Fermentation and Food Safety

Editors

Martin R. Adams, MSc, PhD

Reader in Food Microbiology School of Biomedical and Life Sciences University of Surrey Guildford, United Kingdom

M.J. Robert Nout, PhD

Associate Professor
Laboratory of Food Microbiology
Wageningen University
Wageningen, The Netherlands

AN ASPEN PUBLICATION®

Aspen Publishers, Inc. Gaithersburg, Maryland 2001

Foreword

In every part of the world, people wage a constant battle against food contamination and the resulting food-borne diseases and food wastage. Efforts to reduce the devastating consequences of food contamination started long before written records. Besides cooking, smoking, and simple sun drying, fermentation is one of the oldest technologies used for food preservation. Over the centuries, it has evolved and has been refined and diversified. Today, a large variety of foods are derived from this technology, which is used in households, small-scale food industries. and large-scale enterprises. Foods so produced form a major part of the human diet all over the world but only a few people are aware of the multitude of fermented products and their importance in the human diet. In fact, all cultures have in the course of their development learned the technique to preserve some of their foods by fermentation. However, the safety of fermented foods is a concern everywhere.

In the past, traditional fermentation technologies were based on experiences accumulated by consecutive generations of food producers, as a result of trial and error. Only relatively recently have science and technology started to contribute to a better understanding of the underlying principles of the fermentation process and of the essential requirements to ensure the safety as well as nutritional and sensory quality of fermented foods. Since the days of Louis Pasteur, who pointed to the importance of hygiene in relation to fermentation, it is known that this technology is easily influenced by various factors

during processing, and if not applied correctly, the safety and/or quality of the final product may be jeopardized. As a matter of fact, causes and outbreaks of food-borne illness have been traced back to fermented food, in spite of the general ineffectiveness of food-borne disease surveillance programs in most countries.

Fermentation is also of economic importance in areas or for populations where preservation technologies such as cold storage (refrigeration) or hot-holding cannot be used for lack of resources or facilities. In such situations, fermentation may be considered an affordable technology, which—if applied correctly—results in the safe preservation of foods, including complementary foods for infants. Particularly in developing countries, as a result of poor hygiene and incorrect application of fermentation, complementary foods are often contaminated with pathogens and subsequently are a major cause of infant diarrhea and associated malnutrition.

Against this background, the World Health Organization (WHO), jointly with the Food and Agriculture Organization (FAO), organized in 1995 a workshop to assess fermentation as a household technology for improving food safety. This workshop was the first of its kind, highlighting the critical points in the fermenta-

¹Fermentation: Assessment and Research. Report of a Joint FAO/WHO Workshop, Pretoria, South Africa, 11–15 December 1995. WHO Consultations and Workshops: WHO/FNU/FOS/96.1

tion process to ensure the safety of the resulting products, in line with the Hazard Analysis and Critical Control Point (HACCP) system. In a way, this book is a result of this workshop. Both Aspen Publishers and the two editors, M.J. Robert Nout and Martin R. Adams, deserve applause for this initiative and the unique approach they have adopted: the book focuses on food safety in all its aspects and is largely hazard based, which helps to identify those areas where knowledge is lacking but needed for a satisfactory risk assessment to be made. This is in contrast to the existing literature on fermented foods, which is generally confined to descriptions of the product(s)

and the microbiology/biochemistry of their production

In the interest of public health and food security, I wish this book a large and interested readership and for fermentation to result in safe, nutritionally adequate, and superbly tasting foods with long shelf lives.

Fritz Käferstein, DVM, PhD

Former Director, Programme of Food Safety and Food Aid, WHO, Geneva; Current Distinguished Visiting Scientist, Joint Institute for Food Safety and Applied Nutrition, Washington, DC

Preface

Fermented foods enjoy worldwide popularity as attractive, wholesome and nutritious components of our diet. They are produced on an enormous scale employing a huge variety of ingredients and manufacturing techniques. Whether traditional home-made foods, or high-tech products derived from genetically modified organisms, the safety of the consumer remains of foremost importance.

Fermented foods have always been generally regarded as safe, but this reputation has been seriously threatened in recent years by incidents such as outbreaks of illness caused by pathogens in soft cheeses and fermented meats, chronic cyanide intoxications from poorly processed cassava tubers, and mycotoxins in fermented cereal foods. In addition, modern techniques of genetic engineering and biotechnology, which offer considerable opportunities in the area of fermented food production, have also raised safety concerns among consumers. It is necessary therefore to have concrete guidelines on the conditions which lead to safe products and to have a realistic view about what "guaranteed safety" means. The massive impact of HACCP as a systematic approach to ensuring food safety has been widely apparent in recent years and the technique is as applicable to food fermentation as to any other food processing operation. At present however, the literature on fermented foods has no focus on safety, but is mainly descriptive, concentrating on microorganisms responsible for fermentation and on the biochemical changes occurring in the food.

This book aims to integrate modern concepts of safety assurance with the sometimes very traditional environment of the production and distribution of fermented foods. In particular, we have taken a largely hazard-based approach rather than one centered on the different commodities used. Introductory chapters aim to provide a broad understanding of the nature of fermented foods, their production, distribution, and use by consumers, and also discuss the general features of fermentation processes that contribute to the product's overall safety and HACCP. For the bulk of the book, we have sought chapters which describe the principal individual hazards, both chemical and microbiological, and try to provide some guidance on how these might be controlled in food fermentations. These hazards are discussed from the point of view of their severity and incidence, how they get into the food, which foods are specifically at risk, and what, if any, are the conditions that remove or inactivate these hazards. In many cases there is a dearth of published material specifically on fermented foods, and contributors have used data obtained in slightly different contexts to give some guidance. This exercise has proved useful in highlighting where information is lacking and identifying areas where more research is desperately needed.

It is hoped that the book will serve as a source of reference to support and help improve the production of safe fermented foods at all scales (household preparation up to large-scale industrial plants) and using all major food groups.

Contents

Fo	reword	ix
Pre	eface	хi
1.	Fermented Foods and Their Production	1
	Fermentation and Food Safety	1
	Food Fermentation Components	4
	Diversity of Fermented Foods	13
	Process Unit Operations	15
	Process Conditions	17
	Appendix 1-A: Flow Diagrams for Selected Food Fermentations	20
2.	Why Fermented Foods Can Be Safe	39
	Introduction	39
	Physical Processing	39
	Microbial Activity	41
	Overall Significance of Different Antimicrobial Factors	48
3.	An Introduction to the Hazard Analysis and Critical Control Point (HACCP) System and Its Application to	
	Fermented Foods	53
	Introduction	53
	Historical Development	53
	The Need for Change	54
	What Is the HACCP System?	55
	Benefits of the HACCP System	56
	Areas of Application	56
	This page has been reformatted by Knovel to provide easier navigation.	iii

Contributors

vii

Contents

	The HACCP System in Food Hygiene	57
	Application of the HACCP Approach to Food Preparation	58
	Application of the HACCP System to Gari	60
	Appendix 3-A: HACCP Principles and Guidelines for Its Application	67
١.	Chemical Hazards and Their Control: Endogenous	74
	Compounds	71
	Introduction	71
	Toxic and Antinutritional Glycosides in Food and Feed	71
	Commodities	77
	Variation in Toxin Concentration among Varieties and Cultivars: The Influence of Traditional Domestication and Modern Breeding	83
	Removal of Toxins through Processing	84
	Conclusion	88
j.	Chemical Hazards and Their Control: Toxins	101
	Microbial Toxins	101
	Aflatoxins	102
	Ochratoxin A	105
	Patulin	107
	Fusarium Toxins	108
	Alternaria Toxins	111
	Bacterial and Algal Toxins	112
.	Toxic Nitrogen Compounds Produced during Processing:	
	Biogenic Amines, Ethyl Carbamides, Nitrosamines	119
	Introduction	119
	Biogenic Amines	119
	Ethyl Carbamides	126
	Nitrosamines	129
.	Microbiological Hazards and Their Control: Bacteria	141
	Introduction	141
	Outbreaks Related to Fermented Products	141
	Outbreaks Related to Fermented Products	141 142

This page has been reformatted by Knovel to provide easier navigation.

	Contents	6 V
	Presence of Pathogens in Raw Materials	146
	Effect of Fermentation Processes on the Survival of Bacterial Pathogens	147
	The Control of Microbial Hazards	148
	Validation of the Sausage Fermentation Process for the Control of Pathogens	150 152
8.	Microbiological Hazards and Their Control: Viruses	159
0.	Introduction	159
	Food-Borne Viruses	160
	Potentially Food-Borne Viruses	163
	Assessment of Virus Risk	168
^	Missobials give Henryde and Their Control, Dayseites	475
9.	Microbiological Hazards and Their Control: Parasites	175
	Introduction	175 175
	Nematodes Cestodes (Tapeworms)	187
	Trematodes (Flukes)	192
	Protozoa	200
	Conclusion	211
10	Biotechnology and Food Safety: Benefits of Genetic	
10.	Modifications	219
	Introduction	219
	Products	221
	Two Sets of Examples of Safety Evaluation of Fermented Foods for Which Recombinant DNA Is Used	229
	Conclusion	236
11.	Safety Assessment of Probiotics and Starters	239
	Safety Aspects for Probiotics and Biotechnology	239
	Safety of Current Probiotics	242
	Relevance of a Sound Taxonomic Basis	242
	Transfer of Antibiotic Resistance	246

	\sim		
/I	Co	nto	nte
/ I		HIC	HIO

Genetically Modified Organisms	246
Conclusion	247
12. Practical Applications: Prospects and Pitfalls	. 253
Introduction	253
Benefits of Lactic Acid Fermentation	254
Pitfalls of Fermentation	255
Importance of Food Fermentation in Public Health	257
Practical Intervention to Enhance Safety of Fermented Foods	259
Research Needs	271
Conclusion	271
List of Sources	. 275
Index	. 279