Improving the safety of fresh fruit and vegetables

Edited by Wim Jongen

CRC Press Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED Cambridge England

Contents

Contributor contact details

Part I Identifying risks

1 Pathogens in vegetables

K. Warriner, University of Guelph, Canada

- 1.1 Introduction
- 1.2 Human pathogens associated with vegetables
- 1.3 Characteristics of pathogens recovered from salad vegetables
- 1.4 Sources of contamination in the vegetable production chain
- 1.5 Interaction of human pathogens with growing vegetables
- 1.6 Implications for control
- 1.7 Future trends
- 1.8 Sources of further information and advice
- 1.9 References

2 Pathogens in fruit

Y. Zhao, Oregon State University, USA

- 2.1 Introduction
- 2.2 Pathogens in particular types of fruit
- 2.3 Mechanisms of surface contamination
- 2.4 Mechanisms of internal contamination

- 2.5 Implications for control
- 2.6 Future trends
- 2.7 Sources of further information and advice
- 2.8 References

3 Measuring microbiological contamination in fruit and vegetables

M. Pla, D. Rodríguez-Lázaro, E. Badosa and E. Montesinos, Institute of Food and Agricultural Technology (INTEA), University of Girona, Spain

- 3.1 Introduction
- 3.2 Foodborne pathogens and post-harvest microbiological spoilage of fresh fruit and vegetables
- 3.3 Methods of detection and quantification of foodborne pathogens
- 3.4 Traceability and subtyping of foodborne pathogens
- 3.5 References

4 Pesticide residues in fruit and vegetables

C. K. Winter, University of California, USA

- 4.1 Introduction
- 4.2 Pesticide use
- 4.3 Pesticide residue regulation
- 4.4 Pesticide residue monitoring in fruit and vegetables
- 4.5 Risk assessment
- 4.6 Future trends
- 4.7 Sources of further information and advice
- 4.8 References

5 The rapid detection of pesticide residues

R. Luxton and J. Hart, University of the West of England, UK

- 5.1 Introduction
- 5.2 Detecting pesticides: physicochemical methods
- 5.3 Detecting pesticides: biological methods
- 5.4 The principles of biosensors
- 5.5 Developing low-cost biosensors
- 5.6 Using biosensors: pesticide residues in grain, fruit and vegetables
- 5.7 Future trends
- 5.8 Sources of further information and advice
- 5.9 Further reading

Part II Managing risks

6 Risk management in the supply chain

E. Kramer, Leibniz-Institute for Agricultural Engineering Potsdam-Bornim e.V. (ATB), Germany

- 6.1 Introduction
- 6.2 The supply chain for fresh and minimally processed fruit and vegetables
- 6.3 Quality and risk management in the supply chain
- 6.4 Critical points in the supply chain
- 6.5 Future trends
- 6.6 Sources of further information and advice
- 6.7 References

7 Good agricultural practice and HACCP in fruit and vegetable cultivation

R. Early, Harper Adams University College, UK

- 7.1 Introduction
- 7.2 Perspectives on food quality and safety
- 7.3 Food safety and the grower
- 7.4 Good agricultural practice
- 7.5 The hazard analysis critical control point system
- 7.6 HACCP and GAP development
- 7.7 Conclusion
- 7.8 Sources of information (worldwide) and training (in the UK)
- 7.9 References

8 Implementing on-farm food safety programs in fruit and vegetable cultivation

B. J. Chapman and D. A. Powell, University of Guelph, Canada

- 8.1 Introduction
- 8.2 Systems controlling foodborne illnesses
- 8.3 Existing guidelines and OFFS programs for fresh fruit and vegetables
- 8.4 Adoption of OFFS grower perceptions, practical solutions, experiences from the field
- 8.5 Examples from Food Safety Network on-farm food safety research
- 8.6 Conclusions: best practices for an ideal OFFS program for fresh fruit and vegetables

8.7 References Appendix 1: A summary of on-farm food safety programs or guidelines for fresh fruit and vegetables worldwide

9 Alternatives to pesticides in fruit and vegetable cultivation

I. Vänninen, Agrifood Research Finland (MTT), Finland

- 9.1 Introduction
- 9.2 Alternative tactics for pest management
- 9.3 Integration of alternative pest management tactics
- 9.4 Safety of alternative methods
- 9.5 Future developments
- 9.6 Sources of further information and advice
- 9.7 Acknowledgements
- 9.8 References

10 Improving the safety of organic vegetables

G. S. Johannessen and M. Torp, National Veterinary Institute, Norway

- 10.1 Introduction
- 10.2 Organic agriculture
- 10.3 Standards and regulations
- 10.4 Safety risks from vegetables
- 10.5 What is known about the safety of organic vegetables?
- 10.6 Managing bacteriological risks
- 10.7 Managing risks from mycotoxins
- 10.8 Future trends
- 10.9 Sources of further information and advice
- 10.10 References

Part III Preservation techniques

11 Alternatives to hypochlorite washing systems for the decontamination of fresh fruit and vegetables

G. Betts and L. Everis, Campden & Chorleywood Food Research Association, UK

- 11.1 Introduction
- 11.2 Standardised approach to biocide testing
- 11.3 The use of alternative compounds to hypochlorite
- 11.4 Strengths and weaknesses of alternative treatments
- 11.5 Future trends
- 11.6 Sources of further information and advice
- 11.7 References

12 Ozone decontamination of fresh fruit and vegetables

R. Sharma, North Carolina State University, USA 12.1 Introduction

- 12.2 Decontamination of fruit and vegetables
- 12.3 Ozone as a sanitizer
- 12.4 Combination of ozone with other decontamination techniques
- 12.5 Drawbacks of using ozone
- 12.6 Future prospects for ozone use in the food industry
- 12.7 Acknowledgements
- 12.8 Useful contacts and information sources
- 12.9 References

13 Irradiation of fresh fruit and vegetables

M. Korkmaz and M. Polat, Hacettepe University, Turkey

- 13.1 Introduction
- 13.2 Scope of irradiation
- 13.3 Advantages and limitations of food irradiation
- 13.4 Effects of irradiation on fruits and vegetables
- 13.5 Analytical detection methods for irradiated fruits and vegetables
- 13.6 Some specific applications of irradiation in fruits and vegetables
- 13.7 Future of irradiation in fruits and vegetables
- 13.8 Further reading
- 13.9 References

14 Thermal treatments of fresh fruit and vegetables

S. Geysen, B. E. Verlinden and B. M. Nicolaï, Flanders Centre/Laboratory of Postharvest Technology, Belgium

- 14.1 Introduction
- 14.2 Technologies
- 14.3 Effect on host and pathogen
- 14.4 Heat transfer kinetics
- 14.5 Practical applications and costs
- 14.6 Future trends
- 14.7 Sources of further information and advice
- 14.8 References

15 Antimicrobial films and coatings for fresh fruit and vegetables

S. Min and J. M. Krochta, University of California, Davis, USA

- 15.1 Introduction
- 15.2 Antimicrobial coatings for fresh fruit and vegetables
- 15.3 Recommendations
- 15.4 Sources of additional information
- 15.5 References

16 Modified atmosphere packaging (MAP) and the safety and quality of fresh fruit and vegetables

B. P. F. Day, Food Science Australia, Australia

- 16.1 Introduction
- 16.2 Background information
- 16.3 Factors that affect fresh produce shelf-life
- 16.4 Effects of MAP on fresh produce microbial growth and safety
- 16.5 Effects of novel MAP gases on fresh produce quality and safety
- 16.6 Future trends and research directions
- 16.7 Conclusions and sources of further information and advice
- 16.8 References

17 Natural antimicrobials for preserving fresh fruit and vegetables

A. Ippolito and F. Nigro, University of Bari, and V. De Cicco, University of Molise, Italy

- 17.1 Introduction
- 17.2 Compounds of plant origin
- 17.3 Volatile compounds
- 17.4 'Oxidative stress' and the control of post-harvest pathogens
- 17.5 Compounds of microbial and animal origin
- 17.6 Additive and synergistic combinations
- 17.7 Extent of take-up by industry
- 17.8 Concluding remarks
- 17.9 References

18 Consumer risk in storage and shipping of raw fruit and vegetables

F. Mencarelli, M. C. Salcini and A. Bellincontro, Tuscia University, Italy

- 18.1 Introduction
- 18.2 Precooling technology
- 18.3 Storage technology
- 18.4 Transport
- 18.5 Final remarks
- 18.6 References

19 Combined preservation techniques for fresh fruit

S. M. Alzamora, S. N. Guerrero, University of Buenos Aires, Argentina, A. López-Malo, J. Welti-Chanes, E. Palou and A. Argaiz, University of The Americas, Mexico, and M. S. Tapia, Central University of Venezuela, Venezuela

- 19.1 Introduction
- 19.2 Water activity: microbial growth, death and survival
- 19.3 Combinations of water activity reduction with other preservation factors
- 19.4 Strengths and weaknesses: future trends
- 19.5 Calculations involved in the adjustment of a_w of highmoisture fruits
- 19.6 References