That Activate Protein	722
Tyrosine Kinases	723
Numerous Factors Regulating Cell Division and Metabolism Are Ligands for Receptor Tyrosine Kinases	723
1997 m 1996 1998 1998 1998 1998 1998 1998 1998	123
Binding of Ligand Promotes Dimerization of an RTK and Leads to Activation of Its Intrinsic Kinase	724
Homo- and Hetero-oligomers of Epidermal Growth Factor Receptors Bind Members of the Epidermal Growth Factor Superfamily	726
Cytokines Influence Development of Many Cell Types	728
Binding of a Cytokine to Its Receptor Activates a Tightly Bound JAK Protein Tyrosine Kinase	728
Phosphotyrosine Residues Are Binding Surfaces for Multiple Proteins with Conserved Domains	730

SH2 Domains in Action: JAK Kinases Activate STAT Transcription Factors	730
Multiple Mechanisms Down-Regulate Signaling from RTKs and Cytokine Receptors	731
non kitki and cytokine keceptors	121
16.2 The Ras/MAP Kinase Pathway	734
Ras, a GTPase Switch Protein, Operates Downstream of Most RTKs and Cytokine Receptors	735
Genetic Studies in <i>Drosophila</i> Identified Key Signal-Transducing Proteins in the Ras/MAP Kinase Pathway	735
Receptor Tyrosine Kinases and JAK Kinases Are Linked to Ras by Adapter Proteins	737
Binding of Sos to Inactive Ras Causes a Conformational Change That Triggers an Exchange of GTP for GDP	738
Signals Pass from Activated Ras to a Cascade of Protein Kinases, Ending with MAP Kinase	738
Phosphorylation of MAP Kinase Results in a Conformational Change That Enhances Its Catalytic Activity and Promotes Kinase Dimerization	740
MAP Kinase Regulates the Activity of Many Transcription Factors Controlling Early Response Genes	741
G Protein-Coupled Receptors Transmit Signals to MAP Kinase in Yeast Mating Pathways	742
Scaffold Proteins Separate Multiple MAP Kinase Pathways in Eukaryotic Cells	744
16.3 Phosphoinositide Signaling Pathways	745
Phospholipase Cy Is Activated by Some RTKs and Cytokine Receptors	745
Recruitment of PI-3 Kinase to Activated Receptors Leads to Synthesis of Three Phosphorylated Phosphatidylinositols	745
Accumulation of PI 3-Phosphates in the Plasma Membrane Leads to Activation of Several Kinases	746
Activated Protein Kinase B Induces Many Cellular Responses	747
The PI-3 Kinase Pathway Is Negatively Regulated by PTEN Phosphatase	747
In .	
16.4 Receptor Serine Kinases That Activate Smads	748
Three Separate TGF-β Receptor Proteins Participate in Binding TGF-β and Activating Signal Transduction	748
Activated TGF-β Receptors Phosphorylate Smad Transcription Factors	749
Negative Feedback Loops Regulate TGF-B/Smad Signaling	751
16.5 Signaling Pathways Controlled by	
Ubiquitination: Wnt, Hedgehog, and NF-кВ	752
Wnt Signaling Triggers Release of a Transcription Factor	
from a Cytosolic Protein Complex	752

17 Cell Organization and Movement I: Microfilaments	773
Multiple Signal Transduction Pathways Interact to Regulate Adlpocyte Differentiation Through PPARγ, the Master Transcriptional Regulator	767
Insulin and Glucagon Work Together to Maintain a Stable Blood Glucose Level	76
16.7 Integration of Cellular Responses to Multiple Signaling Pathways	765
Regulated Intramembrane Proteolysis of SREBP Releases a Transcription Factor That Acts to Maintain Phospholipid and Cholesterol Levels	762
Inappropriate Cleavage of Amyloid Precursor Protein Can Lead to Alzheimer's Disease	762
Matrix Metalloproteases Catalyze Cleavage of Many Signaling Proteins from the Cell Surface	761
On Binding Delta, the Notch Receptor Is Cleaved, Releasing a Component Transcription Factor	760
16.6 Signaling Pathways Controlled by Protein Cleavage: Notch/Delta, SREBP	760
Polyubiquitin Chains Serve as Scaffolds Linking Receptors to Downstream Proteins in the NF-κB Pathway	759
Degradation of an Inhibitor Protein Activates the NF-κB Transcription Factor	75
Hedgehog Signaling in Vertebrates Involves Primary Cilia	75

17.1 Microfilaments and Actin Structures	776
Actin Is Ancient, Abundant, and Highly Conserved	776
G-Actin Monomers Assemble into Long, Helical F-Actin Polymers	777
F-Actin Has Structural and Functional Polarity	778
17.2 Dynamics of Actin Filaments	779
Actin Polymerization in Vitro Proceeds in Three Steps	779
Actin Filaments Grow Faster at (+) Ends Than at (-) Ends	779
Actin Filament Treadmilling Is Accelerated by Profilin and Cofilin	782
Thymosin-β₄ Provides a Reservoir of Actin for Polymerization	782
Capping Proteins Block Assembly and Disassembly at Actin Filament Ends	783
17.3 Mechanisms of Actin Filament Assembly	784
Formins Assemble Unbranched Filaments	784
The Arp2/3 Complex Nucleates Branched Filament Assembly	785

Intracellular Movements Can Be Powered by Actin Polymerization	707
	787
Microfilaments Function in Endocytosis	788
Toxins That Perturb the Pool of Actin Monomers Are Useful for Studying Actin Dynamics	789
17.4 Organization of Actin-Based Cellular	
Structures	790
Cross-Linking Proteins Organize Actin Filaments into Bundles or Networks	790
Adaptor Proteins Link Actin Filaments to Membranes	791
17.5 Myosins: Actin-Based Motor Proteins	793
Myosins Have Head, Neck, and Tail Domains with Distinct Functions	794
Myosins Make Up a Large Family of Mechanochemical Motor Proteins	796
Conformational Changes in the Myosin Head Couple ATP Hydrolysis to Movement	797
Myosin Heads Take Discrete Steps Along Actin Filaments	799
Myosin V Walks Hand over Hand down an Actin Filament	799
17.6 Myosin-Powered Movements	801
Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past One Another During	
Contraction	801
Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins	802
Contraction of Skeletal Muscle Is Regulated by Ca ²⁺ and Actin-Binding Proteins	802
Actin and Myosin II Form Contractile Bundles in Nonmuscle Cells	804
Myosin-Dependent Mechanisms Regulate Contraction in Smooth Muscle and Nonmuscle Cells	804
Myosin-V-Bound Vesicles Are Carried Along Actin Filaments	805
17.7 Cell Migration: Mechanism, Signaling,	
and Chemotaxis	808
Cell Migration Coordinates Force Generation with Cell Adhesion and Membrane Recycling	808
The Small GTP-Binding Proteins Cdc42, Rac, and Rho Control Actin Organization	810
Cell Migration Involves the Coordinate Regulation of Cdc42, Rac, and Rho	812
Migrating Cells Are Steered by Chemotactic Molecules	813
Chemotactic Gradients Induce Altered Phosphoinositide	12162
Levels Between the Front and Back of a Cell	814
CLASSIC EXPERIMENT 17.1 Looking at Muscle Contraction	819
	010

Microtubules and Intermediate Filaments 821 18.1 Microtubule Structure and Organization 822 Microtubule Walls Are Polarized Structures Built from aB-Tubulin Dimers 822 Microtubules Are Assembled from MTOCs to Generate Diverse Organizations 824 **18.2** Microtubule Dynamics 827 Individual Microtubules Exhibit Dynamic Instability 827 Localized Assembly and "Search-and-Capture" Help Organize Microtubules 829 Drugs Affecting Tubulin Polymerization Are Useful Experimentally and in Treatment of Diseases 829 18.3 Regulation of Microtubule Structure and Dynamics 830 Microtubules Are Stabilized by Side-Binding Proteins 830 + TIPs Regulate the Properties and Functions of the Microtubule (+) End 831 Other End-Binding Proteins Regulate Microtubule Disassembly 831 18.4 Kinesins and Dyneins: Microtubule-Based Motor Proteins 833 Organelles in Axons Are Transported Along Microtubules in Both Directions 833 Kinesin-1 Powers Anterograde Transport of Vesicles Down Axons Toward the (+) End of Microtubules 834 Kinesins Form a Large Protein Family with Diverse Functions 836 Kinesin-1 Is a Highly Processive Motor 837 Dynein Motors Transport Organelles Toward the (-) End of Microtubules 837 Kinesins and Dyneins Cooperate in the Transport of Organelles Throughout the Cell 841 Tubulin Modifications Distinguish Different Microtubules and Their Accessibility to Motors 84Z 18.5 Cilia and Flagella: Microtubule-Based Surface Structures 844 Eukaryotic Cilia and Flagella Contain Long Doublet Microtubules Bridged by Dynein Motors 845 Ciliary and Flagellar Beating Are Produced by Controlled Sliding of Outer Doublet Microtubules 845 Intraflagellar Transport Moves Material up and down Cilia and Flagella 846

18 Cell Organization and Movement II:

Primary Cilia Are Sensory Organelles on Interphase Cells	847
Defects in Primary Cilia Underlie Many Diseases	848
18.6 Mitosis	849
Centrosomes Duplicate Early in the Cell Cycle	
in Preparation for Mitosis	849
Mitosis Can Be Divided Into Six Phases	849
The Mitotic Spindle Contains Three Classes of Microtubules	851
Microtubule Dynamics Increase Dramatically in Mitosis	851
Mitotic Asters Are Pushed Apart by Kinesin-5 and Oriented by Dynein	852
Chromosomes Are Captured and Oriented During Prometaphase	852
Duplicated Chromosomes Are Aligned by Motors and Microtubule Dynamics	855
The Chromosomal Passenger Complex Regulates	
Microtubule Attachment at Kinetochores	855
Anaphase A Moves Chromosomes to Poles by Microtubule Shortening	856
Anaphase B Separates Poles by the Combined Action	030
of Kinesins and Dynein	857
Additional Mechanisms Contribute to Spindle Formation	858
Cytokinesis Splits the Duplicated Cell in Two	858
Plant Cells Reorganize Their Microtubules and Build a New Cell Wall in Mitosis	859
18.7 Intermediate Filaments	860
Intermediate Filaments Are Assembled from Subunit Dimers	861
Intermediate Filament Proteins Are Expressed in a Tissue-Specific Manner	862
Intermediate Filaments Are Dynamic	863
Defects in Lamins and Keratins Cause Many Diseases	863
18.8 Coordination and Cooperation Between	
Cytoskeletal Elements	865
Intermediate Filament-Associated Proteins Contribute to Cellular Organization	865
Microfilaments and Microtubules Cooperate to Transport Melanosomes	865
Cdc42 Coordinates Microtubules and Microfilaments During Cell Migration	866
Advancement of Neural Growth Cones Is Coordinated by Microfilaments and Microtubules	866
19 The Eukaryotic Cell Cycle	873
19.1 Overview of the Cell Cycle and Its Control	875
The Cell Cycle Is an Ordered Series of Events Leading to Cell Replication	875

Cyclin-Dependent Kinases Control the Eukaryotic Cell Cycle	876
Several Key Principles Govern the Cell Cycle	876
19.2 Model Organisms and Methods	
to Study the Cell Cycle	877
Budding and Fission Yeast Are Powerful Systems for Genetic Analysis of the Cell Cycle	877
Frog Oocytes and Early Embryos Facilitate Biochemical Characterization of the Cell Cycle Engine	878
Fruit Flies Reveal the Interplay Between Development and the Cell Cycle	880
The Study of Tissue Culture Cells Uncovers Cell Cycle Regulation in Mammals	881
Researchers Use Multiple Tools to Study the Cell Cycle	881
19.3 Regulation of CDK Activity	883
Cyclin-Dependent Kinases Are Small Protein Kinases That Require a Regulatory Cyclin Subunit	004
for Their Activity	884
Cyclins Determine the Activity of CDKs Cyclin Levels Are Primarily Regulated by Protein	885
Degradation	887
CDKs Are Regulated by Activating and Inhibitory Phosphorylation	888
CDK Inhibitors Control Cyclin-CDK Activity	888
Special CDK Alleles Led to the Discovery of CDK Functions	889
19.4 Commitment to the Cell Cycle	
and DNA Replication	890
Cells Are irreversibly Committed to Cell Division at a Cell Cycle Point Called START	890
The E2F Transcription Factor and Its Regulator Rb Control the G ₁ –S Phase Transition in Metazoans	891
Extracellular Signals Govern Cell Cycle Entry	892
Degradation of an S Phase CDK Inhibitor Triggers DNA Replication	892
Replication at Each Origin Is Initiated Once and Only Once During the Cell Cycle	894
Duplicated DNA Strands Become Linked During Replication	896
19.5 Entry into Mitosis	897
Precipitous Activation of Mitotic CDKs Initiates Mitosis	897
Mitotic CDKs Promote Nuclear Envelope Breakdown	898
Mitotic CDKs Promote Mitotic Spindle Formation	899
Chromosome Condensation Facilitates Chromosome Segregation	901
19.6 Completion of Mitosis: Chromosome	
Segregation and Exit from Mitosis	903
Separase-Mediated Cleavage of Cohesins Initiates	ALC: SOL
Chromosome Segregation	903

20 Integrating Cells Into Tissues	925
Part IV Cell Growth and Developmen	t
CLASSIC EXPERIMENT 19.1 Cell Biology Emergin from the Sea: The Discovery of Cyclins	9 923
DNA Replication Is Inhibited Between the Two Meiotic Divisions	918
Co-orienting Sister Kinetochores Is Critical for Meiosis I Chromosome Segregation	918
Recombination and a Meiosis-Specific Cohesin Subunit Are Necessary for the Specialized Chromosome Segregation in Meiosis I	915
Several Key Features Distinguish Melosis from Mitosis	915
Extracellular and Intracellular Cues Regulate Entry into Meiosis	913
19.8 Meiosis: A Special Type of Cell Division	913
The Spindle Position Checkpoint Pathway Ensures That the Nucleus Is Accurately Partitioned Between Two Daughter Cells	912
The Spindle Assembly Checkpoint Pathway Prevents Chromosome Segregation Until Chromosomes Are Accurately Attached to the Mitotic Spindle	910
The DNA Damage Response Halts Cell Cycle Progression When DNA Is Compromised	908
The Growth Checkpoint Pathway Ensures That Cells Only Enter the Cell Cycle After Sufficient Macromolecule Biosynthesis	907
Checkpoint Pathways Establish Dependencies and Prevent Errors in the Cell Cycle	907
19.7 Surveillance Mechanisms in Cell Cycle Regulation	906
Cytokinesis Creates Two Daughter Cells	905
Mitotic CDK Inactivation Triggers Exit from Mitosis	904
The APC/C Activates Separase Through Securin Ubiquitinylation	903

20.1 Cell-Cell and Cell-Matrix Adhesion:	
An Overview	927
Cell-Adhesion Molecules Bind to One Another and to Intracellular Proteins	927
The Extracellular Matrix Participates in Adhesion, Signaling, and Other Functions	929
The Evolution of Multifaceted Adhesion Molecules Made Possible the Evolution of Diverse	
Animal Tissues	932

20.2 Cell-Cell and Cell-ECM Junctions and Their Adhesion Molecules	933	
Epithelial Cells Have Distinct Apical, Lateral, and Basal Surfaces	933	
Three Types of Junctions Mediate Many Cell-Cell and Cell-ECM Interactions	934	
Cadherins Mediate Cell-Cell Adhesions in Adherens Junctions and Desmosomes	935	
Integrins Mediate Cell-ECM Adhesions, Including Those in Epithelial Cell Hemidesmosomes	939	
Tight Junctions Seal Off Body Cavities and Restrict Diffusion of Membrane Components	940	
Gap Junctions Composed of ConnexIns Allow Small Molecules to Pass Directly Between Adjacent Cells	943	
20.3 The Extracellular Matrix I: The Basal Lamina	945	
The Basal Lamina Provides a Foundation for Assembly of Cells into Tissues	946	
Laminin, a Multi-adhesive Matrix Protein, Helps Cross-link Components of the Basal Lamina	947	
Sheet-Forming Type IV Collagen Is a Major Structural Component of the Basal Lamina	947	
Perlecan, a Proteoglycan, Cross-links Components of the Basal Lamina and Cell-Surface Receptors	950	
20.4 The Extracellular Matrix II: Connective Tissue	951	
Fibrillar Collagens Are the Major Fibrous Proteins in the ECM of Connective Tissues	951	
Fibrillar Collagen Is Secreted and Assembled into Fibrils Outside the Cell	952	
Type I and II Collagens Associate with Nonfibrillar Collagens to Form Diverse Structures	953	
Proteoglycans and Their Constituent GAGs Play Diverse Roles in the ECM	954	
Hyaluronan Resists Compression, Facilitates Cell Migration, and Gives Cartilage Its Gel-like Properties	956	
Fibronectins Interconnect Cells and Matrix, Influencing Cell Shape, Differentiation, and Movement	957	
Elastic Fibers Permit Many Tissues to Undergo Repeated Stretching and Recoiling	959	
Metalloproteases Remodel and Degrade the Extracellular Matrix	960	
20.5 Adhesive Interactions in Motile and Nonmotile Cells	961	
Integrins Relay Signals between Cells and Their Three-Dimensional Environment	961	
Regulation of Integrin-Mediated Adhesion and Signaling Controls Cell Movement	962	
Connections Between the ECM and Cytoskeleton Are Defective in Muscular Dystrophy	964	

IgCAMs Mediate Cell-Cell Adhesion in Neuronal and Other Tissues	965
Leukocyte Movement into Tissues Is Orchestrated by a Precisely Timed Sequence of Adhesive Interactions	965
20.6 Plant Tissues	967
The Plant Cell Wall Is a Laminate of Cellulose Fibrils	
in a Matrix of Glycoproteins	968
Loosening of the Cell Wall Permits Plant Cell Growth Plasmodesmata Directly Connect the Cytosols	969
of Adjacent Cells in Higher Plants	969
Only a Few Adhesive Molecules Have Been Identified in Plants	970
21 Stem Cells, Cell Asymmetry,	
and Cell Death	977
21.1 Early Metazoan Development	
and Embryonic Stem Cells	979
Fertilization Unifies the Genome	979
Cleavage of the Mammalian Embryo Leads to the First Differentiation Events	979
The Inner Cell Mass Is the Source of Embryonic Stem (ES) Cells	981
Multiple Factors Control the Pluripotency of ES Cells	983
Animal Cloning Shows That Differentiation Can Be Reversed	984
Somatic Cells Can Generate Induced Pluripotent Stem (iPS) Cells	984
21.2 Stem Cells and Niches in Multicellular Organisms	986
Stem Cells Give Rise to Both Stem Cells and Differentiating Cells	986
Stem Cells for Different Tissues Occupy Sustaining Niches	986
Germ-Line Stem Cells Produce Sperm and Oocytes	987
Intestinal Stem Cells Continuously Generate All of the Cells of the Intestinal Epithelium	988
Neural Stem Cells Form Nerve and Glial Cells	
in the Central Nervous System	991
Hematopoietic Stem Cells Form All Blood Cells Meristems Are Niches for Stem Cells in Plants	993 995
21.3 Mechanisms of Cell Polarity and	
Asymmetric Cell Division	997
Cell Polarization and Asymmetry Before Cell Division Follow a Common Hierarchy	998
Polarized Membrane Traffic Allows Yeast to Grow Asymmetrically During Mating	998
The Par Proteins Direct Cell Asymmetry in the Nematode Embryo	998
Asymmetrically During Mating The Par Proteins Direct Cell Asymmetry in the Nematode	

The Par Proteins and Other Polarity Complexes Are Involved in Epithelial-Cell Polarity	1001
The Planar Cell Polarity Pathway Orients Cells within an Epithelium	1002
The Par Proteins Are Also Involved in Asymmetric Cell Division of Stem Cells	1004
21.4 Cell Death and Its Regulation	1006
Programmed Cell Death Occurs Through Apoptosis	1007
Evolutionarily Conserved Proteins Participate in the Apoptotic Pathway	1007
Caspases Amplify the Initial Apoptotic Signal and Destroy Key Cellular Proteins	1009
Neurotrophins Promote Survival of Neurons	1010
Mitochondria Play a Central Role in Regulation of Apoptosis in Vertebrate Cells	1011
The Pro-apoptotic Proteins Bax and Bak Form Pores in the Outer Mitochondrial Membrane	1013
Release of Cytochrome c and SMAC/DIABLO Proteins from Mitochondria Leads to Formation of the Apoptosome and Caspase Activation	1013
Trophic Factors Induce Inactivation of Bad, a Pro-apoptotic BH3-Only Protein	1013
Vertebrate Apoptosis Is Regulated by BH3-Only Pro-Apoptotic Proteins That Are Activated by Environmental Stresses	1014
Tumor Necrosis Factor and Related Death Signals Promote Cell Murder by Activating Caspases	1015

22	Nerve	Cells	1019

22.1 Neurons and Glia: Building Blocks	
of the Nervous System	1020
Information Flows Through Neurons from Dendrites to Axons	1020
Information Moves Along Axons as Pulses of Ion Flow Called Action Potentials	1021
Information Flows Between Neurons via Synapses	1022
The Nervous System Uses Signaling Circuits Composed of Multiple Neurons	1022
Glial Cells Form Myelin Sheaths and Support Neurons	1023
22.2 Voltage-Gated Ion Channels and the Propagation of Action Potentials	1025
The Magnitude of the Action Potential is Close to E _{Ne} and is Caused by Na ⁺ influx Through Open Na ⁺ Channels	1025
Sequential Opening and Closing of Voltage-Gated Na ⁺ and K ⁺ Channels Generate Action Potentials	1025
Action Potentials Are Propagated Unidirectionally Without Diminution	1029

Nerve Cells Can Conduct Many Action Potentials in the Absence of ATP	1029
Voltage-Sensing S4 α Helices Move in Response to Membrane Depolarization	1030
Movement of the Channel-Inactivating Segment into the Open Pore Blocks Ion Flow	1032
Myelination Increases the Velocity of Impulse Conduction	1032
Action Potentials "Jump" from Node to Node in Myelinated Axons	1033
Two Types of Glia Produce Myelin Sheaths	1033
22.3 Communication at Synapses	1036
Formation of Synapses Requires Assembly of Presynaptic and Postsynaptic Structures	1037
Neurotransmitters Are Transported into Synaptic Vesicles by H ⁺ -Linked Antiport Proteins	1038
Synaptic Vesicles Loaded with Neurotransmitter Are Localized near the Plasma Membrane	1039
Influx of Ca ²⁺ Triggers Release of Neurotransmitters	1040
A Calcium-Binding Protein Regulates Fusion of Synaptic Vesicles with the Plasma Membrane	1041
Fly Mutants Lacking Dynamin Cannot Recycle Synaptic Vesicles	1042
Signaling at Synapses Is Terminated by Degradation or Reuptake of Neurotransmitters	1042
Opening of Acetylcholine-Gated Cation Channels Leads to Muscle Contraction	1043
All Five Subunits in the Nicotinic Acetylcholine Receptor Contribute to the Ion Channel	1044
Nerve Cells Make an All-or-None Decision to Generate an Action Potential	1045
Gap Junctions Allow Certain Neurons to Communicate Directly	1045
22.4 Sensing the Environment: Touch, Pain, Taste, and Smell	1047
Mechanoreceptors Are Gated Cation Channels	1047
Pain Receptors Are Also Gated Cation Channels	1048
Five Primary Tastes Are Sensed by Subsets of Cells in Each Taste Bud	1048
A Plethora of Receptors Detect Odors	1050
Each Olfactory Receptor Neuron Expresses a Single Type of Odorant Receptor	1051
23 Immunology	1059
23.1 Overview of Host Defenses	1061
Pathogens Enter the Body Through Different Routes and Replicate at Different Sites	1061
Leukocytes Circulate Throughout the Body and Take Up Residence in Tissues and Lymph Nodes	1061

Residence in Tissues and Lymph Nodes

1061

Mechanical and Chemical Boundaries Form a First Layer of Defense Against Pathogens	1062
Innate Immunity Provides a Second Line of Defense After Mechanical and Chemical Barriers Are Crossed	1062
Inflammation Is a Complex Response to Injury That Encompasses Both Innate and Adaptive Immunity	1065
Adaptive Immunity, the Third Line of Defense,	1000
Exhibits Specificity	1066
23.2 Immunoglobulins: Structure and Function	1068
Immunoglobulins Have a Conserved Structure Consisting of Heavy and Light Chains	1068
Multiple Immunoglobulin Isotypes Exist, Each with Different Functions	1068
Each B Cell Produces a Unique, Clonally Distributed Immunoglobulin	1069
Immunoglobulin Domains Have a Characteristic Fold Composed of Two β Sheets Stabilized by	
a Disulfide Bond	1071
An Immunoglobulin's Constant Region Determines Its Functional Properties	1072
23.3 Generation of Antibody Diversity	
and B-Cell Development	1073
A Functional Light-Chain Gene Requires Assembly of V and J Gene Segments	1074
Rearrangement of the Heavy-Chain Locus Involves V, D, and J Gene Segments	1075
Somatic Hypermutation Allows the Generation and Selection of Antibodies with Improved Affinities	1077
B-Cell Development Requires Input from a Pre-B-Cell Receptor	1077
During an Adaptive Response, B Cells Switch from Making Membrane-Bound Ig to Making Secreted Ig	1079
B Cells Can Switch the Isotype of Immunoglobulin	
They Make	1080
23.4 The MHC and Antigen Presentation	1081
The MHC Determines the Ability of Two Unrelated Individuals of the Same Species to Accept or Reject Grafts	1081
The Killing Activity of Cytotoxic T Cells Is Antigen Specific and MHC Restricted	1087
T Cells with Different Functional Properties Are Guided by Two Distinct Classes of MHC Molecules	1082
MHC Molecules Bind Peptide Antigens and Interact	1002
with the T-Cell Receptor	1084
Antigen Presentation Is the Process by Which Protein Fragments Are Complexed with MHC Products and Posted to the Cell Surface	1086
Class I MHC Pathway Presents Cytosolic Antigens	1087
Class II MHC Pathway Presents Antigens Delivered	
to the Endocytic Pathway	1089

23.5 T Cells, T-Cell Receptors, and T-Cell	
Development	1092
The Structure of the T-Cell Receptor Resembles the F(ab) Portion of an Immunoglobulin	1093
TCR Genes Are Rearranged in a Manner Similar to Immunoglobulin Genes	1093
T-Cell Receptors Are Very Diverse, with Many of Their Variable Residues Encoded in the Junctions Between V, D, and J Gene Segments	1095
Signaling via Antigen-Specific Receptors Triggers Proliferation and Differentiation of T and B Cells	1095
T Cells Capable of Recognizing MHC Molecules Develop Through a Process of Positive and Negative Selection	1097
T Cells Require Two Types of Signal for Full Activation	1098
Cytotoxic T Cells Carry the CD8 Co-receptor and Are Specialized for Killing	1099
T Cells Produce an Array of Cytokines That Provide Signals to Other Immune Cells	1099
CD4 T Cells Are Divided into Three Major Classes Based on Their Cytokine Production and Expression of Surface Markers	1100
Leukocytes Move in Response to Chemotactic Cues Provided by Chemokines	1101
23.6 Collaboration of Immune-System Cells in the Adaptive Response	1102
Toll-Like Receptors Perceive a Variety of Pathogen-Derived Macromolecular Patterns	1102
Engagement of Toll-Like Receptors Leads to Activation of Antigen-Presenting Cells	1104
Production of High-Affinity Antibodies Requires Collaboration Between B and T Cells	1104
Vaccines Elicit Protective Immunity Against a Variety of Pathogens	1105
CLASSIC EXPERIMENT 23.1 Two Genes Become One:	

Somatic Rearrangement of Immunoglobulin Genes 1111

24 Cancer	1113
24.1 Tumor Cells and the Onset of Cancer	1114
Metastatic Tumor Cells Are Invasive and Can Spread	1115
Cancers Usually Originate in Proliferating Cells	1116
Local Environment Impacts Heterogeneous Tumor Formation by Cancer Stem Cells	1117
Tumor Growth Requires Formation of New Blood Vessels	1117
Specific Mutations Transform Cultured Cells into Tumor Cells	1118
A Multi-hit Model of Cancer Induction Is Supported by Several Lines of Evidence	1119

Successive Oncogenic Mutations Can Be Traced in Colon Cancers	1120
Cancer Cells Differ from Normal Cells in Fundamental Ways	1122
DNA Microarray Analysis of Expression Patterns	1122
Can Reveal Subtle Differences Between Tumor Cells	1123
24.2 The Genetic Basis of Cancer	1124
Gain-of-Function Mutations Convert Proto-oncogenes into Oncogenes	1125
Cancer-Causing Viruses Contain Oncogenes or Activate Cellular Proto-oncogenes	1127
Loss-of-Function Mutations in Tumor-Suppressor Genes Are Oncogenic	1128
Inherited Mutations in Tumor-Suppressor Genes Increase Cancer Risk	1128
Epigenetic Changes Can Contribute to Tumorigenesis	1129
24.3 Cancer and Misregulation of Growth	
Regulatory Pathways	1131
Mouse Models of Human Cancer Teach Us About Disease Initiation and Progression	1131
Oncogenic Receptors Can Promote Proliferation in the Absence of External Growth Factors	1132
Viral Activators of Growth-Factor Receptors Act as Oncoproteins	1133
Many Oncogenes Encode Constitutively Active Signal Transduction Proteins	1134
Inappropriate Production of Nuclear Transcription Factors Can Induce Transformation	1136
Aberrations in Signaling Pathways That Control Development Are Associated with Many Cancers	1137
Molecular Cell Biology Is Changing How Cancer Is Treated	1138
24.4 Cancer and Mutation of Cell Division and Checkpoint Regulators	1140
Mutations That Promote Unregulated Passage from G ₁ to S Phase Are Oncogenic	1140
Loss of p53 Abolishes the DNA Damage Checkpoint	1140
Apoptotic Genes Can Function as Proto-oncogenes	1141
or Tumor-Suppressor Genes	1143
Micro-RNAs Are a New Class of Oncogenic Factors	1143
24.5 Carcinogens and Caretaker Genes in Cancer	1144
Carcinogens Induce Cancer by Damaging DNA	1144
Some Carcinogens Have Been Linked to Specific Cancers	1145
Loss of DNA-Repair Systems Can Lead to Cancer	1146
Telomerase Expression Contributes to Immortalization of Cancer Cells	1148
GLOSSARY	G-1
INDEX	1-1