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ABSTRACT

This dissertation studies moral hazard problems and an information acquisition problem in

dynamic economic environments. In chapter 1, I study a continuous-time principal-agent

model in which a risk-neutral agent protected by limited liability exerts costly efforts to

manage a project for her principal. Unobserved risk-taking by the agent is value-reducing

in the sense that it increases the chance of large losses, even though it raises short-term

profits. In the optimal contract, severe punishment that follows a large loss prevents the

agent from taking hidden risks. However, after some histories, punishment can no longer

be used because of limited liability. The principal allows the agent to take hidden risk when

the firm is close to liquidation. In addition, I explore the roles of standard securities in

implementing the optimal contract. The implementation shows that driven by the agency

conflicts, incomplete hedging against Poisson risk provides incentives for the agent to take

the safe project. Moreover, I study the optimality of ”high-water mark” contract widely

used in the hedge fund industry and find that ”distance-to-threshold” is important in

understanding the risk-shifting problem in a dynamic context.

In chapter 2, I study a continuous-time moral hazard model in which the principal

hires a team of agents to run the business. The firm consists of multiple divisions and

agents exert costly efforts to improve the divisional cash flows. The firm size evolves

stochastically based on the aggregate cash flows.The model delivers a negative relationship

between firm sizes and pay-for-divisional incentives, and I characterize conditions under

which joint/relative performance evaluation will be used. I also explore the implications
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of team production on the firm’s optimal capital structure and financial policy.

In chapter 3, I study a multi-armed bandits problem with ambiguity. Decision-maker

views the probabilities underlying each arm as imprecise and his preference is represented

by recursive multiple-priors. I show that the classical ”Gittins Index” generalizes to a

”Multiple-Priors Gittins Index”. In the setting with one safe arm and one ambiguous

arm, the decision-maker plays the ambiguous arm if its ”Multiple-Priors Gittins Index”

is higher than the return delivered by the safe arm. In the multi-armed environment, I

obtain the ”Multiple-Priors Index Theorem” which states that the optimal strategy for the

decision-maker is to play the ambiguous arm with the highest Multiple-Priors Index.
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Chapter 1

Dynamic Agency and Endogenous Risk-Taking

1.1 Introduction

1.1.1 Motivation

Hidden risk-taking is a pervasive fact of life. Consider an engineer working in an oil

refinery. His daily task is to help the firm earn enough profits and at the same time ensure

the refinery does not explode. However, he could tune up the production rate secretly and

expose the facilities to risk in order to generate more profits in the short run. In 2007-

2009 financial crisis, we discover that many financial institutions excessively engaged in

risky transactions. For instance, financial institutions purchased a lot of “toxic” assets or

entered into risky credit default swaps with certain counterparties. While these assets are

certainly profitable during normal times, infrequent defaults lead to severe losses. These

financial institutions have incentives to engage in such risky investment because they reap

a share of the investment profits. Very often, investment strategies and portfolio choices

are complex and costly to communicate to the investors.

In hedge funds industry, the fund managers are usually compensated by the high-water

mark contract. The contract delivers cash payment to the manager when the managed

asset crosses the high-water mark threshold. Notably, recent empirical evidence drawn from

time-series data shows that hedge funds exhibit higher return’s volatility when their asset

shrinks and the managers’ performance deteriorates.1 This implies that fund managers

choose to hold more risky assets in their portfolio and invest in a more aggressive way

when the asset size lies far below the payment threshold. The asset-substitution argument

1see Shelef (2013) and Kolokolova and Mattes (2013) and discussion in section 4.
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suggests that fund returns volatility should be high all the times and independent of the size

of the asset. Therefore, the standard argument fails to accommodate the new empirics.

Why is this the case? How do we rationalize managers’ behaviors? Are the existing

compensation contracts to the hedge fund managers efficient? Does this type of contract

induce risk-taking? The goal of this paper is to study dynamic contracting with hidden risk-

taking and propose an agency-based explanation for this newly-documented phenomenon.

In my model, investors hire a manager who enjoys limited liability to run the firm

and both parties are risk-neutral. Moral hazard is two dimensional : the agent chooses his

effort level and risk strategy at any moment of time in order to operate the business. One

can interpret the risk dimension of moral hazard as (i) choice of risky or safe projects;

or (ii) choice of risky or safe financial assets. Firm’s cash flows follow a jump-diffusion.

High effort increases the drift of the diffusion component without affecting the volatility

of the cash flows process. Risk-taking2 enhances short term profits by raising the cash

flow drift, but at the same time increases the intensity of the jump part, which models

rare losses. I assume that downside risk-taking destroys values: it reduces the firm’s net

present value (NPV). To solve for the optimal contract in the continuous-time setting,

I follow the martingale method developed by DeMarzo and Sannikov (2006), Sannikov

(2008), and Williams (2009,2011). The method is a powerful tool that provides clean and

elegant description of the agent’s continuation value, which serves as a state variable in the

principal’s stochastic control problem. By controlling how the continuation value responds

to the observed cash flows, the principal will be able to provide appropriate incentives.

As the agent has two choices, there are two incentive constraints restricting her behavior.

Specifically, incentive loadings on the Brownian shock control the agent’s effort, and the

exposure to Poisson risk affects the agent’s risk-taking behavior. These two constraints are

related by the fact that risk-taking simultaneously affects the drift and intensity.

The optimal contract between the investors and the agent specifies (i) the agent’s cash

compensation and her promised utility; (ii) the firm’s liquidation decision; and (iii) the

2I use the terms “risk-taking”, “risk-shifting”, and “gambling” interchangeably.
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principal’s recommended risk strategy, as a function of the entire past cash flows history.

In the optimal contract, to incentivize the agent to work hard, continuation value has to

increase following a high cash flow realization. When this incentive is too strong, it is

tempting for the agent to take risks. In order to prevent risk-taking, an upper bound on

the incentive loadings to the Brownian risk is imposed by introducing sufficiently large

punishment, that is a downward jump on the agent’s continuation value, following loss

events. However, when the continuation value is low, punishment is in conflict with the

limited liability constraint in the sense that the agent will be left with a negative payoff in

the game after being punished severely.

In addition, I find that the following trade-off is the key to understand the optimal

risk-taking policy. On one hand, allowing the agent to gamble leads to lower NPV of the

firm. On the other hand, implementing the safe action to prevent large risks is costly to

the principal in the following sense: punishing the agent after a loss means the agent is

exposed to Poisson risks, which brings in additional volatility to the agent’s continuation

value process. This in turn implies that inefficient liquidation would occur more often.

This cost is referred as the agency cost of preventing risk-taking. Intuitively, this agency

cost is decreasing in the agent’s continuation value because when the firm is close to the

liquidation boundary, exposing the agent to risks is more costly. To determine the optimal

action, the principal balances the expected monetary loss and the agency cost. Along the

equilibrium path, the principal implements the safe action when the agent’s continuation

value is high and allows the agent to secretly gamble otherwise. Therefore, the model

generates rich dynamics on project or asset selections.

The optimal contract can be implemented using standard securities. In the capital

structure that is considered in section 4, the firm accumulates cash in order to fund its

operation and cover any short term financing needs. From the incentive perspective, the

cash balance keeps track of the agent’s performance. The agent is compensated by holding

a fraction of firm’s common stocks. Inside stake provides the right incentive for the agent

to work hard. Outside investors hold long-term bonds and common stocks. The firm
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would also purchase an insurance contract, or any derivative contract. The insurance

contract, provided by a competitive insurance company, gives the firm an opportunity to

hedge against the Poisson risk by paying a periodic contractual premium to the insurance

company.

The security design exercise features that to motivate the agent to choose the safe

project and not to take any hidden risk, incomplete hedging is required: If hedging were

complete, then the agent’s payoff was completely insured against downside risks and share

no loss from any undesirable events, and thus would have incentive to secretly gamble. The

results shed light on how risk-management policy and project selection are linked up by

agency conflicts and provides an agency-based explanation for the reasons why sometimes

we see firms only hedge partially. Therefore my model generates a dynamic capital structure

for a firm that has flexibility to choose over projects that carry different degree of large

risks. And the model predicts how cash flows volatility, expected returns, hedging, and

credit rating are correlated.

On top of the contractual implications on capital structure, the optimal contract in

the present setting can be interpreted as the “high-water mark” contract. The high-water

mark contract is a predominant form of compensation contract for hedge fund managers.

The manager is delegated by the investors certain amount of capital to invest in different

financial assets. When the fund performs well and hits a threshold, bonus payment is

delivered to the manager, and the threshold moves up–hence the term “high-water mark”.

The next time the manager is paid by bonus, the fund’s cumulative performance has to

reach this new threshold, and any previous loss has to be recouped before she get paid.

Because the contract exhibits a convex payoff structure: when the fund’s performance is

below the threshold, the manager gets no bonus, and is compensated once the performance

crosses the threshold.

A critical issue is whether the contract actually induces the manager to take excessive

hidden tail risk. My results show that the “high-water mark” contract is an optimal

contract, and whether the agent will secretly gamble depends critically on the current
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fund performance. In particular, when the performance is close to the bonus threshold, an

impatient manager will not take hidden risks because more frequent losses “drag” the fund

away from the threshold. However, when the fund performance is poor and drift away from

the water mark, risk-taking problem becomes more severe. As the manager is protected by

limited liability, risk-taking helps pushing the fund to the threshold, and she is not required

to bear all the losses. Therefore, my model predicts that in a dynamic environment,

the distance of the fund to its high-water mark threshold is positively correlated with

the volatility of the fund’s returns and negatively with its expected performance. This

provides an agency-based explanation for currently documented “distance-to-threshold”

phenomenon and highlights that “distance-to-threshold” is the key to understand the risk-

shifting problem.

1.1.2 Literature Review

This paper belongs to a fast-growing literature on continuous-time dynamic contract theory

based on techniques developed by Sannikov (2008) and Williams (2006). Using a martingale

method, DeMarzo and Sannikov (2006) (DS hereafter) studies an agency model in which

cash flows follow an arithmetic Brownian motion. They found that the optimal contract

can be implemented using a combination of credit line, debt and equity. Enriching their

setting to jump-diffusions, my model provides an agency-based explanation for “gambling

for resurrection” and develops additional implications on capital structure. Other recent

works on dynamic agency include Biais, Mariotti, Rochet, and Villeneuve (2010) (BMRV

thereafter), DeMarzo et al. (2012), He (2008), Hoffmann and Pfeil (2010), Piskoroski

and Tchistyi (2010), Miao and Rivera (2013), Williams (2009, 2011), Wong (2013), Zhang

(2009) and Zhu (2012).3 However, agency issue is one dimensional in all these works. This

paper attempts to introduce an additional dimension of moral hazard in continuous-time

dynamic contract theory.

3Cvitanic and Zhang (2012) summarize some recent developments and techniques used in continuous-
time contract theory. See also Sannikov (2012) for applications in corporate finance.
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In an independent work, DeMarzo, Livdan, and Tchistyi (2011) is closely related to

my paper. They consider an agency model with three-outcome space: high cash flows, low

cash flows, and a “disaster” state, which corresponds to a large loss in my case. The agent

in their model, like mine, can choose to divert cash flows and at the same time choose

the riskiness of the project. In particular, risk-shifting leads to a higher probability of a

disaster. They show that to prevent risk-taking, it would be much less costly if contract

can be written directly on the state of nature. After I finished the first draft of my paper,

I found that DeMarzo, Livdan and Tchistyi have developed in a continuous-time extension

of their model. The cash flows we both consider is a jump-diffusion. The key difference is

that in their work, the downward jump is a “disaster” that leads to the termination of firm

immediately and it only occurs when the agent takes gambles while I allow for multiple

jumps. Similar to my result, they show that in the optimal contract, the principal would

allow the agent to engage in sub-optimal risk-taking when the agent performs poorly. Their

optimal contract also calls for randomization over some interval of the continuation utility,

which seems to make capital structure implementation less appealing. However, if one

focuses on the effect of agency issue on risk-taking, our results are complementary to each

other.

Biais, Mariotti, Rochet, and Villeneuve (2010) develops a continuous-time model in

which the agent exerts costly effort to prevent large loss. The cash flows in their model is a

pure jump process and their focus is on the firm’s capital dynamics. They show that when

incentive-compatibility is in conflict with limited liability, the principal will downsize, or

partially liquidate, the firm’s capital. This happens on equilibrium when the firm hits by a

sequence of bad shocks. My model differ from their in that I do not consider contractible

capital adjustment and allow for multi-tasking. Providing incentive for the agent to take

an inefficient action is second-best in my model. Thus my analysis highlights that partial

liquidation and risk-taking could potentially be two alternative ways to provide incentives.

Another related paper is Szydlowski (2012). He introduces multi-tasking in the q-

theory model by DeMarzo et al. (2012). There are n independent tasks in his model and
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the output of each task is driven by an arithmetic Brownian motion. The agent exerts

costly effort to control the drift of each Brownian motion. Similar to my model, even if a

task generates positive NPV, if the incentive cost of motivating the agent to work hard in a

task is too high, the principal prefers to let the agent shirk in that task. However, the total

cash flows volatility remains the same regardless of the number of tasks the agent is putting

effort in, as the agent only controls the drift, not the volatility. Unlike my model, the agent

could affect the Poisson intensity and thus the variance of the cash flows. Hence his model

cannot capture the relationship between project choice dynamics and asset riskiness.

In the static context, Biais and Casamtta (1999) study an agency model with risk-

taking. The project generates three outcomes: high, medium and low. Risk-taking is

hidden, destroys value and alters the returns distribution in the sense of second-order

stochastic dominance. The incentive constraints they obtain are similar to mine. They

further show that the optimal contract can be implemented by a mixture of debt and

equity and when moral hazard issue on effort is severe enough, stock option helps to

provide incentives. Palomino and Prat (2003) study risk-taking in a delegated portfolio

choice model in which the underlying technology displays a high-risk-high-return relation.

Their optimal contract also has the bonus feature. While I focus more on the downsize

risk, my model is more suitable for discussing the high-water mark contract because this

contract is dynamic in nature: the bonus threshold change over time depending on the

fund performance.

In continuous-time, Sung (1995) studies linear contract and project selection. In his

model, an agent with exponential utility selects project at time 0 by affecting the volatility

of the cash flows process. To obtain a meaningful moral hazard problem, the principal

is assumed to observe the investment return only at the terminal time. Since there is no

interim information, project is chosen at the beginning of time and there is no project

selection dynamics. Cadenillas et al. (2007) also consider project selection in continuous-

time. However, their focus is on the first-best optimal risk-sharing rule, that is, they do

not consider any form of agency issue.
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The rest of the paper is structured as follows. Section 1.2 develops the formal model.

Section 1.3 describes the model’s solution and characterizes the optimal contract. Capital

structure implementations and empirical implications are discussed in section 1.4. Sec-

tion 1.5 presents extensions. The last section concludes and proofs are delegated to the

Appendix.

1.2 The Model

Consider a continuous-time principal-agent model, in which investors (the principal) hire a

manager (the agent) to operate the firm. Both the principal and the agent are risk-neutral

and discount future cash flows at rate r and ρ respectively, where ρ > r > 0. The principal

has unlimited wealth while the agent is protected by limited liability and has no initial

wealth. The firm produces cash flows according to a jump-diffusion

dYt = µ(at)dt+ σdZt − LdNt

where µ(at) is the drift of the cash flows, {at}t≥0 is the action process to be described below,

σ > 0 is the volatility, L > 0 is the size of the loss,4 Z = {Zt}t≥0 is a standard Brownian

motion and N = {Nt}t≥0 is a standard Poisson process with intensity {λ(at)}t≥0. The drift

and the intensity are controlled by the agent’s action at. Both Z and N are defined on

a filtered probability space (Ω,F , {Ft}t≥0, P ) that satisfies the usual condition5 and they

are independent. The principal can only observe the cash flows process {Yt}t≥0 but not

the agent’s action process {at}t≥0. Since the cash flow path jumps downward when a loss

occurs, the principal is able to identify all the loss events. This implies that the principal

essentially observes the diffusion component X = {Xt}, where dXt = µ(at)dt + σdZt and

the jump component N separately. In other words, the principal’s information is modeled

by taking the filtration Ft = σ({Xs, Ns}s<t) generated by X and N .

4Random jump size is considered in section 5.
5That is, (i) the probability space (Ω,F , P ) is complete and F0 contains all P -null sets in F , and (ii)

the filtration {Ft}t≥0 is right-continuous: Ft = Ft+ for all t.
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Moral hazard is two-dimensional. At each moment of time, the agent can choose

an amount of effort to supply and an action that relates to the firm’s risk. Formally,

aet ∈ {aL, aH} is the agent’s effort choice, where aL denotes low effort or “shirking” and aH

is high effort or “working”. High effort increases the drift by µ > 0 while low effort allows

the agent to derive a private benefit B > 0. ast ∈ {aN , aR} is the agent’s risk-action. aN

denotes “safe action” or “non-risk-taking” behavior and aR stands for “risky action” or

“risk-taking” behavior. The Poisson intensity is λ > 0 when the agent is not taking risks

and λ+ γ, where γ > 0 when the agent takes risks. Moreover, when the agent takes risk,

the drift of the cash flows increases by α > 0. Intuitively, risk-taking behavior leads to a

higher short-term profit at a cost of increased likelihood of infrequent large losses. Note

that there is no cost for the agent to take risk. I refer {at = (aet , a
s
t )}t≥0 as action process.

The following table summarizes the above discussion

action drift intensity private benefit

(aL, aN ) 0 λ B

(aH , aN ) µ λ 0

(aL, aR) α λ+ γ B

(aH , aR) µ+ α λ+ γ 0

Notice that the riskiness choice admits multiple interpretations. One can think of the

agent is choosing between a safe project or a risky project. Another interpretation is

that the agent is choosing among financial assets with different riskiness.6 It should also

be noted that risk-taking leads to a higher cash flow variance: if ast = aR, var(dYt) =

(σ2 + L2(λ+ γ))dt. and if ast = aN , var(dYt) = (σ2 + L2λ)dt.7

6To see this more formally. One can rewrite the cash flow process as follows: dYt = 1{ast=aR}dY
R
t +

1{ast=aN}dY
N
t , where dY Rt = (µ(aet ) + α)dt + σdZt − LdNt with Poisson intensity λ + γ, and dY Nt =

µ(aet )dt+ σdZt − LdNt with Poisson intensity λ. Hence the choice of safe/risky action is equivalent to the
choice of different cash flow structure, ie., different projects. Moreover, note that the quadratic variation
of Y R and Y N are the same: for any t, [Y R]t = [Y N ]t, therefore the principal cannot observe the project
choice.

7Sung (1995) assumes that the agent controls the volatility of cash flow process (which is an arithmetic
Brownian motion). However, if the principal can continuously observe the cash flows, she can recover the
agent’s action by estimating the quadratic variation of the cash flows. Therefore Sung assumes that the
principal only observes the terminal cash flows to obtain a non-trivial moral hazard problem of project
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At time 0, the principal offers a contract to the agent. The contracting party can fully

commit to the contract. A contract specifies a liquidation time τ , payments I = {It}τ0 that

are functions of past cash flows, and a recommended action process a = {at}t≥0. Denote

a contract as Γ = (I, τ, a). At the liquidation time, the principal receives the liquidation

value of the project l ≥ 0 and the agent receives nothing. Because of limited liability,

the cumulative payment process I = {It}τ0 is non-negative and increasing. At any time t

prior to liquidation, the sequence of events during a short time interval [t, t + dt) can be

described as follows:

1. The agent takes an action ât.

2. The cash flow dYt realizes. And with probability λ(ât)dt, there is a loss, in which

case dNt = 1; otherwise dNt = 0.

3. The agent receives a non-negative compensation dIt.

4. The principal decides either to continue or liquidate the project.

Based on this timing, I require formally that the action process a is Ft-predictable, the

payment process I is Ft-adapted and the liquidation time τ is Ft-stopping time that can

take the value ∞. Note that an action process a induces a unique probability measure

P a over the paths of the cash flows {Yt}t≥0. Therefore, I let Ea(.) denote the expectation

operator under the measure P a.

Given a contract Γ = (I, τ, a) and an action process â, the agent’s total expected

discounted utility at time 0 is given by

Eâ
[ˆ τ

0
e−ρt(dIt + 1{âet=aL}Bdt)

]
(1.2.1)

selection. In the current setup, the quadratic variation of the cash flows on interval [0, t] is [Y ]t =
´ t

0
σ2ds+

L2
´ t

0
Nsds. As the agent’s action does not map one-to-one to the quadratic variation process, my setup is

free of this problem.
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and the principal’s total expected discounted profit at time 0 is given by

Ea
[ˆ τ

0
e−rt(dYt − dIt) + e−rτ l

]
(1.2.2)

Facing any contract Γ, the agent’s decision problem is to choose an action process â that

maximizes her expected utility (??). Denote the solution to this maximization problem

as a∗ = {a∗t }τ0 . This solution needs not be the same as the recommended action a. If

for a given contract Γ = (I, τ, a), the agent’s choice satisfies a∗t = at for all t ∈ [0, τ),

then the contract Γ is said to be incentive compatible. The optimal contracting problem

of the principal is to find an incentive compatible contract Γ that maximizes her expected

discounted profit (??) subject to delivering the agent a required level of expected utility

W0.

Throughout the paper, I maintain the following assumptions

• Assumption 1: µ+α−L(λ+γ)
r > l

The first assumption says that liquidation is inefficient. In particular, even if the agent is

taking risks all the time and large losses occur quite frequently, as long as the agent works

hard forever, the firm still generates a discounted cash flows that is strictly greater than

the project’s liquidation value8.

• Assumption 2: α− Lγ ≤ 0

The second assumption says that risk-taking is potentially harmful to the principal in

the sense that it reduces the NPV of the firm. This implies in the optimal contract, the

principal would try to avoid implementing risk-taking behavior as it leads to lower profits.

Assumption 1 and 2 together imply µ−Lλ
r > l.

• Assumption 3: µ > B

8Essentially this requires the downside risks not to be too bad. If this assumption fails to hold, the
principal prefers to shut down the firm instead of providing incentive for risk-taking.
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The last assumption says that when the agent shirks, the loss in the expected profits of

the project is larger than the agent’s private benefit of shirking. The last two assumptions

suggest that risk-taking and shirking at the same time is not socially efficient. When

there is no agency issue, namely, a is contractible, then under the above assumptions, the

first best contract can be characterized as follows: by assumption 2 and 3, maximal effort

and safe action at = (aH , aN ) are implemented at every moment of time. The expected

discounted cash flow is µ−Lλ
r . Since the agent is more impatient than the principal, the

principal pays an amount W to the agent at time 0. By assumption 1, the principal never

liquidates the project. Principal’s value under the first-best contract subject to delivering

the agent an amount W is FFB(W ) = µ−Lλ
r −W .

1.3 Model Solution

1.3.1 Incentive compatibility.

This section provides a necessary and sufficient condition for incentive compatibility of any

contract. Fix any arbitrary contract Γ and an action process a, the agent’s continuation

value at time t is defined by

Wt(Γ) ≡ Eat
[ˆ τ

t
e−ρs(dIs + 1{aes=aL}Bds)

]
(1.3.1)

In other words, Wt(Γ) is the agent’s promised utility at time t given contract Γ and when

she plans to follow the continuation of action process a from t onward. Note that the con-

tinuation value at t reacts to information and hence summarizes all past performance of the

agent. The principal could control how the continuation value responds to cash flow real-

izations and loss events in order to provide incentives. Using the Martingale Representation

Theorem, the following proposition characterizes the evolution of the continuation value

process {Wt(Γ)}t≥0 in terms of observed cash flows and loss events. In addition, it provides

a key condition for the agent to follow the recommended actions. Let Wt− = lims↑tWs.
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Proposition 1.1. Given any contract Γ = (I, τ, a), there exists a Ft-predictable process

{(βt, ψt)}τ0 such that for any t < τ ,

dWt(Γ) = (ρWt−(Γ)− 1{aet=aL}B)dt− dIt + βt(dXt−µ(at)dt)−ψt(dNt− λ(at)dt) (1.3.2)

Moreover, a necessary and sufficient condition for the contract Γ to be incentive compatible

for high effort is that, at = (aH , aN ) if and only if βt ≥ B
µ and ψtγ ≥ βtα, and at = (aH , aR)

if and only if βt ≥ B
µ and ψtγ ≤ βtα, for any t ∈ [0, τ).

In the optimal contract, the principal seeks to implement high efforts all the time but

allow the agent’s strategy to vary. Therefore, proposition 1 states that the dynamics of the

agent’s continuation value follows

dWt = ρWt−dt− dIt + βtσdZ
a
t − ψtdMa

t

where Za = {Zat }t≥0 is a Brownian motion and Ma = {Ma
t } is a compensated Poisson

process under probability measure P a. The drift of W contains two components: the first

term ρWt−dt corresponds to the promise-keeping constraint. As the principal promises a

balance Wt at time t to the agent, the promised amount grows at rate ρ since the agent is

impatient and discounts future cash flows at rate ρ. The second component is an immediate

cash payment dIt. Paying dIt reduces the promise at time t exactly by dIt.

The diffusion and jump part of Wt are connected to the incentive component of an

contract because deviation from the recommended action affects continuation value through

its effects on both Za and Ma. To understand the incentive constraints, suppose at time t,

the principal recommends working. If the agent shirks, she obtains a private benefit Bdt,

but loses βtµdt in compensation. This is because by shirking, the drift of dXt reduces by

µdt, and that translates to a reduction in continuation value by βtµdt. Thus, the agent

will choose high efforts if and only if βtµ ≥ B. Similarly, suppose at time t, the principal

recommends the agent not to take risk. If the agent deviates to take risk, her marginal
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benefit is βtαdt because the drift of dXt is increased by αdt. And the marginal cost is ψtγdt

since by taking risks, the probability for a large loss to arrive within [t, t+ dt) is increased

by γdt, and when a loss occurs, the agent is punished by a reduction in the promised utility

by an amount ψt. Hence, the principal can prevent risk-taking if and only if ψtγ ≥ βtα.9

1.3.2 Derivation of the Optimal Contract.

In this section, I study the Hamilton-Jacobi-Bellman (HJB) equation for the principal.

Since there is only one state variable: the agent’s continuation value Wt, I let F (W )

denote the principal’s value function. In particular, after any history of the firm which is

summarized by Wt, F (Wt) is the principal’s continuation value in an optimal contract. I

assume for the moment that F (W ) is concave and twice differentiable.

Note that there are some key and standard properties for the value function F (W ).

First, it is obvious that the value function cannot exceed the first best, that is F (W ) ≤

FFB(W ) for all W . Second, the principal can always choose to pay the agent a lump-

sum dI > 0 immediately and moving down the promise from W to W − dI. Therefore,

F (W ) ≥ F (W −dI)−dI, which implies F ′(W ) ≥ −1 for all W . The right-hand side of the

inequality is the marginal cost of an immediate payment and F ′(W ) can be interpreted as

the marginal benefit of deferring cash payment. As the agent has a higher discount rate

ρ > r, the benefit of deferring compensation will decrease as the promised balance grows.

This implies that it is optimal to pay the agent when her continuation value hits a payment

threshold defined by W p = min{W : F ′(W ) = −1}. Thus, the optimal amount to be paid

is

dI = max{W −W p, 0}

It follows that for Wt > W p, F (Wt) = F (W p) − (Wt −W p). Third, because of limited

liability, the agent’s continuation payoff has to be non-negative. So for any t, Wt ∈ [0,W p].

Moreover, because Wt has positive volatility regardless of choice of the risk strategy, thus

9The agent could deviate to low effort and risk-taking simultaneously. But under the above two con-
straints, she has no incentive to do so. See the appendix for a proof.
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when Wt = 0, liquidation is necessary.

Now, I turn to the characterization of F (W ) for W ∈ [0,W p]. Since the principal

can implement different risk-taking strategies, I first write down the equations that the

principal’s profit has to satisfy if the principal recommends different choices. Let FN (W )

be the principal’s profit when implementing at = (aH , aN ) for all t. By proposition 1.1,

the required incentive constraints are βt ≥ B
µ and ψtγ ≥ βtα. Suppose FN is concave, then

it is optimal to set βt = B
µ and ψt = B

µ
α
γ for all t such that at = (aH , aN ). From now on,

let β = B
µ and ψ = B

µ
α
γ . The dynamics of the agent’s continuation value is

dWt = (ρWt + ψλ)dt+ βσdZt − ψdNt (1.3.3)

Then the principal’s profit satisfies the safe action delay differential equation (DDE) :

rFN (W ) = µ−Lλ+F ′N (W )(ρW +ψλ)+
1

2
F ′′N (W )β2σ2 +λ(FN (W −ψ)−FN (W )) (1.3.4)

To simplify notation, let LN be the infinitesimal generator of the process (??). That is

LNF (W ) = F ′(W )(ρW + ψλ) + 1
2F
′′(W )β2σ2 + λ(F (W − ψ)− F (W )).

Denote by FR(W ) the principal’s profit when she implements at = (aH , aR) for all t,

the associated incentive constraints are βt ≥ B
µ and ψtγ ≤ βtα. Assume that FR is concave,

then it is optimal to set βt = B
µ and ψt = 0 for all t such that at = (aH , aR). The dynamics

of the agent’s continuation value is

dWt = ρWtdt+ βσdZt (1.3.5)

Then the principal’s profit satisfy the risky action ordinary differential equation (ODE) :

rFR(W ) = µ+ α− L(λ+ γ) + F ′R(W )ρW +
1

2
F ′′R(W )β2σ2 (1.3.6)

Similarly, let LR be the infinitesimal generator of the process (??) so that LRF (W ) =
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F ′(W )ρW + 1
2F
′′(W )β2σ2.

Notice that the functions FN (W ) and FR(W ) only tell us how the principal’s profit

would evolve when implementing different actions, but not the optimal profit. However,

based on these two differential equations, the HJB equation for the principal is given by

rF (W ) = max

{
µ− Lλ+ LNF (W ), µ+ α− L(λ+ γ) + LRF (W )

}
(1.3.7)

The structure of the HJB-equation suggests that the optimal policy can be obtained

by comparing the components in the max operator. Because the comparison only depends

on the state variable W , the action policy is Markovian. More formally, first consider the

continuation value in the interval [ψ,W p]. If µ−Lλ+LNF (W ) ≥ µ+α−L(λ+γ)+LRF (W ),

then the principal would like to choose ast = aN . If otherwise, the principal chooses ast = aR.

Notice that the previous inequality is equivalent to F ′(W )ψλ + λ(F (W − ψ) − F (W )) ≥

α− Lγ. Define the following function on [ψ,W p]

A(W ) = F ′(W )ψλ+ λ(F (W − ψ)− F (W )) (1.3.8)

Intuitively, the first term in (??) is the increase in the drift of the agent’s continuation

value if the principal implements the safe action. When W is low, an increase in drift is

beneficial in the sense that the continuation value will move faster away from the liquidation

boundary. But when W is higher, a higher drift is costly because it implies more frequent

cash payments are made. The second term in (??) works in the reverse direction. When

W is low, a downward jump in continuation value implies a greater chance of liquidation

and for high W , it reduces the likelihood of making cash compensation. However, given

liquidation is inefficient, the principal essentially exhibits risk-averse behavior. Incentive-

compatible safe action thus implies a higher volatility on the agent’s continuation value:

the agent is exposed to Poisson risks. Therefore A(W ) < 0 for all W ∈ [ψ,W p] and one can

interpret |A(W )| as the agency cost of preventing risk-taking. In addition, A(W ) is strictly
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increasing in W , meaning that the agency cost decreases as the firm moves away from the

liquidation boundary. Because the expected monetary loss is constant, one expects that

there exists a threshold W ∗ ∈ [ψ,W p] such that for W < W ∗, risk-taking will be optimal

as the agency cost of preventing the agent to take downside risks is too high, and when

W ≥ W ∗, the safe action will be optimally implemented as the monetary loss from the

risky action is too high. Lemma 9 in the appendix proves these properties of A(W ) and

establishes the existence of W ∗.

Next, consider the continuation value in the interval [0, ψ). A critical observation is

that Wt cannot enter into the interval [0, ψ) if the principal implements ast = aN at all

times.10 Intuitively, this happens because to motivate the agent to choose the safe action,

incentive compatibility requires a large enough punishment following an observable large

loss. However, when the agent’s continuation value is too low, such a punishment cannot

be imposed. That is, incentive compatibility is in conflict with limited liability. In other

words, there is no incentive compatible contract that implements the safe action on the

interval [0, ψ). Therefore, for the firm’s operation to continue, the principal would allow

the agent to take risk on this region.

The risky action ODE, equation (??), is a second-order ordinary differential equation.

I have argued above that limited liability requires risk-taking on the interval [0, ψ). On

this interval, the dynamics of the principal’s profit is represented by equation (??) when

the agent chooses the safe action. When Wt = 0, liquidation is necessary, hence FR(0) = l

is a required boundary condition.

Combining the above analysis, the optimal action policy can be summarized as follows

at = a(Wt) =


(aH , aR) if Wt ∈ [0,W ∗]

(aH , aN ) if Wt ∈ (W ∗,W p]

10If the principal seeks to implement ast = aN for all t, the suitable initial history function is FN (W ) =
m
ψ
W + l. It can be shown that there exists a maximal m such that the value function satisfies this initial

history and boundary conditions F ′N (W p) = −1 and F ′′N (W p) = 0. This specification is equivalent to
stochastic liquidation when Wt crosses ψ from above. However, this policy is not optimal because the risky
action ODE starts out concave and could lie above the linear part of FN .
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In the case where W ∗ ∈ (ψ,W p), W ∗ is implicitly defined by

A(W ∗) = α− Lγ (1.3.9)

Applying the optimal policy, it follows that the HJB-equation (??) can be viewed as a

differential equation

rF (W ) = µ− Lλ+ 1{W≤W ∗}(α− Lγ) + F ′(W )(ρW + 1{W>W ∗}ψλ) (1.3.10)

+
1

2
F ′′(W )β2σ2 + λ(F (W − 1{W>W ∗}ψ)− F (W ))

Based on the discussion in the previous paragraphs, I impose the standard boundary con-

ditions: F (0) = l, F ′(W p) = −1, and F ′′(W p) = 0, in order to solve this differential

equation. The main result for the optimal contract is stated as proposition 1.2.

Proposition 1.2. The principal’s value function is given by the solution F to equation (??)

with boundary conditions F (0) = l, F ′(W p) = −1, and F ′′(W p) = 0. The optimal contract

(I, τ, a) that implements high efforts all the time and delivers the agent initial utility W0

takes the following form: (i) Incentive loadings are βt = B
µ and ψt ∈ {Bµ

α
γ , 0}. There exists

a switching point W ∗ ∈ [ψ,W p] such that when Wt ∈ (0,W ∗], the principal implements

the risky action, ast = aR and imposes no punishment, ψt = 0. The agent’s continuation

value follows dWt = ρWtdt + βσdZt. When Wt ∈ (W ∗,W p], the principal implements

the safe action, ast = aN and imposes positive punishment ψt = B
µ
α
γ > 0. The agent’s

continuation value follows dWt = (ρWt− + ψλ)dt + βσdZt − ψdNt. (ii) Cash payments:

dIt = max{Wt −W p, 0} reflects Wt back to W p. (iii) Liquidation: τ = min{t|Wt = 0}, at

which time the principal receives l and the agent gets 0.

To summarize, when Wt ∈ (0,W ∗], because either the agency cost of preventing risk-

taking is too high or exposing the agent to Poisson risk violates limited liability constraint,

the principal implements the risky action ast = aR and the agent’s continuation value

follows dWt = ρWtdt + β(dXt − (µ + α)dt). On this interval, no cash payment is made,
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the principal only rewards or punishes the agent by changing the continuation promises.

Termination of the contract occurs when the continuation value Wt hits 0 for the first time.

In which case the principal receives l and the agent gets nothing. When Wt ∈ (W ∗,W p],

because the firm stands far away from the liquidation boundary and it is cheaper for the

principal to let the agent bearing Poisson risks, she implements the safe action ast = aN

and the agent’s continuation value follows dWt = (ρWt + ψλ)dt + β(dXt − µdt) − ψdNt.

The principal imposes a severe punishment when she observes a large loss and compensates

the agent with cash when Wt ≥W p.

From a computational perspective, an alternative way to understand the solution F

to (??) is the following: On [0,W ∗], the value function is given by the solution to (??),

FR(W ). The risky-action ODE is solved by imposing boundary conditions FR(0) = l

and FR(W ∗) = FN (W ∗). On [W ∗,W p], the value function is given by the solution to

(??), FN (W ). The safe-action DDE is solved by specifying an initial history FR(W ) on

[W ∗ − ψ,W ∗], together with the conditions on payment boundary F ′N (W p) = −1 and

F ′′N (W p) = 0. The solution to the HJB-equation F (W ) on [0,W p] is thus defined by

F (W ) =


FR(W ) if W ∈ [0,W ∗]

FN (W ) if W ∈ (W ∗,W p]

(1.3.11)

Lastly, notice that, depending on parameter values, it is possible to have an optimal

contract that implements the risky action all the time, that is, W ∗ = W p. This happens

when the agency cost of risk-taking is sufficiently high or the expected monetary loss is

sufficiently low. At the extreme when risk-taking does not destroy values, α−Lγ = 0, risk-

taking is always optimal. Because the contract with an interior switching point W ∗ < W p

is the most interesting case, in the rest of the paper, I assume that α − Lγ < 0 and the

following lemma pins down conditions that deliver W ∗ < W p. Although the conditions are

not entirely stated in terms of the model’s primitives, it offers additional insights to the

contracting problem. To state the lemma, let FN,m denote the solution to (??) with initial
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history FN,m(W ) = m
ψW + l, where m is the maximal initial slope such that FN,m satisfies

the relevant boundary conditions.

Lemma 1.3. Let W p be the payment boundary under the optimal contract. Suppose that

FN,m(W p) + W p > µ+α−L(λ+γ)
r , then W ∗ < W p. For W ∗ > ψ, a necessary condition is

FN,m(ψ) + ψ ≤ µ+α−L(λ+γ)
r .

The first part of the lemma provides a sufficient condition for the safe-action to be

optimal. The quantity FN,m(W )+W is the social value of a contract that restricts attention

to the safe-action. When the social value of the safe-action is strictly larger than firm’s

expected discounted cash flows under risk-taking, it will be efficient to switch from the risky

action to the safe one. The second part of the lemma states the similar, the social value

of implementing the safe action alone is smaller than the firm’s expected discounted cash

flows under risk-taking, it will be potentially efficient for the principal to assign the risky-

action. The contrapositive of the second part suggests that if FN,m(ψ) + ψ > µ+α−L(λ+γ)
r ,

then under the optimal contract, it must be that W ∗ = ψ.

1.3.3 Discussion.

This subsection provides a short discussion of the optimal contract. I first discuss the

economic intuition behind the optimal contract result. Then I will compare my model to

DS and BMRV.

In the optimal contract, in order to induce the agent to work hard, the principal sets

β = B
µ . The incentive component admits standard interpretation: β is proportional to

the effort dimension of moral hazard. A higher private benefit B, the agent is tempted

to shirk, hence a higher-powered incentive is required. For a higher marginal effect of

effort on cash flows µ, the principal can detect shirking easily, hence a smaller incentive

loading. On the other side, high-powered incentive also drives the agent to take risks, as by

doing so, she will earn βα. So to prevent the agent from gambling, incentive compatibility

requires an upper bound on β, which gives the constraint ψ ≥ β αγ , so that the punishment
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is proportional to working incentives and the agent is exposed to the Poisson risk. The

stick ψ also admits standard interpretation: A higher β implies a heavier punishment is

needed to deter risk-taking. As γ increases, losses come more frequently and it is easier for

the principal to detect risk-taking, hence ψ will be smaller. An increase in α tempts the

agent to risk-shift, therefore, more severe punishment is needed.

On the equilibrium path, the principal would like to implement the risky action when

the agent performs poorly, that is, when the agent’s continuation value is low. This is in

sharp contrast to the first-best in which only the safe action is implemented because by

assumption 2 the risky action is value-reducing. To understand this result, notice that by

proposition 1.1, to motivate the agent to choose the risky action, it suffices for the principal

to set the incentive loadings to be ψtγ ≤ βtα. By assumption 1, liquidation of the firm

is inefficient and any increase in the volatility of the agent’s continuation value process is

costly to the principal, since it increases the chance for Wt to hit the liquidation boundary.

Hence, in the optimum ψt = 0 when the principal recommends the risky action. Although

risk-taking is costly to the principal as it destroys values, interestingly, from the princi-

pal’s point of view, the benefit of implementing the risk-taking behavior is a reduction in

volatility of the agent’s continuation value, hence a smaller chance of inefficient liquidation.

In other words, to rule out hidden gambling, the principal has to bear additional agency

cost |A(W )| as defined in (??). The optimal action policy is obtained by weighting the

expected monetary loss |α−Lγ| of risk-taking and the agency cost of preventing risk-taking

|A(W )|. The logic of volatility effect implies |A(W )| is strictly decreasing in W : as the

agent’s performance accumulates, a downward jump in the agent’s continuation value no

longer brings the firm sufficiently close to the liquidation boundary. Hence the principal

seeks to implement the safe action at the top and the risky action at the bottom.

These observations are closely related to “gambling for resurrection”-type behavior.

Optimal contracting rationalizes this type of behavior. What is interesting is that although

risk-taking destroys values of the firm, from the principal’s point of view, hidden gambling

at the bottom is constrained efficient (whenever W ∗ > ψ), and on the equilibrium path, the
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principal optimally allows the agent to take risky gambles by imposing suitable incentive

loadings, and thus letting the agent to “resurrect” her from liquidation.11

1.3.3.1 Comparison to DS and BMRV

In DS, the cash flows generated by the firm follow an arithmetic Brownian motion and the

principal implements high effort at all times. The optimal incentive structure is similar:

to motive the agent, the principal has to expose the agent to a certain amount of risk

(the volatility β). In my setting, since moral hazard is two dimensional, there are two

sets of incentive constraints facing the agent. However, if the principal finds it optimal

to implement the risky action forever, by proposition 1.2 and 1.3, the dynamics of the

continuation value and the principal’s profit exhibit the same structure as in DS, with

expected cash flows µ+ α− L(λ+ γ) replacing their drift term µ.

In BMRV, similar to my model, the firm’s cash flows suffer negative shocks modeled

by a Poisson process and the agent is also protected by limited liability. More formally, in

BMRV, the firm generates cash flows at any moment of time according to

KtdYt = (µdt− LdNt)Kt

where Kt is the firm’s size or capital stock. Assume there is no investment but costless

partial liquidation is possible. That is, let κt ∈ [0, 1] denote the fraction of capital stock to

liquidate at t. When the agent shirks, the intensity of the Poisson process increases from

λ to λ+ ∆λ, but the agent accrues private benefits at rate BKt. The agent’s action does

not affect the cash flow drift. Suppose that the principal finds it optimal to implement the

high effort, then a result similar to proposition 1.1 applies, and the agent’s continuation

value follows

dWt = ρWtdt− dIt −Ψt(dNt − λdt)
11Notice that the principal is assumed to have deep pockets. Thus she can absorb all the losses generated

by hidden risk-taking and all she cares is liquidation. It would also be interesting to study what will happen
when the principal is credit-constrained.
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where the sensitivity to Possion risk Ψt satisfies an incentive constraint: ψt ≥ BKt
∆λ . In

BMRV, when the agent’s continuation value is sufficiently low, incentive can be provided

by partially liquidating the firm’s capital. In particular, when continuation value is such

that BKt
∆λ > Wt− − Ψt, downsizing at time t, i.e., κt < 1, will be necessary to provide

incentives. This is because Wt−−Ψt is the continuation value of the agent after a loss occurs

at t. And BKt
∆λ is the minimal required punishment when another loss occurs sufficiently

close to time t. The strict inequality implies limited liability will be violated following

two consecutive losses.12 Therefore, in terms of size-adjusted continuation value wt = Wt−
Kt

and punishment ψt = Ψt
Kt

, and note that the incentive constraint is binding in equilibrium:

ψ = B
∆λ , the principal partially liquidates the firm when wt ∈ ( B

∆λ ,
2B
∆λ). Downsizing leads

to a reduction in the agent’s private benefit of shirking and thus a smaller punishment

is needed to incentivize the agent. In other words, downsizing could be viewed as an

alternative way to provide incentives.

The key differences between BMRV and my model are that (i) I do not consider capital

stock and partial liquidation. (ii) risk-prevention is costly in BMRV while in my model,

risk-taking is a strategy which is costless.13 Incentives can be provided by implementing

a different risk-action. As the choice of risky action does not require punishment on the

equilibrium path, the conflicts between incentive constraints and limited liability can be

resolved by switching actions.

A natural question arises here: does the introduction of capital stock and downsizing

relaxes the contract space and help eliminate risk-shifting problems in my setting? Suppose

in the current setting the cash flows follow

KtdYt = Kt(µ(at)dt+ σdZt − LdNt)

12Formally, let Kt+ = lims↓tKs ∈ [0,Kt] and Kt+ = κtKt. Limited liability requires at all t, Wt−−ψt ≥
BKt+

∆λ
. If the strict inequality is true, then Kt > Kt+, which implies κt < 1.

13As long as risk-taking increases the drift of the cash flows, introducing costly risk prevention does not
change the main result. To see this, suppose it costs the agent cN to avoid risk-taking, i.e., take the strategy
ast = aN . The required incentive constraint changes to ψtγ ≥ βtα − cN . The constraint is relaxed by a
constant but a fixed-sized punishment is still needed to deter risk-taking. Therefore the key features of the
optimal contract would be the same, but potentially with a different switch point W ∗.
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so that the operating profit is proportional to the size of capital stock Kt and partial

liquidation is allowed. Also, assume that the private benefit is proportional to capital

stock, BKt. Applying the martingale approach, the required incentive constraints for

at = (aH , aN ) are µβtKt ≥ BKt and Ψtγ ≥ βtKtα. Thus to induce the agent to choose

the safe action in a larger firm, a heavier punishment is required. This suggests that the

logic of BMRV applies: whenever Bα
µγ Kt > Wt− − ψt, there is downsizing κt < 1. Letting

b = B
µ
α
γ .14 In terms of size-adjusted variables, κt = wt−b

b < 1 whenever wt ∈ (b, 2b), if the

principal implements the safe action on this interval. However, downsizing needs not occur

on the equilibrium path in my model. Both partial liquidation and switching to the risky

action lead to reduction in the firm’s value. The contractual term to be use depends on

the relative losses of the options. The equilibrium could be of two types: (i) The optimal

size-adjusted switching point w∗ > 2b, or (ii) w∗ ∈ (b, 2b). In the former equilibrium where

w∗ > 2b. At wt ≤ w∗, the principal implements the risky action and hence punishment

becomes irrelevant. Even though wt ≤ 2b, downsizing does not occur. In the latter one, for

continuation value wt ∈ [w∗, 2b), the principal implements the safe action and downsizing

occurs before switching to the risky action. Given the role of downsizing is to adjust

incentives, optimal switching between actions replaces partial liquidation of capital stock.

Therefore, downsizing and action-switching are two different ways to provide continuation

incentives.

1.4 Implication and Analysis

In this section, I discuss some implications of the model. First, I provide some numerical

analysis of the optimal contract. Then I turn to study the implementation of the optimal

contract using a capital structure. Lastly, I show that the incentive structure of the op-

timal contract is the same as the high-water mark contracts and address the risk-shifting

problems.

14Note that B
µ
α
γ

is analogous to B
∆λ

in BMRV.
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1.4.1 Quantitative Analysis.

Figure 1.4.1: The Principal’s Value Function.
Parameter values: r = 0.1, ρ = 0.15, µ = 35, α = 20, L = 50, λ = 0.2, γ = 0.5, B = 15,
σ = 16, l = 25.

Figure 1.4.1 provides an example of the optimal contract. The blue line is the principal’s

value as a function of the agent’s continuation utility, which is smooth and strictly concave

on [0,W p), with a payment boundary is W p = 59.28. In this contract, the incentive

loadings are β = 0.43 and ψ = 17.14. The punishment is imposed when the principal

implements the risky action. Whenever any loss events occur, the punishment causes a

relatively large downward jump of the continuation value. The optimal action policy is

characterized by an interior switching point W ∗ = 33.31. To the left of W ∗, risk-taking

is the second-best action and to the right of it, the safe action is optimal. This example

is particularly interesting in the sense that the region of continuation value such that the

principal assigns the risky action optimally is non-degenerate. To compare the numerical

result to the theoretical analysis in the previous section, first notice that the expected

monetary loss of risk-taking is |α−Lγ| = 5, which is 20% of the expected cash flows of the

firm under the safe action µ−Lλ = 25. The percentage loss is reasonable and acceptable.
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Now, consider the firm is currently sitting at continuation value W = 25 and suppose that

the principal implements the safe action at this point. Whenever there is any large loss,

incentive-compatible punishment brings the agent’s continuation value down to W−ψ ≈ 8,

which is sufficiently close to the liquidation boundary. In fact, the numerical result shows

that the agency cost of preventing risk-taking is |A(W = 25)| = 7.6, which is 30% of the

firm’s expected profit. Therefore, the principal chooses to implement the risky action at

W=25.

Now I perform comparative statics by adjusting the key parameters related to the

expected monetary loss of risk-taking (α,L, γ). The results are reported in the following

table. The parameter values used to compute the principal’s value in figure 1.4.1 are served

as the baseline parameters.

parameter value β ψ W ∗ W p W ∗

W p

Baseline 0.43 17.14 33.31 59.28 0.56

α 15 0.43 12.86 12.86 54.82 0.23
18 0.43 15.43 24.35 58.63 0.41
22 0.43 18.86 36.36 59.16 0.61

γ 0.45 0.43 19.05 39.10 57.01 0.69
0.6 0.43 14.29 21.29 57.53 0.37
0.7 0.43 12.25 12.25 53.80 0.23

L 45 0.43 17.14 37.57 54.78 0.69
55 0.43 17.14 26.43 61.43 0.43
60 0.43 17.14 17.14 62.37 0.27

Table 1.1: Comparative Statics of α, γ, L.
The baseline parameter values: r = 0.1, ρ = 0.15, µ = 35, α = 20, L = 50, λ = 0.2,
γ = 0.5, B = 15, σ = 16, l = 25.

In the table, the effort incentive remains unchanged because β is independent of these

parameters. The general pattern revealed in the table is consistent with the theoretical

analysis: (i) a higher α and a lower γ imply a more severe punishment. (ii) As the expected

monetary loss of risk-taking increases (increase in γ, L and decrease in α), the optimal

switching point W ∗ decreases. The changes in the switching point are much more sensitive
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to the change in payment boundary. The last column of the table computes the ratio W ∗

W p .

The drastic change in the ratio suggests that the principal implements the safe project

more often as the loss of risk-taking magnifies. In the extreme where α = 15, L = 60, or

γ = 0.7, the switching point W ∗ coincides with ψ, meaning that the expected monetary

loss is so large that risk-taking is no longer optimal, yet it is still necessary for incentive

purposes.15

parameter value β ψ W ∗ W p W ∗

W p

Baseline 0.43 17.14 33.31 59.28 0.56

µ 30 0.5 20 33.34 65.94 0.50
40 0.38 15 29.13 54.23 0.53
45 0.33 13.33 27.32 49.78 0.55

l 0 0.43 17.14 32.82 60.02 0.54
50 0.43 17.14 29.20 58.94 0.50
100 0.43 17.14 25.60 56.86 0.45

σ 12 0.43 17.14 29.87 53.62 0.56
20 0.43 17.14 33.18 65.47 0.51
24 0.43 17.14 32.52 71.56 0.45

B 10 0.29 11.43 21.71 42.89 0.51
20 0.57 22.86 43.44 75.24 0.58
25 0.71 28.58 50.27 89.79 0.56

Table 1.2: Comparative Statics of µ, l, σ,B.
The baseline parameter values: r = 0.1, ρ = 0.15, µ = 35, α = 20, L = 50, λ = 0.2,
γ = 0.5, B = 15, σ = 16, l = 25.

Table 1.2 considers comparative statics with respect to some other parameters. Con-

cerning risk-taking, the table shows that the ratio W ∗

Wp
is relatively insensitive to the change

in these parameters which have no direct effect on the expected monetary loss of risk-taking.

The comparative statics also confirms the intuition obtained from the theoretical analysis:

a larger liquidation value implies liquidation is less inefficient, hence the agency cost of

preventing risk-taking is less severe and thus the principal could deter risk-taking more

often. An increase in cash flows volatility pushes the payment boundary to the right. This

15Although not reported in the table, when α = 25, γ = 0.8, or L = 40, the expected monetary loss is 0.
The numerical results show that the optimal policy is aR for all W ∈ [0,W p].
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is because higher volatility implies a higher chance for the firm to liquidate, in order to

keep the firm to stay away from liquidation, a higher payment boundary is required. An

increase in the private benefit of shirking B implies a more high-powered incentive scheme

is needed to motivate the agent. This implies the agent is exposed to the Brownian risk

more heavily. To prevent inefficient liquidation, the payment boundary moves up a lot.

Meanwhile, a high β makes hidden gambling more tempting and a heavier punishment is

needed to deter risk-taking. This leads to a higher agency cost in preventing risk-taking and

thus pushes the optimal switching point W ∗ by a substantial amount in order to prevent

inefficient liquidation when a punishment takes place.

1.4.2 Capital structure implementation.

In this subsection, I show how the optimal contract derived in section 3 can be implemented

using standard securities (e.g., debt and equity) and an insurance contract.16 To imple-

ment the contract, first recall that the optimal contract exhibits memory and its dynamics

depends on the evolution of the agent’s continuation value Wt. The state variable Wt can

be positively linked to another variable that measures “financial slackness” of the firm.

Financial slackness may correspond to the firm’s cash reserves as in BMPR, or a credit line

as in DS, or a combination of both. I choose to interpret the financial slackness as cash

balance in this paper. Second, the insurance contract is relevant in the present set up in

the sense that it allows the firm to hedge against large risks. It will be seen below that the

terms of the insurance contract also affect the agent’s incentive to take risks.

Specifically, I consider the following securities in the implementation.

Cash Reserve: The firm maintains a level of cash reserves Mt at time t to meet any

needs for short-term financing. The cash balances are deposited on a bank account and

earn the market interest rate r. Daily operating cash flows are injected into the account.

Any coupon, dividend payments, or insurance premium paid to the outside investors are

16In general, there are many different ways to implement the optimal contract. Nevertheless, the securities
designed in this section is intuitive and suggestive.
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drawn from this account. Any change in the level of cash reserves thus reflects the firm’s

performance and the occurrence of loss events.

Equity : Equity is issued in the form of common stocks, in which equity holders receive

dividend payments dDt. The agent holds a fraction β = B
µ ∈ (0, 1) of common stocks and

is prohibited from selling the stocks.17 By compensating the agent with a proportion of

firm’s equity, she has the appropriate incentive to work hard.

Debt : The long-term debt is a performance pricing bond with no maturity that pays

coupon at rate ct. In particular, consider the coupon payment:

ct =


µ+ α− L(λ+ γ)− (ρ− r)Mt if Mt ≤M∗

µ− Lλ− (ρ− r)Mt if Mt > M∗

where M∗ is a cash threshold to be specified (and is endogenously determined) later. The

first component of the coupon is positively related to the firm’s expected cash flows and

the second component (ρ−r)Mt reflects the “performance pricing” component. The size of

the coupon payment depends on the firm’s current performance. When the cash balance is

low so that Mt ≤M∗, the firm is in distress and the coupon is “downsized” by an amount

|α− Lγ|.

Insurance Contract : There is an insurance company in a competitive market that

provides insurance services to the firm. The contract payout at rate dRt and is fairly

priced. In particular, consider:

dRt =


(λ+ γ)Ldt− LdNt if Mt ≤M∗

λ(L− α
γ )dt− (L− α

γ )dNt if Mt > M∗

The insurance company is liable for the firm’s large risks. Whenever there is a large loss

(dNt = 1), the insurance contract delivers contractual payments that allow the firm either

17Recall by assumption 3, µ > B.
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to cover the entire loss L or to obtain partial coverage L− α
γ .18 As the insurance contract

is fairly priced, the actuarially fair premium is (λ + γ)L when Mt ≤ M∗ and is λ(L − α
γ )

when Mt > M∗. This is true because the insurance company has rational expectation, it

correctly anticipates that the firm’s asset risk and the manager’s project choice, in which

case a loss occurs with probability (λ+γ)dt during the time interval [t, t+dt). Similarly, if

the insurance company expects the firm’s asset risk to be low, the premium is proportional

to the probability of loss λdt for Mt > M∗. As the insurance premium is fair, Et(dRr) = 0.

In the implementation, the agent has discretion over the firm’s investment policy, div-

idend payout policy, and when to accumulate cash balances. In addition to the choice of

efforts, the agent is delegated by the principal to choose over safe or risky projects. Under

this security design prescription, the cash reserves grow according to

dMt = rMtdt+ dYt − dDt − ctdt− dRt (1.4.1)

Proposition 1.4. Consider the capital structure specified above and suppose the cash bal-

ances satisfying Mt = 1
βWt and M∗ = 1

βW
∗. Then it is incentive compatible for the agent

to provide high efforts all the time, choose the risky action when Mt ≤ M∗ and the safe

action when Mt > M∗. The agent distributes dividends when Mt hits Mp = 1
βW

p and

terminates the firm when Mt hits 0 for the first time.

The incentive properties of the implementation can be understood as follows. First, the

agent has incentives to work hard because she is compensated by a fraction of the firm’s

equity. The fraction is exactly equal to the incentive loading on the Brownian motion,

β = B
µ . Thus when dividends are paid, the agent consumes dIt = βdDt. Second, to ensure

the agent does not pay dividends too early or too late, I set Mp = 1
βW

p. The logic behind

this equality is the same as DS’s analysis of the length of the credit line. Suppose the

current cash balance is Mt, and the agent’s continuation utility is Wt. The agent can

always pay a total dividend dDt = Mt and terminate the business, in which case the agent

18Recall by assumption 2, α
γ
< L.



31

obtains βdDt = βMt. However, as we set Mt = 1
βWt, the agent’s payoff from this action is

Wt. So the agent has no incentive to deviate.

Turning to the use of insurance. The insurance contract is structured in a way to

provide the appropriate incentive for the agent to choose the optimal risk-related action.

In particular, when the firm is performing well such that Mt > M∗, the investors agree to

adopt incomplete hedging. That is, when there is a loss of size L, the insurance company

only covers part of the loss of size L− α
γ . In other words, the firm absorbs some of the loss,

which is of size α
γ . This reduces the cash balance, moves the firm away from the dividend

payout boundary, and the agent’s consumption will be delayed. Hence, the partial coverage

serves as the punishment in the optimal contract. As a result, by setting M∗ = 1
βW

∗, the

insurance contract provides appropriate incentives for the agent to choose the optimal

project. Suppose M∗ > 1
βW

∗, and the current state of the firm is Mt ∈ ( 1
βW

∗,M∗). The

optimal contract requires the agent to take the safe project. But the insurance contract

provides full coverage on this interval and hence the agent will deviate to take risks as

she is protected against any downside risk. Similarly, if M∗ < 1
βW

∗ and the current

cash balance is Mt ∈ (M∗, 1
βW

∗). The optimal contract assigns the risky action, but the

insurance contract provides partial coverage. Hence the agent would think that there is

not enough protection against the risky project and deviate to take the safe project. As

a result, by setting M∗ = 1
βW

∗, the agent has the right incentive to adopt the optimal

project allocation19.

The analysis of the incentive property of the insurance contract implies that risk-

management cannot be disentangled from project selection. Different projects carry differ-

ent amount of risks. While project selection is delegated to the agent, suitable incentives

have to be provided to the agent in order for the selection to be constrained efficient. Hence,

incomplete hedging is driven by the agency conflicts with respect to risk-taking. While a

19In a working paper version of BMRV, they also consider implementation using an insurance contract
in an environment with Poisson losses. However, the insurance coverage and the degree of hedging are the
same for all histories because there is only a single task in their model and they do not allow any form of
switching.
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number of dynamic corporate finance models yield prescription on risk-management poli-

cies, typically they treat the firm as having a single project.20 The security design exercise

suggests that dynamic risk-management and project selection should be considered alto-

gether.

As Mt measures the firm performance, the variable can be linked to the firm’s credit

rating. In fact, the threshold M∗ slices the performance space into two halves. A natural

assignment of credit rating is: when the firm performs poorly, Mt ≤M∗, the firm receives

a speculative grade; and when the firm is performing well, Mt > M∗, the firm gets an

investment grade. The coupon payment thus depends on the firm’s credit rating and

performance. As the firm is downgraded, there is a large reduction in coupon payments.

Summarizing the discussion, the model delivers a number of testable implications.

1. An investment grade firm generates higher expected cash flows.

2. A speculative grade firm invests more in risky projects, and has higher cash flows

volatility.

3. A firm with better credit quality tends to adopt incomplete hedging.

4. A larger firm pays more coupons and pays dividends more often.

5. A firm with a manager who can generate a higher α exhibits more volatile cash flows.

Security pricing.

Given the capital structure implementation, I now consider the market value of these

securities. Assume that in the case of default, the priority structure is such that the debt

holders acquires all the liquidation value l. Using the specified security payments and

20See, for examples, Bolton, Chen, Wang (2011) and Rampini and Viswanathan (2010). The former
considers agency cost of free cash flows, and the financial frictions come from limited enforcement in the
latter paper. Both models predict that a more financially constrained firm hedges less.
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equation (??), the dynamics of cash balances reduces to

dMt = ρMtdt− dDt + σdZt − 1{Mt>M∗}(
ψ

β
(dNt − λdt))

Notice that in this alternative representation, the downward adjustment on cash balances

remains on [M∗,Mp] because there is imperfect hedging on this region.

The market value of securities are defined as follows:

Stock Price

St = Et

[ˆ τ

t
e−r(s−t)dDs

]
Bond price

Bt = Et

[ˆ τ

t
e−r(s−t)csds+ e−rτ l

]
Let I(Mt) be the market value of the insurance policy. It is easy to see that for any t and

Mt,

F (βMt) +Mt = (1− β)S(Mt) + B(Mt) + I(Mt)

The left-hand side is the present value of the firm’s underlying cashflow-generating asset

plus the stock of cash. The right-hand side is the market value of the securities held by

outside investors. Equity holders hold a fraction 1 − β of common stocks and each share

has a stock price S(Mt). Bondholders value the debt at price B(Mt) and the insurance

contract has a value I(Mt) = 0. Given the dynamics of the cash balance, the stock price

and bond price can be computed easily by solving the appropriate differential equations.

Remark. In the implementation described above, the continuation value of the agent is

linked to the firm’s cash balance. Given the existence of an endogenously determined

optimal switching point, another natural interpretation of financial slack is a combination

of the firm’s cash reserve and available credit. For example, as in DS, suppose the credit

line limit is CL, which satisfies CL = 1
βW

∗. Any outstanding balance on the credit line

is charged an interest rate r. With a suitable modification of the capital structure, one
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can see that the firm starts to accumulate cash after repaying all the outstanding balance

on the credit line. In other words, when the internal cash reserve is exhausted, the firm

turns to external funding and starts drawing down the credit line in order to support risky

ventures. The firm is forced to terminate once the credit limit is reached. Note that this

interpretation of financial slack is consistent with the dynamic pecking order theory.21

1.4.3 Compensation in Hedge Fund Industry.

Hedge funds nowadays manage $2.13 trillion of assets. Although hedge funds are set up

as limited partnership, the fund management (the general partner) essentially acts as an

agent who manages the fund’s operation and makes use of various investment strategies

to invest the assets on behalf of their principal. Hedge fund management compensation

contracts typically include both management fees and performance-based incentive fees.

The management fee is charged as a fixed fraction of the fund’s asset under management,

with values ranging from 1% to 4% per annum. The performance fee is a fraction of the

profits made by the fund over a year, with values ranging from 15% to 50%. The combina-

tions that are often observed in practice is 2-20 contract. The performance fee is meant to

incentivize the fund manager and typically includes a “high-water mark” provision. The

high-water mark keeps track of the historical maximum of the invested capital in the fund.

Performance fee will only be paid if the current asset size exceeds the high-water mark.

In other words, the fund manager has to recoup any cumulative losses over the previous

year before she is paid the incentive fee. One of the key issues in the study of hedge fund

compensation is whether risk-taking is induced by the high-water mark contract, as the

implied payoff to the manager is convex.22

As observed by Biais et al. in an arithmetic Brownian motion framework, with a suitable

capital structure implementation, the cumulative dividends admit a representation that

21For an empirical analysis of credit lines, see Sufi (2009).
22In reality, risk-taking is difficult to observe. The fund management investment strategies are typically

very complex as they involve long-short positions, the use of leverage and derivative contracts to hedge
against market risks, and targeting of macro or political events. Therefore, the strategies are costly to
communicate to the investors. This justifies unobserved risk-taking in my model.
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allows us to interpret the optimal compensation contract as a high-water mark contract.

In my model, the agent’s continuation value display similar dynamics as in Biais et al.

(2013) except for a downward jump. A natural question to ask is: does the optimal

contract derived in section 3 also admits such a representation? The answer turns out to

be yes and the result is stated in the proposition below. To begin with, I maintain the

capital structure stated in proposition 1.4.

Proposition 1.5. At any time t < τ , the cumulative dividends satisfy

Dt = sup
s∈[0,t]

{Φs} (1.4.2)

where Φs = max{M0 +
´ s

0 ((rMu − cu)dt− dRu) + Ys −Mp, 0}.

To interpret equation (??), notice that M0 +
´ s

0 ((rMu − cu)du − dRu) + Ys measures

the firm’s cumulative performance at time s, net of contractual payments to outsiders and

before common stock dividends are distributed. This quantity also measure the fund size in

a hedge fund. Once the cumulative performance is higher than the payout boundary Mp,

the agent can issue dividends and is compensated, and below which, no bonus payments are

made. In the latter case, dDt = 0. After any dividends payout, a new round of dividends

will only be paid when the cumulative performance reaches a new running maximum. In

particular, when the agent is performing well, dividends will be delivered in which case she

will be paid by a fraction β of it. On the other hand, when bad performance accumulates,

the agent has to make up for earlier losses before any compensation takes place again. This

compensation contract resembles high-water mark contracts with a performance fee equal

to β ∈ (0, 1).23

High-water mark contracts possess an interesting option-like feature. One can think

of the current running maximum as the strike price of an option. When fund return

exceeds the running maximum, the fund manager can “exercise” the option and claim a

23Note that there is no management fee implied by the model. However, as suggested in the last para-
graph, it can be easily accommodated by including a fixed cost of efforts.
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bonus payment. When the fund performance is below the past maximum, the option is

out-of-the-money and the manager cannot get paid. It is well-known that such a convex

compensation structure will induce risk-shifting problems in the sense that the manager

will be more willing to pursue risky projects or hold risky assets. The theoretical results

derived in proposition 2 suggest that high-water mark contracts do not completely eliminate

risk-shifting problem. There will still be a certain degree of risk-taking. However, the

propositions highlight the fact that the amount of risks taken by the fund manager will

critically depend on the current fund performance. Specifically, when fund performance is

bad, the high-water mark contract induces more risk-taking. Intuitively, when the fund

performs poorly, the option is far out-of-the money. This implies that the manager will

have a stronger incentive to gamble in order to reach the strike price earlier. In contrast,

if the fund performance is good, the option is closer to the exercise boundary. Taking risk

means a higher chance to move away from this boundary and therefore, the manager does

not want to gamble in this case. The analysis suggests that in a dynamic context, convex

payoff structure does not necessarily induce hidden risk-taking. In particular, “distance-

to-threshold”, that is, the distance of current fund size to the high-water mark is the key

to understand whether the manager will engage in risk-shifting.

In a recent paper, Shelef (2013) empirically studies the impact of incentive contracts on

risk-taking and performance in hedge fund industry. By merging data from Lipper-TASS

and Hedge Fund Research, he obtains a data set that includes month assets and returns of

about 9000 hedge funds from 1994 to 2006. He then estimates the effects of “distance-to-

threshold” on the fund returns and volatility. In particular, his estimation provides causal

evidence that a fund that is 15% below its high-water mark, the expected returns over the

next year is reduced by 2.1% and the riskiness of the fund is increased by about 50%. The

new empirical evidence Shelef provides is consistent with the prediction of my model.2425

24Shelef (2013) also documents that a hedge fund which is 50% below the incentive threshold takes few
risks and exhibits much lower volatility. Based on the analysis of Zhu (2012), I conjecture that this empirical
evidence can be captured in my model by allowing the agent to shirk at the bottom. This is because to
implement shirking, βt = 0 and the agent will have no strict incentive to take hidden risks.

25Kolokolova and Mattes (2013) studies 714 hedge funds over the period 2001-2011. They also find
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Panageas and Westerfield (2009) address the question of whether high-water mark

contracts would induce risk-taking in a portfolio choice setting. They find that the a risk-

neutral manager who is compensated by a high-water mark will choose a portfolio with

bounded volatility. To understand their result, one can imagine that if a manager chooses

a more riskier portfolio, it would increase the chance for the fund performance to cross

the high-water mark, which is beneficial to the manager. Meanwhile, it also increases the

probability that the fund value will decrease tomorrow. The latter effect reduces the value

of the option. Trading-off these effects, the manager will only take a bounded position in

risky assets and behave as if he is an investor with constant relative risk aversion. In fact

the optimal portfolio is a fixed mean-variance portfolio. Although Panages and Westerfield

show that a fund manager will not choose unboundedly large position in risky assets, the

contract in their analysis is given. My results suggest that (i) high-water mark contract is

indeed an optimal contract. And (ii) the position in risky assets will change depending on

the current fund performance.

1.5 Extensions

In this section, I consider further extensions of the model.

1.5.1 Replacing the agent.

In the baseline model, the principal rationally expects the agent to take inefficient downside

risk when her continuation value. However the principal would optimally allow her to do

so because the agent’s skill is essential for the firm. The question I consider here is: can

the principal deter risk-taking by threatening to fire the current manager and replace her

with a new manager? Suppose the principal can fire the agent and replace her at a cost

ca . This cost captures, for example, searching and negotiation cost with the new agent.

The principal initiates another optimal contract with the new agent from a competitive

that fund close enough to the high-water mark exhibits no risk-shifting and fund substantially below the
threshold has a significant increase in risks.
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market. With the possibility of replacement, the principal’s liquidation value lR(W ) is

endogenously determined

lR(W ) = max
W̃

F (W̃ )− ca −W

where max
W̃

F (W̃ ) is the value of a new contract, ca is the replacement cost, and W is the

severance pay made to the fired agent when she is fired at point W . The optimal contract

with the replacement option depends on the replacement cost.

Figure 1.5.1: Replacing the agent.
When the principal can fire and replace the agent at a cost ca, liquidation value is deter-
mined endogenously. Parameter: ca = 100 (left panel) ca = 30 (right panel). r = 0.1,
ρ = 0.5, µ = 40, α = 15, L = 50, λ = 0.2, γ = 0.5, B = 10, σ = 12, l = 25.

In figure 5.1, the pictures compare two options available to the principal: (i) allowing

the agent to take risk and fire the agent when continuation value hits 0, and (ii) do not

allow the agent to take risk and fire the agent when the limited liability starts to bind.

The profit from the first option is represented by the red lin in both figures and the profit

from the second option is represented by the blue line. On the left panel of figure 5.1,

the replacement cost, ca = 100, is the same as the expected discounted monetary loss

|α−Lγ|
r = 100. Thus, if the principal fires the agent too early, she will be paying too much

replacement cost and severance pay. So the second option is dominated by the first one

and in this case the principal would rather allow the agent to take up inefficient risk. The

optimal contract terms are similar to the baseline result stated in proposition 1.2. On
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the right panel of figure 5.1, the replacement cost, ca = 30, is low relative to the expected

discounted monetary loss. Therefore, the principal is able to fire her agents more frequently.

In particular, the principal fires the agent when the limited liability constraint starts to

bind and she cannot stop the agent from taking inefficient downside risk. This occurs

at the point W ∗R = 7.5. As the principal can prevent inefficient risk-taking, the second

option dominates the first option. The analysis here thus delivers a prediction: when there

is strong search frictions or when the manager has developed firm specific capital, which

make the investors more costly to replace the manager, then we shall see that the firm’s

profit volatility becomes higher.

1.5.2 Multiple Projects.

Suppose there are multiple risky projects i = 1, ..., n. Let Ni = {Nit}t≥0, i = 1, ..., n be n

independent standard Poisson processes with intensity {λ(ast )}t≥0 respectively. The cash

flows of the firm is given by the dynamics

dYt =

(
µ(aet ) +

n∑
i=1

αi

)
dt+ σdZt −

n∑
i=1

LidNit

Different projects carry different degree of risks Specifically, taking project i leads to an

increase in the drift by αi and intensity of loss is increased from λi to λi + γi. Extend

the action profile to at = (aet , a
s
1t, ..., a

s
nt) where aet is the effort as before and asit ∈ {0, 1}

denote the risk action. In particular, asit = 1 means risk-taking at time t and asit = 0 means

not taking risk. As in the baseline model, I assume risk-taking destroys values, that is,

αi − Liγi < 0 for all i.

By the same methodology, the dynamics of the continuation value of the agent satisfies

dWt = ρWt−dt− dIt + βtσdZt −
n∑
i=1

ψit(dNit − (λi + γia
s
it)dt)

and the relevant incentive constraints that restrict risk-taking behavior are ψit ≥ βt
αi
γi

if
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asit = 1 and no restriction is needed if asit = 0. Also, βt ≥ B
µ is the incentive constraint on

high efforts. It follows that the HJB-equation is

rF (W ) = µ−
n∑
i=1

Liλi +
n∑
i=1

asi (αi − Liγi) + F ′(W )(ρW +
n∑
i=1

(1− asi )ψiλi) (1.5.1)

+
1

2
F ′′(W )β2σ2 +

n∑
i=1

λi(F (W − (1− asi )ψi)− F (W ))

As in proposition 5, there exists a C2 and concave function F which is a solution to

the above differential equation with boundary conditions F (0) = l, F ′(W p) = −1, and

F ′′(W p) = 0. At optimum, to induce high efforts, βt = B
µ and to deter the agent from

taking the risky project i, ψit = B
µ
αi
γi

for all t. There also exists a set of switching points

{W ∗1 , ...,W ∗n} with W ∗i ∈ [ψi,W
p] for all i such that asit = 0 if Wt ≤ W ∗i and asit = 1

if otherwise. Therefore, the optimal contract in the benchmark model is robust to the

multiple projects extension.

Some natural questions arise: how does the project dynamics look like? how do agency

costs affect the project choice? Is there any structure on the set {W ∗1 , ...,W ∗n}? To isolate

the effect of agency costs on project choices, I assume that the marginal expected monetary

loss of each project and the baseline intensity are the same. Suppose two projects {i, j}

have different agency-related parameters, in particular, αi
γi
>

αj
γj

. In words, the agent has

higher incentives to take project i than project j either because of a higher increase in drift

αi > αj or it is more difficult for the principal to detect hidden risk-taking in project i,

γi < γj . To deter the agent from taking risks, the punishment ψi > ψj are needed and

hence the agency cost of preventing the agent from taking project i is higher than that of

project j. Therefore, it is expected that W ∗i > W ∗j . The following proposition formalizes

this intuition.

Proposition 1.6. Suppose αi − Liγi = K and λi = λ for all i = 1, ..., n. Then αi
γi
≥ αj

γj
if

and only if W ∗i ≥W ∗j for any i, j.
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Based on the proposition, if we order the projects according to their agency-related

parameters, without loss of generality, let α1
γ1
≥ α2

γ2
≥ ... ≥ αn

γn
, then we have W ∗1 ≥ W ∗2 ≥

... ≥ W ∗n . This implies that when the firm moves away from the payment boundary W p,

the agent will start taking project 1 first as it entails the highest agency cost. Then followed

by project 2 and so on. As a result the total cash flows become more volatility as the firm

performance keeps deteriorating.

1.5.3 Random Jump Size.

In the benchmark model, the size of the loss is fixed at L. How would the contract be

affected if the losses are random? Suppose the loss is modeled by a compound Poisson pro-

cess {
∑Nt

k=1 Jk}t≥0 where {Nt}t≥0 is a standard Poisson process with intensity {λ(ast )}t≥0

and Jk’s are i.i.d. random variables with distribution H on (−∞, 0). The cash flow is26

dYt = µ(at)dt+ σdZt +

Nt∑
k=1

Jk

The effect of risk-taking is the same as the benchmark: risk-taking implies a higher drift

of Yt but also a higher intensity of Nt. Note that the benchmark is obtained by specifying

a degenerate distribution H on −L.27 The distribution is not affected by any of the moral

hazard variables.

Because of the random jump size, there is more public information in the extended

model than in the benchmark. Does the optimal contract use this information? More

formally, continuous-time contracting relies on the martingale representation theorem to

deliver the incentive loadings and thus the relationship between public information and the

26An alternative way to write the cash flow process is dYt = µ(at)dt + σdZt +
´ t

0
J · N(dt, dJ), where

N(·, ·) is a Poisson random measure. The random measure counts the number of times up to t that the
jump size falls in the Borel set B, i.e., N(t, B) = #{s ∈ [0, t] : J ∈ B}. Fix a set B, N(t, B) is a Poisson
process with intensity ν, a Levy measure defined as ν(B) = E[N(1, B)]. A general Levy process allows
for infinitely many jumps over a compact time interval. By construction, a compound Poisson process has
only a finite number of jumps with a finite time interval. The Levy measure associated with the compound
Poisson process is ν = λ(ast )

´ 0

−∞ JdH(J), which is finite. For more details, see Applebaum (2009) and
Oksendal and Sulem (2005).

27That is, a Dirac measure H(B) = δ−L(B) for any Boral set B ∈ B(-∞,0)
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agent’s continuation value. The set up induces two martingales for which the martingale

representation theorem can be applied to: (i) the compensated Poisson process {Nt −´ t
0 λ(asu)du}t≥0, and (ii) the process {

∑Nt
k=1 Jk −

´ t
0

´ 0
−∞ λ(ast )JdH(J)}t≥0. The former

includes only the number of jumps while the latter, the compensated compound Poisson,

includes both the number of jumps and the jump size. However, the jump size is not

affected by moral hazard. In other words the jump size provides no information about

when the agent is engaging in hidden gambling. Thus incorporating the jump size should

be sub-optimal as the agent is exposed to more risks and her continuation value is more

volatile. This is costly to the principal hence she does not want to write a contract on the

jump size. The following proposition illustrates this point.28

Proposition 1.7. The optimal contract with random jump size is the same as the optimal

contract in the benchmark. That is, the contract does not use information about the jump

size.

1.6 Conculsion

I consider a dynamic environment in which an agent who works for her principal faces

a multi-task problem. On the one hand, the agent must exert costly effort to improve

the profitability of the firm. On the other hand, she has discretion over undertaking

projects/assets with different expected returns and riskiness. Risky projects generate lower

expected returns in the sense that large risks occur more frequently. By applying the

continuous-time techniques, I provide a clean characterization of the optimal contract.

In the contracting equilibrium, severe punishment deters agent’s hidden gambling but the

principal has to bear additional agency cost. Certain degree of NPV-reducing risk-taking is

second-best optimal, and the firm’s project selection dynamics is completely characterized.

The framework can be applied into project choices in standard business firms, or selection

of defaultable assets in financial institutions.

28In fact, the argument show that Holmstrom’s informativeness principle holds in the above environment.
See Holmstrom (1979)
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I further study the implementation of the optimal contract and apply my analysis to

the hedge fund industry. Compare to the literature on continuous-time dynamic contract

theory, two main additional implications emerge. First, the model supports incomplete

hedging due to the existence of agency cost. In the capital structure implementation,

insurance contracts are used to cover losses. Incomplete hedging against downside risks

is optimal because partial coverage implies the agent, who has discretion over project

selection, is exposed to the Poisson risk and thus has the right incentive to select the

safe project. Second, high-water mark contract is optimal and “distance-to-threshold” is

important in understanding hedge fund manager’s risk-taking behavior. The fund manager

has a higher incentive to gamble and take risks as the current fund performance lies further

away from the bonus threshold.

My results raise several interesting questions. For example, what is the optimal contract

if the agent can also control the size of the losses and how are risks managed in this case?

In a delegated portfolio choice environment, where the price of risky assets could jump

downward, what is the optimal portfolio choice? How would the compensation contract

of the fund manager look like? The recent financial crisis is partly driven by default of

various financial assets. What is the aggregate implications of hidden gambling? These

questions are left for future research.



Chapter 2

Dynamic Team Incentives

2.1 Introduction

This paper generalizes an optimal contracting problem between shareholders and a manager

in He (2011) to a multi-agent environment. In my model, the shareholders (the principal)

hires a team of managers (the agents) to run the business. The firm comprises multiple

divisions and agents exert costly efforts to improve the divisional cash flows. The firm

size evolves stochastically based on the agents’ efforts and the aggregate cash flows. As

in He (2011), I embed the agency problem into a structural model of capital structure in

corporate finance (Leland (1994)). The exercise further generalizes the agency framework

of corporate finance and hence allows us to study the effect of moral hazard problems on

firm valuation, investment policy and capital structure.

The first half of the paper sets up the model and provides a general analysis of the

optimal contracting problem with many agents. In the model, the agents are assumed to

have exponential utility (CARA). To solve for the optimal contract in continuous-time, I

adopt the martingale method developed by Sannikov (2008) and Williams (2009). The

method employs the agent’s continuation value as a state variable. The method applied

in a n-agent setting leads to n state variables. The absence of wealth effect in exponential

utility allows us to break the firm’s value into the shareholders value and the team’s value.

The team’s value is the sum of the certainty equivalent of individual agents, which is

a function of continuation values. The separation allows us to characterize the optimal

contract by an ordinary differential equation (ODE). I derive the firm’s optimal value, the

agents’ optimal effort dynamics, and the required incentive schemes. One of the insights is
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that the contract could reward the agents for high outputs based on joint performance or

relative performance. The analysis shows that the evaluation scheme to be used depends on

the production technology and the noise structure, but not on the agent’s risk preferences.

In the second half of the paper I embed the multi-agent moral hazard problem into

Leland’s structural model of debt. The embedding allows us to endogenize the firm’s

growth rate, which is the drift of the geometric Brownian cash flows process in Leland’s

model. The firm growth is thus affected by the agents’ effort. Following Leland, the firm

only issues consol bonds that pay a constant stream of coupon until default. In designing

the optimal debt contract, both the shareholders and the debt holders take into account

of the agency problem in teams once the firm starts running. Hence the principal writes

down the optimal compensation contract as a best response to the capital structure.

In the quantitative analysis, I show that the firm’s investment policy, optimal capital

structure (leverage ratio), and default threshold depend on the number of agents working

in the firm. As in He (2011), debt overhang problem generates a negative relationship

between leverage and incentives. However, as the firm hires more and more agents, the

convexity of the incentive cost allows the principal to smooth out the effort investment

cost and thus mitigate the debt-overhang. Therefore, the firm with more agents has a

higher endogenous growth rate and accumulates capital stock at a faster rate. These firms

will stack up enough financial resources and they are less prone to insolvency. As a best

response, these firms will be able to issue a higher amount of debt to take advantage of the

tax shields.

This paper belongs to the growing continuous-time optimal contracting literature. San-

nikov (2008) and Williams (2009) develop a general methodology for solving dynamic

principal-agent problems. There are many applications of the martingale method in vari-

ous economic environments, for example, DeMarzo and Sannikov (2006) study the use of

credit lines in a model where a risk-neutral agent is protected by limited liability; Biais,

Mariotti, Rochet, and Villeneuve (2010) study firm dynamics with a Poission risk; Pisko-

roski and Tchistyi (2010) study the optimal mortgage design. However, all papers employ
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a model with a single agent. My paper is the first in the literature to study team pro-

duction and I contribute to the literature by showing that the same martingale method

can be applied to model with multiple agents. I also contribute to the analysis of team

production in a dynamic environment. Holmstrom (1982) shows that team members free

ride when they obtain only a fraction of the output and a budget-breaker is needed to

achieve efficiency. Mookherjee (1984) characterizes the optimal contract with many agents

and highlights the multiple equilibria problem. Che and Yoo (2001) study the nature of

performance evaluation contract in a discrete-time principal-agent set up. Their model

assumes that agents are risk-neutral and in my paper I allow for risk aversion. Bonatti

and Horner (2011) and Georgiadis (2014) both study team dynamics. They analyze effort

provision as the state of the project evolves and how efforts vary with the number of agents

in the team. None of them focus on the optimal contract between the principal and the

team.

The rest of the paper is organized as follows. Section 2.2 develops the model. Section

2.3 describes the model’s solution and characterizes the optimal contract. I also study

the use of joint versus relative performance evaluation contract in this section. Section

2.4 focuses on the impact of agency issue in capital structure and provides a quantitative

analysis of the team effect on optimal capital structure. The last section concludes and

proofs are delegated to the Appendix.

2.2 The Model

Consider the following infinite horizon, continuous-time contracting environment. There

is a risk-neutral principal and n risk-averse agents. Both the principal and the agents

discount cash flows at the market interest rate r > 0. The agents form a team to operate

m tasks for the principal. Let Xt be the firm size at time t and suppose the firm produces
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cash flows at rate Xt. The firm size evolves according to

dXt = Xt(
m∑
k=1

dAkt)

where Akt is the productivity of task k up to time t and there are m tasks. The agents

can affect the productivity of each of the task by exerting efforts non-cooperatively. Let

Z = (Z1, ..., Zd) be a d-dimensional independent standard Brownian motion defined on a

filtered probability space (Ω,F , (Ft)t≥0, P ) that satisfies the usual condition. The dynamics

of At = (A1t, ..., Ant) satisfies the following the following system of stochastic differential

equations

dAkt = µk(at)dt+
d∑
l=1

σkldZlt k = 1, ..., n

where at = (a1t, ..., ant) is the agents’ effort profile at time t with ait ∈ [0, āi] for all

i = 1, ..., n. µk : [0, āi]
n → R is the drift function for task k. I assume that ∂µk

∂ai
(a) > 0

and ∂2µk
∂a2
i

(a) ≤ 0 for all k and i. σ = [σkl] is a m × d volatility matrix with each of the

element being a constant. Define a process B = (B1, ..., Bn) with Bkt =
∑d

l=1 σkldZlt

for k = 1, ...,m, then B is a n-dimensional correlated Brownian motion. The associated

n× n correlation matrix is ρ = σ · σT . Moreover, the firm size Xt and productivity At are

publicly observable and contractible. Therefore, the principal’s information is the filtration

generated by the productivity process A = (At)t≥0, that is, I take Ft = σ({Aks : s ≤ t}mk=1).

Agent i effort process is ai = (ait)t≥0. Effort exerted by agent i is neither observable

to the principal nor to any other agents. The agents’ monetary effort cost is hi(ait, Xt),

where the cost function hi : [0, āi]×R+ → R+ satisfies ∂hi
∂ai

(ai, X) > 0 and ∂2hi
∂a2
i

(ai, X) > 0.

Let ci = (cit)t≥0 be agent i’s consumption process with cit ∈ R. The instantaneous utility

function ui : R× [0, āi]→ R is assumed to be in CARA form

ui(cit, ait) = − 1

γi
exp(−γi(cit − hi(ait, Xt)))

where γi > 0 is the coefficient of absolute risk aversion. Moreover, the agents can privately
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save at the risk-free interest rate r. The account balance Sit is not observable to the

principal and to any other agents. This implies that the actual consumption is unknown

to the principal.

2.2.1 The Contracting Problem.

At time 0, the principal offers a contract Γ = {(cit, ait)t≥0}ni=1 to the agents. The contract-

ing party can fully commit to the contract. The contract specifies, for each agent i, the

wage process (cit)t≥0 and the recommended effort level (ait)t≥0. The contract is written on

publicly observable productivity and firm size. At any time t, the sequence of events that

occur during the small time interval [t, t+ dt) are

1. The agents takes their action ât = (â1t, ..., ânt) simultaneously.

2. The tasks productivity (dA1t, ..., dAnt) realize, hence the cash flow Xt.

3. The agents are paid wage ct = (c1t, ..., cnt) and choose their actual consumption

ĉt = (ĉ1t, ..., ĉnt).

Given this timing, formally the process of effort profile a is Ft-predictable, and the con-

sumption process c is Ft-adapted. Note that the team effort process a induces a unique

probability measure P a over the paths of productivity (At)t≥0. Therefore, I let Ea(·) to

denote the expectation operator under the measure P a.

Given a contract Γ = {(cit, ait)t≥0}ni=1 and the effort process of the team members

a−i = (a−it)t≥0, agent i’s decision problem is

W0(Γ) = max
(ĉi,âi)|a−i

E(âi,a−i)

[ˆ ∞
0

e−rtui(ĉit, âit)dt

]
(2.2.1)

subject to

dAkt = µk(âit, a−it)dt+

d∑
l=1

σkldZlt, ∀k = 1, ...,m

dSit = rSitdt+ (cit − ĉit)dt, Si0 = 0
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where W0(Γ) is agent i’s time-0 value derived from the contract Γ. Note that when the

agent chooses his effort level, he is making his choice given that he expects his teammates

to follow a−i. The last constraint reflects the agents’ ability to privately save. I assume

that all agents have no initial wealth in the sense that the initial saving balance is Si0 = 0.

Having received a wage cit at time t, the agent could consume a different amount ĉit. Any

unspent money cit − ĉit > 0 is saved in a personal account that grows according to the

market interest rate r.

Facing any contract Γ, if (i) the agents find it optimal to follow the recommended

effort, given the team members follow the recommended effort; and (ii) the agent takes

the recommended consumption, that is, when the solution to the agent’s problem is

(ĉit, âit)t≥0 = (cit, ait)t≥0 for all i = 1, ..., n. Then the contract Γ is said to be incentive-

compatible and no-savings. Since the principal could also save at interest rate r and the

party can fully commit, the Revelation Principle applies:

Lemma 2.1. without loss of generality, I can focus on incentive-compatible and no-savings

contract.

Suppose agent i’s reservation utility is Wi0, then the principal’s problem is

max
{(cit,ait)t≥0}ni=1

Ea

[ˆ ∞
0

e−rt(Xt −
n∑
i=1

cit)dt

]

subjec to

Ea
[ˆ ∞

0
e−rtui(cit, ait)dt

]
≥Wi0 ∀i = 1, ..., n

Ea
[ˆ ∞

0
e−rtui(cit, ait)dt

]
≥ E(âi,a−i)

[ˆ ∞
0

e−rtui(ĉit, âit)dt

]
∀(ĉi, âi), ∀i = 1, ..., n
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dAkt = µk(âit, a−it)dt+
d∑
l=1

σkldZlt, ∀k = 1, ...,m

The first constraint is the individual rationality constraint and the second one is the

incentive-compatibility constraint. Note that the wage payment c induces a repeated game

of imperfect public monitoring among the agents. The agents could deviate from the as-

signed effort level and based their choice on publicly observed productivity. The incentive

constraints require that the recommended effort a being an equilibrium of this game.

2.2.2 First-Best Solution.

Suppose there is no agency issue, that is, both efforts and consumption are contractible,

then incentive constraints are not required. Let FFB(X,W10, ...,Wn0) denote the prin-

cipal’s first-best value function. Since the principal does not need to provide incentives,

and as the agents are risk-averse, the principal only concerns is risk-sharing. The optimal

risk-sharing contract is solved as follows: The principal can pay the agents an amount at

any time t that delivers a constant stream of instantaneous utility. Define CEFBi as follows

1

r
(− 1

γi
exp(−γiCEFBi ) = Wi0

then CEFBi = − 1
γi

ln(−γirWi0). Hence, cit = hi(ait, Xt) − 1
γi

ln(−γirWi0) and by con-

struction, the participation constraint is satisfied. It follows that the principal’s first-best

value can be written as FFB(X,W10, ...,Wn0) = fFB(X) −
∑n

i=1−
1
γir

ln(−γirWi0) where

fFB(X) satisfies the following HJB-equation

rfFB(X) = max
a
{X−

n∑
i=1

hi(ai, X)+
∂fFB(X)

∂X

m∑
k=1

µk(a)X+
1

2

∂2fFB(X)

∂X2

d∑
l=1

(

m∑
k=1

σkl)
2X2}
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Assume that hi(ai, X) = h̃i(ai)X, then fFB is proportional to X. Guess that fFB(X) =

QX, then

rQ = max
(a1,..,an)

{1−
n∑
i=1

h̃i(ai) +Q
m∑
k=1

µk(a)}

Denote a∗ the optimal effort, then Q =
1−

∑n
i=1 h̃i(a

∗
i )

r−
∑m
k=1 µk(a∗) . Note that the optimal effort is

constant over time as the above maximization is independent of X, which is dynamic.

Remark. The first-order conditions with respect to ai is Q
∑m

k=1
∂µk
∂ai

(a) = ∂h̃i
∂ai

(ai) if ai is an

interior solution. If we further specify: h̃i(ai) = 1
2θia

2
i , with θi > 0 and µk(a) =

∑n
i=1 µ̃kiai,

with µ̃ki > 0. Then an interior solution for effort is a∗i = 1
θi

(Q
∑m

k=1 µ̃ki).

2.3 Model Solution

This section discusses the model solution. The solution method follows the martingale

approach developed by Sannikov (2008). Applying the martingale approach, I obtain the

dynamics of the agents’ continuation utility. Then I provide the necessary and sufficient

conditions for the contract to be incentive-compatible and no-saving. These conditions

impose restrictions on the continuation utility dynamics. With such dynamics in hand,

I represent the principal’s optimal contracting problem as a stochastic control problem

where the principal’s value function satisfies an ordinary differential equation that can be

solved.

2.3.1 The Dynamics of Continuation Utility.

Consider agent i. Fix any arbitrary contract Γ and effort process of other team members

a−i, agent i’s continuation utility at time t if i follows continuation strategy (cis, ais)s≥t is

defined as

Wit(Γ) ≡ Eat
[ˆ ∞

t
e−r(s−t)ui(cis, ais)ds

]
(2.3.1)

this is the promised utility at time t under contract Γ when agent i follows the continuation

consumption and effort (cis, ais)s≥t. As the continuation value Wt = (W1t, ...,Wnt) reacts
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to public information and summarizes the performance of all the agents. The principal

could control how the continuation values responses to realized productivity in order to

provide incentives. Following the continuous-time contracting literature, the martingale

representation theorem helps to deliver the dynamics of Wt.

Lemma 2.2. Given any contract Γ = {(cit, ait)t≥0}ni=1, there exists a Rn×m-valued Ft-

progressive measurable process β = (βt)t≥0 such that for any i = 1, ..., n and any t

dWit(Γ) = (rWit(Γ)− ui(cit, ait))dt+ (−γirWit)

m∑
k=1

βikt (

d∑
l=1

σkldZlt) (2.3.2)

As is now standard in the literature, the dynamics of continuation captures the promise-

keeping and incentive components of the contract. On expectation, Et [dWit + ui(cit, ait)dt]

= rWitdt, hence the drift plays the role of promise-keeping. The volatility plays the role

of incentive provision:
∑d

l=1 σkldZlt reflects the total shock to task k, and it connects

continuation value to the observed productivity: βikt (−γirWit)(dAit−µk(at)dt). Hence βikt

measures agent i’s the dollar incentive to task k and −γirWit converts money to utility.

As there are n tasks, the total volatility is the sum incentive loading on individual task.

2.3.1.1 No-Saving Condition.

The no-saving condition states that agent i’s marginal utility of consumption equals to

his marginal utility of saving. The condition is derived from the equation stated in the

following lemma......

To state the result formally, consider agent i’s decision problem at time t with accu-

mulated saving S

Wit(S; Γ) = max
(ĉi,âi)|a−i

E
(âi,a−i)
t

[ˆ ∞
t

e−r(s−t)ui(ĉis, âis)ds

]
(2.3.3)

subject to

dAks = µk(âis, a−is)ds+

d∑
l=1

σkldZls, ∀k = 1, ...,m
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dSis = rSisdt+ (cis − ĉis)ds, Sit = S fors > t

Therefore, Wit(S; Γ) is agent i’s continuation value when she deviates to off-equilibrium

with positive savings. Let Wit(0; Γ) be agent i’s continuation value (??) along the no-saving

path.

Lemma 2.3. At any time t ≥ 0, for the agent i with saving S, we have

Wit(S; Γ) = e−γirS ·Wit(0; Γ) (2.3.4)

The equation (??) for the continuation value with saving S pins down the agent’s

marginal utility of saving. Fix the effort policy, the optimality of the agent’s consumption-

saving problem in (??) requires her marginal utility of consumption equals to her marginal

value of saving (on the no-saving path):

∂

∂c
ui(cit, ait) =

∂

∂S
Wit(S; Γ)|S=0

By equation (??), to rule out private saving, we need:

e−γi(cit−hi(ait,Xt)) =
∂

∂c
ui(cit, ait) =

∂

∂S
Wit(S; Γ)|S=0 = −γirWit

where the last equality follows from equation (??). Therefore ui(cit, ait) = rWit. Since this

holds for every agent, each agent’s continuation value is thus a martingale

dWit = (−γirWit)

m∑
k=1

βikt (

d∑
l=1

σkldZlt) (2.3.5)

In addition, the fact that the flow continuation value equals to the agent’s instantaneous

utility implies each agent’s wage process has to satisfy

cit = hi(ait, Xt)−
1

γi
ln(−γirWit) (2.3.6)
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2.3.1.2 Incentive-Compatibility condition.

Now I turn to incentive-compatibility condition and characterize the incentive loadings βt

in (??)

Lemma 2.4. Agent i’s effort process ai is a best response to a−i if and only if for all t

ait ∈ arg max
âit

{
m∑
k=1

βikt (−γirWit)µk(âit, a−it) + ui(cit, âit)

}

Therefore, a is a PPE if and only if the above condition holds for all i = 1, ..., n.

The proposition delivers restrictions on the incentive loadings β that has to satisfy

when the principal seeks to implement a as an equilibrium. The first-order conditions are

for all i = 1, ...n,
m∑
k=1

βikt
∂µk(at)

∂ai
=
∂hi(ait, Xt)

∂ai

where the left-hand side represents the marginal benefits of exerting effort. Since a marginal

increase in effort affects the expected productivity in each task, and the agent is compen-

sated based on the observed outcome in each task. The marginal benefit of effort is the

summation of the change in continuation value due to the higher productivity of each task.

The right-hand side is the marginal cost of effort.

2.3.2 HJB-equation.

This section derives the HJB-equation for the principal value function and adopt a dynamic

programming approach to solve the optimal contracting problem. The relevant state vari-

ables in the problem is the firm size Xt and the agents’ continuation value Wit, i = 1, ..., n.

Upon rearrangement, their dynamics are

1. dXt = Xt
∑n

k=1 µk(at)dt+Xt
∑d

l=1(
∑m

k=1 σkl)dZlt

2. dWit = (−γirWit)
∑d

l=1(
∑m

k=1 β
ik
t σkl)dZlt for i = 1, ..., n
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the system is driven by the d-dimensional Brownian motion. Alternatively, a n + 1-

dimensional correlated Brownian motion with the following correlation matrix drives the

system



B̃0

B̃1

...

B̃n


=



∑m
k=1 σk1

∑m
k=1 σk2 · · ·

∑m
k=1 σkd∑m

k=1 β
1kσk1

∑m
k=1 β

1kσk2 · · ·
∑m

k=1 β
1kσkd

...
...

. . .
...∑m

k=1 β
nkσk1

∑m
k=1 β

nkσk2 · · ·
∑m

k=1 β
nkσkd





Z1

Z2

...

Zd


The principal’s value function hence satisfies the following HJB-equation

rF (X,W1, ...,Wn) = max
(a1,...,an)

{X −
m∑
i=1

ci +
∂F

∂X
X

m∑
k=1

µk(a) +
1

2

∂2F

∂X2
X2

d∑
l=1

(
m∑
k=1

σkl)
2+

+
1

2

n∑
i=1

n∑
j=1

d∑
l=1

∂2F

∂Wi∂Wj
(−γirWi)(−γjrWj)(

m∑
k=1

βikσkl)(

m∑
k=1

βjlσkl)

+

n∑
i=1

d∑
l=1

∂2F

∂X∂Wi
(−γirWi)(X

n∑
j=1

σjk)(

n∑
j=1

βijσjk)}

where the effort choices have to satisfy the incentive constraint stated in proposition 2.2.

With CARA utility, and following He (2011), guess

F (X,W1, ...,Wn) = f(X)−
n∑
i=1

− 1

γir
ln(−γirWi)

where − 1
γir

ln(−γirWit) is agent i’s certainty-equivalent. The guess is intuitive as it says

the principal value equals the firm’s value plus the “team’s certainty equivalent. Moreover,

as there is no consumption externality or cost synergies, the balance owing to the team is

the sum of the individual balance (certainty-equivalent). This guess naturally generalizes a

result in a single agent setup to a multi-agent environment. The guess implies ∂F
∂X = f ′(X),

∂2F
∂X2 = f ′′(X), ∂F

∂Wi
= 1

γirWi
, ∂2F
∂W 2

i
= − 1

γirW 2
i

, ∂2F
∂X∂Wi

= ∂2F
∂Wi∂Wj

= 0. Plugging in this

quantities, f has to satisfies the ODE:



56

rf(X) = max
(a1,...,an)

{X −
n∑
i=1

hi(ai, X) + f ′(X)
m∑
k=1

µk(a)X +
1

2
f ′′(X)X2

d∑
l=1

(
m∑
k=1

σkl)
2

−1

2

n∑
i=1

γir
d∑
l=1

(
m∑
k=1

βik(a)σkl)
2}

The interpretation is straightforward: on the left-hand side is the firm’s flow value. On

the right-hand side, the first term is the instantaneous cash flow X, the third and forth

term capture the expected instantaneous change in firm’s value due to the dynamics of X.

The second and last term are the monetary cost and incentive cost of efforts. The optimal

effort a∗ is characterized by:

a∗i ∈ arg max
ai∈[0,āi]

{
f ′(X)

m∑
k=1

µk(a)X − hi(ai, X)− 1

2
γir

d∑
l=1

(
m∑
k=1

βik(a)σkl)
2

}

for all i = 1, ..., n. The first term in bracket captures the expected total productivity of i’s

effort. The second term is again monetary effort cost. Because the agent is risk-averse the

last term is the incentive cost of exposing again to productivity uncertainty.

2.3.3 Model Implication

Two-agent case.

In this section, I specialize the contracting environment to a two-agent team in order to

obtain clean analytic solution for the agents’ efforts and incentives. Let n = m = 2 and

suppose there are two tasks. The productivity dynamics are

dA1t = (µ11a1 + µ12a2)dt+ σ1dZ1t + σcdZct

dA2t = (µ21a1 + µ22a2)dt+ σ2dZ2t + σcdZct
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Hence d = 3. The volatility matrix σ = [σkl] and the correlated Brownian motion can be

put in the following matrix form

 B1

B2

 =

 σ1 0 σc

0 σ2 σc




Z1

Z2

Zc


with the correlation matrix ρ = σ · σT

 σ2
c + σ2

1 σ2
c

σ2
c σ2

c + σ2
2


I think of agent i is assigned to task i. Hence dAit is i’s output. But by exerting effort, i

can also “help” his teammate j. With this interpretation, (Z1, Z2) are idiosyncratic shocks

and Zc is a common shock where its variance σ2
c represents the correlation between the

two agents’ output.

Let hi(ai, X) = 1
2θia

2
iX. Applying the lemmas in the previous section, the incentive

constraint requires ai = 1
θiX

(βi1µ1i+β
i2µ2i) when ai is an interior solution. Notice that due

to additive drift, βj does not affect ai. Hence β1 and β2 are determined using a separate

set of equations. The ODE for f(·),

rf(X) = max
β1,β2
{X − 1

2
θ1a

2
1X −

1

2
θ2a

2
2X + f ′(X)X ((µ11 + µ21)a1 + (µ12 + µ22)a2) +

+
1

2
f ′′(X)X2(4σ2

c + σ2
1 + σ2

2)− 1

2
γ1r{σ2

c (β
11 + β12)2 + (β11σ1)2 + (β12σ2)2}

−1

2
γ2r{σ2

c (β
21 + β22)2 + (β21σ1)2 + (β22σ2)2}}

Consider agent i = 1, differentiating the right-hand side of the ODE with respect to β11
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and β12, the following system of equations determines their values.

 µ2
11 + γ1rθ1X(σ2

c + σ2
1) µ21µ11 + γ1rθ1Xσ

2
c

µ11µ21 + γ1rθ1Xσ
2
c µ2

21 + γ1rθ1X(σ2
c + σ2

2)


 β11

β12



=

 f ′(X)X(µ11 + µ21)µ11

f ′(X)X(µ11 + µ21)µ21


Therefore, the solutions are

β11 = D1 ·
(
(µ11 − µ21)σ2

c + µ11σ
2
2

)

β12 = D1 ·
(
(µ21 − µ11)σ2

c + µ21σ
2
1

)
where D1 = 1

|H| · f
′(X)X(µ11 + µ21)γ1rθ1X with H being a positive semi-definite matrix.

Say that the incentive scheme is Joint Performance Evaluation (JPE) if βij > 0 and

Relative Performance Evaluation (RPE) if βij < 0. Depending on parameter values, there

are a few notable and interesting cases. The analysis below apply to both agents due to

symmetry.

• If µ̃21 = 0 and σc = 0, there is no interaction among agents. The agents are contracted

“separately”:

β11 =
f ′(X)X

1 + γ1rθ1X( σ1
µ11

)2
and β12 = 0

incentive loading to the agent’s task goes back to the single-agent case. As β12 = 0,

the agent is not exposed to any risk of the task that she is not responsible for.

• If µ̃21 = 0, then β11 > 0 and β12 < 0. Agent 1 does not help for task 2. With the

presence of common shock, a high dA2t implies a2 is high, the principal would infer

that a1 is not high enough and hence penalize agent 1 by lowering her continuation

value.
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• If σc = 0, then β11 > 0 and β12 > 0. With no common shock, it is difficult for the

principal to infer the efforts of both agents. As the agents’ efforts are productive in

both tasks, the principal rewards agent 1 when the output in task 2 is high.

Note that the sign of βi’s are independent of the degree of risk aversion. Therefore, it is

not the risk attitude of the agents that affect the use of evaluation scheme. Instead, it is

the underlying technological structure that drives the nature of contracts. In particular,

the key condition for a relative performance scheme, β12 < 0, is that

σ2
c + σ2

1

µ̃11
<

σ2
c

µ̃21
or σ2

c > σ2
1

µ̃21

µ̃11 − µ̃21

The condition states that the common shock has to be large enough so that the principal

will be able to use the differences in productivity to infer the differences in individual

efforts. Furthermore, in the case of µ̃21 = 0, I obtain the following closed-form solutions

for the incentive loadings.

β11 =
f ′(X)Xµ2

11(σ2
c + σ2

2)

µ2
11(σ2

c + σ2
2) + γ1rθ1X((σ2

c + σ2
1)(σ2

c + σ2
2)− σ4

c )

β12 =
−f ′(X)Xµ2

11σ
2
c

µ2
11(σ2

c + σ2
2) + γ1rθ1X((σ2

c + σ2
1)(σ2

c + σ2
2)− σ4

c )

2.4 Capital Structure

In this section, I embed the dynamic agency problem into Leland’s (1994) capital structure

model. Following Leland, I assume the firm’s cash flows evolve according to a geometric

Brownian motion

dXt = (φ+

n∑
i=1

ait)Xtdt+ σXtdZt

where φ and σ are constants. In other words, m = d = 1, µ(a) = (φ+
∑n

i=1 ait) and there

is a single aggregate output. The parameter φ captures the baseline growth rate and is

independent of agents’ efforts. By exerting effort, the team pushes up the firm growth rate
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and the effort cost is assumed to be hi(ai, X) = 1
2θia

2
iX.

In addition, I assume that in multi-agent firms, the agents split the task equally on

its single-agent counterpart in the sense that the drift of the cash flows are the same in a

single and a multi-agent firm without agency cost. Intuitively, one can think of a firm that

consists of different production segments, or divisions. Each segment produces a small part

of a final product. Investors are not able to observe divisional profits, but they do observe

the firm aggregate profits. Hence it make sense to assume a single-dimensional cash flows

process. Technically, let ā remains to be the upper bound of efforts in a single-agent firm.

Now let ā(n) = ā
n so that when all agents exert the highest effort, the expected outputs in

firms with different number of agents are the same. Moreover, to focus on how the number

of agents affect firm’s capital structure, investment policy, default policy, I assume that

agents are symmetric in the sense that γi = γ, θi = θ, and āi = ā(n) for all i = 1, ..., n.

2.4.1 Optimal Contracting in an Unlevered Firm

Before introducing debt into the firm, I apply the optimal contracting result in section 3 to

an unlevered firm. To implement effort at = (a1t, ..., ant), by lemma 2.4, the appropriate

incentive loadings are βit = θaitXt for all i. As the agents are symmetric, the equilibrium

efforts are the same so that ai(·) = a(·) for all i. Then HJB equation becomes

rfn(X) = max
a∈[0,ā(n)]

{
X − n

2
θa2X + f ′n(X)(φ+ an)X +

1

2
f ′′n(X)X2σ2 − 1

2
nγrθ2a2X2

}
(2.4.1)

where fn(X) denote the value of the shareholder when she contracts with n agents. Optimal

effort is given by

a∗t (n) = min

(
f ′n(Xt)

θ(1 + θγrσ2Xt)
,
ā

n

)
(2.4.2)

The optimal effort function displays a similar form as in He’s (2011) model with a single

agent. However, the optimal effort in my model depends on the number of agents because
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the team size potentially affect shareholder’s value. In order to highlight the differences,

let’s examine equation (??). Since agents are identical, the parameter n enters directly

into equation (??). First, the term anf ′n(X)X captures the total effect of effort a on

firm’s value. With more agents in the firm, the marginal effect of effort is higher due to

agents’ cooperation. Second, the number of agents also affect the cost of operating the

firm. The cost is captured by the second term and the last term in the bracket of equation

(??) and they reflect the effort cost and the incentive cost respectively. Intuitively, both

terms should be increasing in n. However, the forthcoming analysis shows that when the

principal chooses the efforts optimally, both the equilibrium effort costs and incentive costs

are decreasing in n.

2.4.2 Optimal Contracting in a Levered Firm.

Next, I introduce debt into the firm. Following Leland (1994) I focus only on the consol

bond with a constant coupon rate C. Shareholders can default when the firm is in financial

distress. An implicit timing assumption is maintained here. First, the principal chooses the

coupon rate to maximize the firm value. Second, given the amount of debt outstanding,

the principal contracts optimally with the agents and determines the default policy. In the

default event, the principal renders the firm to the debt holders. The debt holders then

run the firm as an unlevered firm using the same set of agents. By the logic of backward

induction, I first solve for the effort and default policy given a fixed amount of coupon.

Then taking these policy functions as given, I let the principal chooses the optimal coupon.

Equity Value and default policy.

As in the case of an unlevered firm, the shareholders’ value function is FE(X,W1, ...,Wn) =

fEn (X) + n
γr ln(−γrW ), where fEn (X) denote the value of a levered firm, or equity value.

Notice that the team value
n∑
i=1
− 1

γr ln(−γrWi) becomes n times the agent’s certainty

equivalent because in equilibrium, every agent exerts the same amount of effort and they

face the same incentives. With a single aggregate output, their continuation value evolves
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exactly in the same way. Hence Wi = W for all i.

The HJB equation that characterizes the firm’s equity value with n agents is

rfEn (X) = max
a∈[0, ā

n
],XB
{X − (1− τ)C − n

2
θa2X

+fE
′

n (X)(φ+ an)X +
1

2
fE
′′

n (X)X2σ2 − 1

2
nγrθ2a2X2} (2.4.3)

where C is the coupon rate and τ is the corporate tax rate. XB is the default boundary

to be chosen optimally. Equation (??) parallels equation (??) except that the latter has

additional cash outflow (1− τ)C. Optimal effort is given by

a∗t (n) = min

(
fE
′

n (Xt)

θ(1 + θγrσ2Xt)
,
ā

n

)
(2.4.4)

which is similar to equation (??). Next, the optimal default policy is characterized by the

value-matching condition

fEn (XB(n)) = 0 (2.4.5)

and the smooth-pasting condition

fE
′

n (XB(n)) = 0 (2.4.6)

Both conditions are standard 1 and they pin down the default boundary XB as a function

of n.

Debt Value and Leverage Ratio.

The debt holders rationally expect that the shareholders and the team sign an optimal

contract, and hence they know the implemented effort policy a∗(n) and the firm’s default

1See Dixit (1994) for relevant discussions.
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policy XB(n). The value of debt Dn(X) is a solution to the following ODE

rDn(X) = C +D
′
n(X)(φ+ na∗(n;X))X +

1

2
D′′n(X)σ2X2 (2.4.7)

with two boundary conditions: (i) Dn(XB) = (1 − α)fn(XB(n)) where α < 1 is the

percentage bankruptcy cost, and (ii) Dn(X) → C
r as X → ∞. The first condition states

that the debt value at default boundary is the value of an unlevered firm less the bankruptcy

cost. This is because, at default event, the debt holders take over the firm and run the firm

themselves. As in Leland, the debt holders cannot issue new debts. The second condition

states that as firm size grows, default is unlikely and the debt holders receive the discounted

value of coupon payment.

The principal choose coupon C to maximize the total firm value with leverage, given

the initial size of the firm X0 , the number of agents n, and the investment policies. Hence

the optimal coupon C∗(X0, n) is defined as

C∗(X0, n) = arg max
C

{
fEn (X0;C) +Dn(X0;C)

}
Given the optimal choice of coupon payment, I can compute the optimal leverage ratio

as

LR(X0;n) ≡ Dn(X0;C(X0, n))

fEn (X0;C∗(X0, n)) +Dn(X0;C∗(X0, n))

In order to directly compare my results with He (2011), I adopt the parameter values as

in his numerical analysis. Interest rate r = 5%, baseline growth rate φ = −0.05, effort cost

θ = 35, degree of risk aversion γ = 10, volatility σ2 = 6.25%, marginal tax rate τ = 20%,

bankruptcy cost α = 0.25, upper bound effort ā = 0.05, initial firm size X0 = 20.2
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Figure 2.4.1: Effort policy in unlevered firms.
The red line is for n = 2 and the blue line is for n = 1. Left panel: Aggregate effort. Right
panel: Individual effort

2.4.3 Discussion.

2.4.3.1 Effort policy in an unlevered firm.

Figure 4.1 plots the effort policy in unleverled firms as a function of the firm size. The

red line is the effort when the firm has two agents (n = 2) and the blue line is for a

single-agent firm (n = 1). The left panel shows the aggregate effort and the right panel

plots the individual effort. Efforts in both firms are decreasing with respect to firm size.

This is because the increasing cost associated with risk compensation. For the individual

efforts, the initial effort in a two-agent firm is lower than the firm with one agent. This

happens because the agents split the task. As the firm grows, the effort profiles overlap.

This indicates in unconstrained region, the principal in different firms would like to assign

roughly the same amount of effort investment. In terms of aggregate effort, the efforts in

a two-agent firm is thus higher than its single-agent counterpart.

2.4.3.2 Effort Policy in levered firms.

Figure 4.2 plots the effort policy in levered firms as a function of firm size. The red line

is for two-agent firm and the blue line for a single-agent firm. The figure displays a few

2For more discussions about parameterization, please see He (2011).
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Figure 2.4.2: Effort Policy in levered firms.
The red line is for n = 2 and the blue line is for n = 1. The left panel: aggregate effort.
The right panel: individual effort.

features. First, in both firms, the effort has a bell shape. In contrast with unlevered

firms, as the firm size decreases, effort level will drop and eventually reach zero. This

happens because in levered firms, when firm size is small, the firm is close to the default

boundary. The principal provides less incentives as she expects the firm will default with

high probability. That is, the marginal value of effort is too low in that region. Second, in

contrast to unlevered firms, the individual efforts in two-agent firms is much higher than

its single-agent counterpart when firm size is small. To understand this result, note that

as the firm hires more agents, these agents split the task. In particular, the effort cost and

the incentive cost are convex function. The principal can therefore allocate the efforts to

different agents and thus smooth out the costs. Convexity implies by doing so, the total

cost will be lower. This in turn implies the principal will choose higher effort investment

in multi-agent firms.

This effect helps to alleviate the debt overhang problem as discussed in He (2011).

Recall that with the presence of debts, the debt overhang effect tends to lower effort

provisions. This is because effort is a form of investment, the principal pays the costs,

but the possibility of default implies part of the investment returns will go to the debt

holders. Now, the principal could mitigate the debt overhang problem by smoothing out
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n = 1 n = 2 n = 3 n = 4 n = 5

Coupon 8.969 7.361 9.399 10.751 11.625
Leverage Ratio 0.537 0.469 0.551 0.594 0.617

First-Best leverage ratio 0.627 0.627 0.627 0.627 0.627
Default Policy 4.73 3.625 4.523 5.078 5.407
Equity Value 107.960 134.397 121.727 115.249 112.451
Debt Value 124.945 119.027 149.262 168.881 181.397

Levered Firm Value 232.905 253.424 270.989 284.130 293.848
Unlevered Firm Value 219.476 236.334 249.925 260.476 268.429

Table 2.1: Capital Structure and default policy with different number of agents.

the investment cost in a multi-agent firm. Therefore, more effort investment is implied.

2.4.3.3 Capital Structure.

Table 1.1 reports the optimal debt policy, equity and debt value, and default policy of

levered firms. The first-best leverage ratio is computed using equation (24) in Leland

(1994).

Default Policy.

In a levered firm with two agents, the firm has a smaller default boundary (δB = 3.63) than

the firm with a single agent (δB = 4.73). Consistent with figure 4.2, the effort vanishes

earlier with less agents. The intuition is that, in a firm with two agents, the production

technology is more valuable to the shareholders. Therefore it is costly for such a firm

to default and thus default will tend to be delayed. However, as the firm continues to

hire more agents, the default threshold increases and eventually exceeds the single-agent

boundary.

Coupon and leverage ratio.

Turning to the capital structure, the firm with two agents issues a smaller amount of coupon

(C = 7.36) than the single-agent firm (C = 8.97). The intuition of the result also follows

from the debt overhang analysis. As point out in He (2011), to implement a high effort
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profile, the principal cannot issue too much debt as debt will “crowd-out” effort investment

due to debt overhang. The mechanism plays the same role here. In the previous analysis

of effort invesment, we have seen a two-agent firm will implement a higher effort profile.

Therefore, in order not to crowd-out effort investment, less debt is issued in the first stage.

However, as the firm hires more agents, debt overhang becomes a less important issue.

With more and more agents, the total cost to implement a certain effort profile will be

lower because the principal could spread the costs across agents. Moreover, the marginal

returns of effort investment will also be higher. This implies in firms with more agents, the

firm endogenous growth rate is higher. As the firm is able to produce more cash flows, the

principal worries less about insolvent state and bankruptcy cost. Therefore, the principal

will be able to issue more debts to take advantage of the tax shield.

This analysis also shows that the optimal leverage ratio is non-monotonic in the number

of agents. First, with a smaller amount of coupon payment, the debt value is lower. But as

the firm issues a larger amount of coupon, debt values increases again. Second, the equity

value moves in an opposite direction because the equity value is shifted to the debt holders

as the coupon varies. However, the levered firm value increases strictly with the number

of agents because with more agents, the firm’s growth rate is higher. The combined effect

is that the shape of the leverage ratio follows exactly the pattern the debt issuance.

2.5 Conclusion

This paper generalizes He’s (2011) model to a multi-agent set-up and studies the model

implications in corporate finance. The absence of wealth effect in exponential utility deliver

allows me to simplify the optimal contracting problem by disentangling the firm’s value

into the principal’s value and the team’s value, where the team’s value is the summation of

the certainty equivalent of all the agents working inside the firm. Due to this separation,

I characterize the optimal contract by an ODE and study the contractual implications on

compensation.
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I further embed the agency model in Leland (1994). The application allows me to

endogenize the expected firm’s growth rate in his classical geometric Brownian cash flows

set-up. Due to debt-overhang problem, there is under-investment in efforts and the optimal

leverage ratio is lower than the first best. A new implication is that the optimal leverage

ratio is non-monotonic in the number of agents. As a single-agent firm hires the second

agent, the leverage ratio drops sharply. However, the leverage ratio increases monotonically

as more agents are added into the firm afterwards. This interesting implication can be

further tested empirically.



Chapter 3

Multi-armed Bandit Problems with Ambiguity

3.1 Introduction

The multi-armed bandit problem is a statistical decision problem in which a decision-maker

experiments different choices and optimizes his decision based on the trade-off over returns

and information. As a concrete example, consider a doctor prescribing drugs to patients.

Patients consult the doctor sequentially, and the doctor has two different types of drugs

that she can assign to the patients. A newly-invented drug of which the effects on patients

is not completely known. An old drug with known effects. By assigning the new drug, the

doctor is able to learn more about its effect and gain more information, but the patient may

suffer losses because of the potential side effect of the drug. By treating the patient with

the old drug, the doctor learns nothing new, but she is certain about the return. The drugs

in the example are “bandit processes”. The doctor can assign one and only one treatment

to each patient. The trade-off facing the doctor involves information (experimenting with

the new drug) and return (certain payoff from the old drug).

The classic result of the multi-armed bandit problem is the so-called Gittins Index

Theorem. The decision-maker will assign an “Index”, which takes into account of the

trade-off between exploration and exploitation, to each of the arm, and play the arm with

the highest index at any point of time. The classic analysis assumes that the decision-

maker has probabilistic beliefs. That is, she is assumed to know how returns are generated

and the objective probability law that governs the state process. However, the assumption

is too strong in a lot of contexts. In the drug prescription example, if the patient dies after

taking the new drug, can the doctor be sure that the patient dies because of the drug but
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not due to other medical factors? Information, in a lot of environments, is too imprecise to

be summarized by a single probability law. Instead, the decision-maker could have in mind

a multiple probability law when she looks at the world. The situation is often referred as

ambiguity. In this paper, I extend the multi-armed bandit problem to situations where

the decision-maker does not have a single complete theory about the world, i.e., she faces

ambiguity.

To incorporate ambiguity, I adopt the recursive multiple-priors utility model developed

by Epstein and Wang (1994). In that model, the decision-maker is assumed to have a set

of beliefs over the state of nature. In particular, beliefs are modeled by a collection of sets

of one-step ahead conditionals. The set of one-step-ahead conditionals captures the degree

of ambiguity aversion. The nice feature of modeling beliefs in this way is that when we

paste, by way of backward induction, the collection of the set of one-step-ahead conditionals

together, we obtain a set of priors which is rectangular and the decision-maker’s behavior

is dynamically consistent.

I therefore take a standard multi-armed bandit problem and generalize the decision-

maker’s preferences, from subjective expected utility in the Bayesian literature, to recursive

multiple-priors utility, in order to incorporate ambiguity. In deriving the optimal arm

pulling strategy, I adopt Whittle’s (1980) retirement option approach. The approach is

divided into two parts. First, an artificial retirement option is introduced and we study an

optimal stopping problem when the decision-maker faces a single bandit process versus this

retirement option. By analyzing the stopping problem, we can derive the Gittins Index,

which is the return that the decision-maker obtains when she pulls the arm optimally and

expects to stop and retire in some states in the future. After we obtain the Gittins Index

for each of the arm, the second part of the analysis shows that if the decision-maker follows

the index strategy, her optimal value will satisfy the Bellman equation for the entire bandit

process and hence by the uniqueness of the value function, we can establish the optimality

of the index strategy.

Both steps of the analysis carry over to the situation with ambiguity. This is because
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Whittle’s argument is essentially a dynamic programming analysis. Recursive multiple-

priors utility allows us to use dynamic programming. In handling the optimal stopping

problem in the first step, I borrow techniques developed in Miao and Wang (2011). Their

paper introduces Epstein-Wang’s type ambiguity into a standard real-option model and

provides a neat formulation of optimal stopping problems with ambiguity. The main result

shows that the classic Gittins Index Theorem generalizes to Multiple-Priors Index Theorem

(proposition 3.3). The generalization comes from the fact that when the decision-maker

evaluates an ambiguous arm, instead of computing the Gittins Index, she computes a

Multiple-Priors (MP) Index. The MP-Index takes into account of a set of probability

laws that the decision-maker has in mind. As the decision-maker is ambiguity averse, she

evaluates arms using the worst-case measure and the MP-Index is thus the lower envelope

of the Gittins Index (proposition 3.2).

The literature on multi-armed bandit problem is huge. Gittins and Jones (1974) prove

the celebrated Gittins Index Theorem. Banks and Sundaram (1992) generalizes the theo-

rem to countable arms. Gittins, Glazer and Brook (2010) is a comprehensive monograph

on bandit problem. For application in economics, see Bergemann and Valimaki (2006).

There are many studies on preferences under ambiguity in decision theory. Gilboa and

Schmeidler (1989) provide an axiomatic foundation of the static multiple-priors utility.

Epstein and Wang (1994) and Epstein and Schneider (2003) bring the multiple-priors util-

ity to dynamics. The former paper formulates the recursive multiple-priors utility and

applies it to asset pricing while the latter axiomatizes the utility model. To the best of my

knowledge, my work is the first to study ambiguity and the multi-armed bandit problem

in an integrated framework. I contribute to theliterature by proving a version of Gittins

Index theorem when thedecision-maker is ambiguity averse and provide a stepping stone

for further applications of the bandit problem with ambiguity.
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3.2 The Model

Consider an infinite horizon bandit problem. The primitive is (K, (Ai)i∈K, β). There are K

independent arms and the set of arms is denoted by K = {1, ...,K}, with generic element

i. Each arm i can be described by a tuple Ai = (Xi, Ri,P+1
i ). Xi denote the state

space for arm i, it is a complete and separable metric space with Borel σ-algebra Bi. Let

∆(Xi) be the set of all Borel probability measures, endowed with the topology of weak

convergence. The reward function is Ri : Xi → R. Thus the reward Ri(xi) is what the

decision-maker obtains when he plays arm i at state xi. I assume that R′is are uniformly

bounded, continuous, and Bi-measurable.

∃C s.t. |Ri(xi)| ≤ C ∀xi ∀i

When the decision-maker observes that arm i is in state xi, and if the arm is played, the

state xi evolves to state x
′
i. Beliefs about how the state evolves are ambiguous. We model

beliefs about the state evolution by a probability kernel correspondence P+1
i : Xi  ∆(Xi),

which is a nonempty, continuous, compact-valued, and convex-valued correspondence. For

each xi ∈ Xi, we think of P+1
i (xi) as the set of beliefs about the next period’s state, if arm

i is activated. In particular, each pi ∈ P+1
i (xi) is a transition probability that satisfies (i)

for all xi ∈ Xi, pi(·, xi) is a measure on Xi, and (ii) for any B ∈ Bi, pi(B, ·) : Xi → [0, 1]

is Bi-measurable. Therefore, we view {P+1
i (xi)} as the set of one-step-ahead conditionals.

Finally, the decision-maker discounts the future rewards geometrically, using the discount

factor β ∈ [0, 1).

Denote the period state space by X =
K
×
i=1
Xi, endowed with the product topology. In

obvious notations, xt = (x1t, ..., xKt) ∈ X refers to period t state of all arms. In each period

t, the decision-maker observes xt, she must decide which arm to be played in that period.

Let the choice at time t be at ∈ K. If at = i, arm i is played at t, its state evolves from xit to

xit+1. If arm j is not pulled, at 6= j, its state remains frozen, thus xjt = xjt+1. A t-history

for the bandit is a record of the arm played up to t, states and rewards observed. Formally,
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write the t-history as ht = (a0, x0, Ra0 , ..., at−1, xt−1, Rat−1 , xt), where x0 is the initial state

of the problem. We can write the set of all t Ht = Ht × X, where H = K × X × R. Its

Borel σ-algebra is Bt. A strategy a = {at}∞t=0 is a specification of the arm to be played

in each period, depending on the information accumulated up to t. Specifically, for any t,

at : Ht → K is a Bt-measurable function. Let A denote the set of all strategies.

To accommodate ambiguity, I adopt the recursive multiple-priors utility model1 in

evaluating strategies. An important property of the utility function is dynamic consistency.

To ensure the property is satisified, at any state xt, the set of priors P(xt) over X needs

to be “rectangular”. The set of priors is constructed in the following way. Using the set of

one-step-ahead conditionals {P+1
i (xi)} for each arm i, the set of arm i’s prior Pi(xit) over

Xi at any time t is defined by

Pi(xit) =

ˆ
Pi(xit+1)dP+1

i (xit), xit ∈ Xit

Epstein and Schneider (2003) show that when the set of priors is constructed by pasting

marginals and foreign one-step-ahead conditionals, the prior set is rectangular. Any max-

min decision-maker using such a set as her beliefs display dynamically consistent behavior.

Moreover, arms are stochastically independent. I adopt Gilboa and Schmeidler’s notion

of “stochastic independence”, define the set of priors P(xt) at t as

P(xt) = c̄o

{
K
×
i=1
Pi(xit)

}
, xt ∈ X

where c̄o(·) denote the closed and convex hull of a set. Note that P(xt) is rectangular

because closure operation preserves rectangularity. Finally, the utility delivered by a strat-

egy a, given the initial state x0, and the initial priors P(x0), is the decision-maker’s total

1For the axiomatic foundation of multiple-priors utility, see Gilboa-Schmeidler (1989) and Epstein-
Schneider (2003).
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discounted expected reward under this strategy

W (a;x0) = min
p∈P(x0)

Ep(
∞∑
t=0

βtRat(xatt))

Notice that for any p, the expectation Ep(·) depends on the strategy a. The decision-

maker’s objective is to find an optimal strategy a∗ that maximizes the expected rewards,

namely, W (a∗, x0) ≥W (a, x0) for all a ∈ A. The value function for the multi-armed bandit

problem under ambiguity can be written as

V (x0) = sup
a∈A

min
p∈P(x0)

Ep(
∞∑
t=0

βtRat(xatt))

The objective of this paper is to characterize the optimal strategy.

3.3 Main Results

Gittins and Jones (1974) prove that for multi-armed bandits when the decision-maker

has probabilistic beliefs about the state evolution process, the optimal strategy coincides

with an “index strategy” in the following way. Each arm i can be associated with a

Dynamic Allocation Index, which depends on the current state on that arm. The index-

type strategy requires the decision-maker to play the arm with the maximal index at each

period. Moreover, this optimal strategy can be obtained by solving a family of stopping

problems. These results are known as Gittins Index Theorem.

I expect that Gittins Index Theorem would extend to multi-armed bandit problem with

ambiguity. The intuition of why the classic result carries over is that arms are stochastically

independent–realizations of one arm do not affect the state of all the other frozen arms.

Therefore, we expect ambiguity only affect how the indices are evaluated, but not the form

of the optimal strategy.

This section is divided into two parts. In the first part, I solve for the index in the

current set-up. In the second part, I characterize the optimal arm-pulling strategy.
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3.3.1 The Multiple-Priors Gittins Index.

In this subsection, I consider a single bandit process. In deriving the Gittins Index under

ambiguity, I adopt the solution procedure in Whittle (1980). Whittle considers a dynamic

programming problem for a single-armed bandit problem and calculates the Gittins Index.

In what follows, consider a single ambiguous bandit process and a retirement option. The

retirement option can be viewed as a safe and constant arm, which state never change

even if the decision-maker pulls it. Intuitively, since the state of the retirement option

never changes, once the decision-maker switches from the ambiguous arm to the retirement

option, the decision-maker “retires” and will continue to play this outside option forever.

Hence, the decision-maker’s problem essentially becomes an optimal stopping problem.

Suppose arm i is the ambiguous arm. Let m ∈M=[−C ′, C ′] be the per-period terminal

reward of the retirement option, where C ′ = 2C
1−β . Let Vi : Xi× [−C ′, C ′]→ R be the value

function of the problem. And let τ be a stopping time and Tt be the set of stopping times

that starts at t. Then the decision problem when the initial state is xi0 is

Vi(xi0,m) = sup
τ∈T0

min
pi∈Pi(xi0)

Epi [
τ−1∑
t=0

βtRi(xit) + βτm]

The value function satisfies the Bellman equation for the optimal stopping problem

Vi(xi,m) = max

{
m,Ri(xi) + β min

pi∈P+1
i (xi)

ˆ
Xi

Vi(x̃i,m)dpi(x̃i, xi)

}

By standard argument, the existence of Vi(·,m) can be established for any terminal

reward m ∈ M. In fact, let C(Xi) be the space of all real-valued continuous functions on

Xi, endowed with the sup-norm topology. This renders C(Xi) a complete metric space.

Define an operator T : C(Xi)→ C(Xi) by, for any v ∈ C(Xi),

(Tv)(xi) = max

{
m,Ri(xi) + β min

pi∈Pi(xi)

´
Xi
v(x̃i)dpi(x̃i, xi)

}
Then we have
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Proposition 3.1. For any m ∈ M, there exists a unique fixed point Vi(·,m) for the

mapping T : C(Xi)→ C(Xi).

For the ambiguous arm i, define its Multiple-Priors Gittins Index (MP-index) at state

xi as

Gi(xi) = inf {m ∈M|Vi(xi,m) = m}

For m ≥ C
1−β , stopping immediately is optimal, we must have Vi(xi,m) = m. For

m ≤ − C
1−β , continuation is optimal, we must have Vi(xi,m) > m. As Vi(·,m) is a con-

tinuous function, it follows that Gi(xi) is well-defined and takes value in the compact set

[− C
1−β ,

C
1−β ]. The optimal stopping time is given by

τi(xi,m) = inf {t : Vi(xi,m) = m}

= inf {t : Gi(xit) ≤ m}

The analysis also shows that the optimal strategy in the single ambiguous arm bandit

problem is to play the ambiguous arm continuously until its MP-index falls below the payoff

the decision-maker obtains from switching to the retirement option.

Next, I provide an explicit form or forward induction characterization for the index.

Define for arm i, vi : Xi → R by

vi(xi) = sup
τ̃∈Tt+1

vi(xi, τ̃) = sup
τ̃∈Tt+1

min
pi∈Pi(xit)

Epi(
τ−1∑
s=t

βtRi(xis)|xit)

Epi(
τ−1∑
s=t

βs|xit)

where vi(xi, τ) is the minimum of the expected discounted reward per expected unit of

discounted time, when the arm is played from the initial state xi, for a positive duration

τ̃ > 0. The index vi(xi) is then the supremum over the set of all strictly positive stopping

times. In fact, it can be shown that the supremum is achieved by a stopping time from

state xi

τ̃i(xi) = min {t : vi(xit) < vi(xi)}
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Observe that vi(xi) is well-defined since the reward function is bounded. Notice that

vi(xi) reduces to the original Gittins Index when beliefs about state evolution is probabilis-

tic, namely, when P+1
i = {p+1

i } is a probability kernel function (so that Pi is a singleton).

To simplify notation, let F p,τi (xit) =
Ep(

τ−1∑
s=t

βtRi(xis)|xit)

Ep(
τ−1∑
s=t

βs|xit)
.

Proposition 3.2. (Characterization) (i) The Multiple-Priors Index admits the “forward

induction” characterization: For any arm i and xi, Gi(xi) = (1 − β)vi(xi) and τ̃i(xi) =

τi(xi, Gi(xi)).

(ii) Minimax identity: The Multiple-Priors Index process is the lower envelope of the Gittins

Index:

Gi(xit) = inf
p∈Pit

Gpi (xit)

where Gpi (xit) = sup
τ∈Tt+1

F p,τi (xit) is the (Bayesian) Gittins Index.

The first part of the proposition characterizes the MP-Index in terms of the worst-case

return-to-cost ratio. With the scaling factor 1 − β, it also relates the flow value from

playing the ambiguous arm Gi(xit) to its stock value vi(xit). Since at any time t and

state xit, Gi(xit) = (1− β)vi(xit) and the decision-maker continues to play the ambiguous

arm as long as Gi(xit) > m, the proposition implies that the decision-maker will play the

ambiguous arm when

vi(xi) = sup
τ̃∈Tt+1

min
pi∈Pi(xit)

Epi(
τ−1∑
s=t

βtRi(xis)|xit)

Epi(
τ−1∑
s=t

βs|xit)
>

m

1− β

In words, when the worst-case return-to-cost ratio is higher than the stock value m
1−β , the

decision maker would not stop experimenting with the ambiguous arm.

The second part of the proposition, the minimax identity provides a convenient way to

compute the MP-Index. It states the one can interchange the min and max operation in

the definition of vi(xit). In particular, the MP-Index can be obtained by taking the worst
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case measure over a set of the classical Gittins Index. In the statistics literature, there

are numerical procedures for computing the Gittins Index. The result here suggests that

to compute the MP-Index, one can first calculate the Gittins Index associated with each

probability measure and then take the minimum of the set of Gittins Index.

In terms of behavioral implication, the minimax identity implies that a Bayesian decision-

maker, when her probabilistic belief is contained in the set of priors of an ambiguity averse

decision-maker, will be more willing to experiment than the decision-maker who views

the arms as ambiguous. 2 Therefore, in general, an ambiguity averse decision-maker will

experiment less and acquire less information.

3.3.2 The Multiple-Priors Gittins Index Theorem

In this section, I characterize the optimal strategy in the multi-armed bandit problem

under ambiguity. Proposition 3.3, which is the main result of this chapter, establishes the

optimality of index strategy.

Proposition 3.3. (Multiple-Priors Index Theorem): For the multi-armed bandit

problem (K, (Ai)i∈K, β) with retirement option m, the uniquely optimal strategy is the index

strategy: (a) If m ≥ Gi(xi) for all i ∈ K, retire. (b) Otherwise, play arm k for which

Gk(xk) = max
i∈K
{Gi(xi)}, except possibly at history with probability zero.

The index strategy certainly is well-defined given finitely many arms. Observe that the

optimal strategy for the multi-armed bandit without the retirement option can be obtained

by setting m ≤ − C
1−β , so that the retirement for the entire bandit process is not optimal.

In that case, V (x,m) = V (x).

The Multiple-Priors Index Theorem is a generalization of the Gittins Index Theorem

(1974) since the MP-Index generalizes the Gittins Index. Should the decision-maker have

probabilistic beliefs, the predictive content of the MP-Index Theorem will be the same as

the classic result.The intuition of why the MP-Index theorem holds is that the arms are

2That is, consider the case: Gpi (xit) > m ≥ Gi(xit).
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stochastically independent and that the MP-Index provides a sensible way to evaluate the

return of pulling an arm in a single-ambiguous arm stopping problem.

3.4 Conclusion

This paper studies multi-armed bandit problem under ambiguity. The decision-maker views

the stochastic processes underlying arms as ambiguous and she has ambiguous beliefs about

how the state evolves. The decision-maker is assumed to have recursive multiple-priors

utility. I show that the classic results in the bandit literature, the Gittins Index Theorem

and the characterization of Gittins Index, generalize to the case with ambiguity. Due to

ambiguity aversion, the decision-maker will experiment less and acquire less information

about the bandit processes in general.

Future research can investigate whether the index theorem depends on the way we

model preferences under ambiguity. For example, variational preferences (Maccheroni,

Marinacci, and Rustichini (2006)) generalizes multiple-priors utility. Does the theorem

still hold under such preferences? If it holds, one may conjecture that the specific utility

model may only affect how the Gittins Index is computed, but not the index-nature of the

optimal strategy. To begin with, it may be useful to first study Hansen-Sargent (2001)

utility, which is a subclass of variational preferences.



Appendix A

Appendix to Chapter 1

Proof of Proposition 1.1.

Given any contract Γ = (I, τ, a), define the agent’s lifetime expected utility conditional on

the information available at time t,

Vt(Γ) = Eat

[ˆ τ

0
e−ρs(dIs + 1{aes=aL}Bds)

]
=

ˆ t

0
e−ρs(dIs + 1{aes=aL}Bds) + e−ρtWt(Γ, a)

where Wt(Γ) is defined in (??). The process {Vt(Γ)} is a Ft-martingale. Moreover, define

a compensated Poisson process Ma = {Ma
t }t≥0 by Ma

t = Nt −
´ t

0 λ(as)ds for all t ≥ 0.

Similarly, we have Za = {Zat }t≥0, where dZat = dXt − µ(at)dt for all t ≥ 0. Note that

Za and Ma are Ft-martingale under measure P a. Applying the martingale representation

theorem, there exists a Ft-predictable process {(βt, ψt)}τ0 such that for all t < τ , Vt(Γ) =

V0(Γ) +
´ t

0 e
−ρsβsσdZ

a
s −
´ t

0 e
−ρsψsdM

a
s . Taking derivative with respect to time for both

representation of Vt(Γ), and combining, we obtain (??).

As for incentive compatibility of (Γ, a). Fix any action process a with at = (aH , aN )

at t. Let ã denote any other action process. First I prove sufficiency. Suppose the agent

follows a. Then {Vt(Γ)}τ0 is a martingale since by differentiating the definition of Vt(Γ),

dVt(Γ) = e−ρtdIt − ρe−ρtWt(Γ)dt+ e−ρtdWt(Γ). And substituting (??), we have dVt(Γ) =

e−ρt(βt(dXt − µdt)− ψt(dNt − λdt)). If the agent deviates at t to ãt = (ãL, ãN ), dVt(Γ) =

e−ρt(B−βtµ)dt+e−ρt(βtdZ
ã
t −ψt(dNt−λdt)). Since βt ≥ B

µ , the drift of Vt is nonpositive.
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If the agent deviates at t to ãt = (ãH , ãR), dVt(Γ) = e−ρt(βtα−ψtγ)dt+e−ρt(βt(dXt− (µ+

α)dt)−ψt(dNt − (λ+ γ)dt)). Since ψtγ ≥ βtα, again, the drift of Vt is nonpositive. Hence

the above two types of deviation are suboptimal. Note that under βt ≥ B
µ and ψtγ ≥ βtα,

the drift of Vt will be nonpositive if the agent deviates to ãt = (ãL, ãR). Now, for necessity.

If either βt <
B
µ or ψtγ < βtα is true on a set of positive measure during [0, τ), the agent

will deviate from at = (aH , aN ) since Vt will be a submartingale by the previous argument.

A similar argument establishes the incentive compatibility condition for a contract that

assigns at = (aH , aR) at t. �

Lemma A.1. Suppose Wt evolves according to

dWt = (ρWt + πtψλ)dt− dIt + βσdZt − πtψdNt

in the interval [0,W p] until time τ = min{t : Wt = 0}, where πt ∈ {0, 1} is a controlled

process. It is a nondecreasing process that reflects Wt at W p. Let η ∈ R, g : [0,W p] ×

{0, 1} → R be a bounded function, and λ(Wt, πt) be the intensity process of a Poisson

process Nt. Then f : [0,W p]→ R, with f ∈ C2, solves the following differential equation

rf(W ) = sup
π
{g(W,π)− λ(W,π)L+ Lπf(W )} (A.0.1)

where Lπf(W ) = f ′(W )(ρW +πψλ(W,π)) + 1
2f
′′(W )β2σ2 +λ(W,π)(f(W −πψ)− f(W )),

with boundary condition f(0) = l and f ′(W p) = −η, if and only if f admits the following

representation

f(W0) = sup
{πt}

E

[ˆ τ

0
e−rt(g(Wt, πt)− λ(Wt, πt)L)dt− ηdIt) + e−rτ l

]
(A.0.2)
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Proof of Lemma A.1.

First, for necessity. Suppose f solves (??) and take any {πt}. Apply Ito’s Lemma to

e−rsf(Ws) from 0 to T = min(t, τ),

e−rT f(WT ) = f(W0) +

ˆ T

0
e−rs

{
(Lπsf(Ws)− rf(Ws))ds− dIsf ′(Ws)

}
+

ˆ T

0
e−rs

{
f ′(Ws)βσdZs

}
+

ˆ T

0
e−rs {(f(Ws − πsψ)− f(Ws))(dNs − λ(Ws, πs)ds)}

Since the expectations of the last two terms are zero, and by (??) and also the boundary

condition f ′(W p) = −η when dIt > 0 and dIt = 0 when f ′(W p) 6= 0, we then get

E
[
e−rT f(WT )

]
=f(W0) + E

[ˆ T

0
e−rs(Lπsf(Ws)− rf(Ws))ds+ ηdIs − dIs(η − f ′(Ws))

]
≤f(W0)− E

[ˆ T

0
e−rs(g(Ws, πs)− λ(Ws, πs)L)ds+ ηdIs

]

Since τ is a bounded stopping time, sending t to ∞, and using f(Wτ ) = l, we have for all

{πt},

f(W0) ≥ E
[ˆ τ

0
e−rt(g(Wt, πt)− λ(Wt, πt)L)dt− ηdIt) + e−rτ l

]
Hence (??) holds with ≥. Now suppose {π∗t } is the optimal control, and by replicating the

above argument, we have

f(W0) = E

[ˆ τ

0
e−rt(g(Wt, π

∗
t )− λ(Wt, π

∗
t )L)dt− ηdIt) + e−rτ l

]

Therefore, f admits representation (??)

Conversely, suppose f is represented by (??). In particular, for all t

f(Wt) = sup
{πs}

Et

[ˆ τ

t
e−r(s−t)((g(Ws, πs)− λ(Ws, πs)L)ds− ηdIs) + e−r(τ−t)l

]
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Fix h > 0 such that t+ h < τ . By Law of Iterated Expectation,

f(Wt) = sup
{πs}

Et

[ˆ t+h

t
e−r(s−t)((g(Ws, πs)− λ(Ws, πs))ds− ηdIs) + e−rhf(Wt+h)

]
(A.0.3)

Fix a control πs = π for s ∈ [t, t + h], then (??) holds with ≥. Applying Ito’s formula to

e−rsf(Ws) from t to t+ h,

e−rhf(Wt+h) = f(Wt)

+

ˆ t+h

t
e−r(s−t)

{
(Lπf(Ws)− λ(Ws, πs)L+ LdNs − rf(Ws))ds− dIsf ′(Ws)

}
+

ˆ t+h

t
e−r(s−t)

{
f ′(Ws)βσdZs

}
+

ˆ t+h

t
e−r(s−t) {(f(Ws − πsψ)− f(Ws)− L)(dNs − λ(Ws, πs)ds)}

where the time t expectation of the third and forth term are zero. Substituting out

e−rhf(Wt+h) in (??) with π replacing πs, and noting that f ′(Ws) = −η if dIs > 0 and

f ′(Ws) 6= −η if dIs = 0, then we get

0 ≥ Et
[ˆ t+h

t
e−r(s−t)(g(Ws, π)− λ(Ws, π)L+ Lπf(Ws)− rf(Ws))ds

]

Dividing by h and sending h to 0, by mean value theorem, rf(Wt) ≥ g(Wt, π)−λ(Wt, π)L+

Lπf(Wt). Since this is true for all π, we have

rf(Wt) ≥ sup
π
{g(Wt, π)− λ(Wt, π)L+ Lπf(Wt)}

By the same arugment as above, if π∗t is the optimal control, then rf(Wt) = g(Wt, π
∗
t ) −

λ(Wt, π
∗
t )L+ Lπ∗t f(Wt). Combining with the last inequality, we then get

rf(Wt) = sup
π
{g(Wt, π)− λ(Wt, π)L+ Lπf(Wt)}
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Finally note that by the probabilistic representation, f(Wτ ) = f(0) = l, therefore, f solves

(??) with the stated boundary conditions. �

Lemma A.2. Suppose F is twice differentiable, strictly concave on [0,W p), and with

strictly convex first derivative. Then A(W ) < 0 and is strictly increasing in W . Moreover,

there exists a unique cutoff W ∗ ∈ [ψ,W p] such that for W ∈ [ψ,W ∗], ast = aR and for

W ∈ (W,W p], ast = aN , subject to limited liability.

Proof of Lemma A.2.

From the HJB-equation, aN = as(Wt) if (µ−Lλ)+LNF (W ) ≥ (µ+α−L(λ+γ))+LRF (W ),

which is equivalent to F ′(W )ψλ+λ(F (W−ψ)−F (W )) ≥ α−Lγ. Let A(W ) = F ′(W )ψλ+

λ(F (W − ψ) − F (W )). Rewrite A(W ) as −λ(F ′(W )(−ψ) + F (W ) − F (W − ψ)), by

strict concavity of F on [0,W p), A(W ) < 0. Observe that A′(W ) = −λ(F”(W )(−ψ) +

F ′(W ) − F ′(W − ψ)), by strict convexity of F ′, A′(W ) > 0. Now consider three cases:

(i) A(W p) > α− Lγ > A(ψ), since A is continuous, by intermediate value theorem, there

exists a unique W ∗ such that the claim is true. (ii) α− Lγ ≥ A(W p), take W ∗ = W p + ε

for some ε > 0, then ast = aR for all Wt ∈ [0,W p]. (iii) A(ψ) ≥ α−Lγ, by limited liability,

we can only take W ∗ = ψ.�

Lemma A.3. There exists a solution F ∈ C2 to the HJB-equation (??) with the boundary

conditions F (0) = l, F ′(W p) = −1, and F ′′(W p) = 0. The solution F is strictly concave on

[0,W p) and extends linearly so that F (W ) = F (W p)− (W −W p) for W ≥W p. Moreover,

if the solution F is such that α−Lγ ≥ A(W p), then F is a solution to the risky action ODE

(??) with the same boundary conditions. And if the solution F is such that A(ψ) ≥ α−Lγ,

then F is defined by (??) with W ∗ = ψ.
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Proof of Lemma A.3.

Existence: Let g(Wt, πt) = µ+πtα, λ(Wt, πt) = λ+πtγ, and η = 1. Define F : [0,W p]→ R

by

F (Wt) = sup
{πs}

Et

[ˆ τ

t
e−r(s−t)((µ+ πsα)− (λ+ πsγ))ds− dIs) + e−r(τ−t)l

]
Then F (W0) is the probabilistic representation (??) and hence F solves (??) with boundary

conditions F (0) = l and F ′(W p) = −1.

Strict concavity of F on [0,W p): By way of contradiction, suppose F is not strictly

concave on [0,W p). First notice that at W = 0, we have rF (0) = µ + α − L(λ + γ) +

1
2F
′′(0)β2σ2. With the boundary condition F (0) = l, thus 1

2F
′′(0)β

2σ2

r = l− µ+α−L(λ+γ)
r <

0 by assumption 1. Hence there exists Ŵ = inf{W ∈ (0,W p) : F ′′(W ) ≥ 0}. By continuity

of F , F ′′(Ŵ ) = 0. If Ŵ ≤ W ∗, then differentiating (??), 1
2F
′′′(Ŵ ) = −(ρ − r)F ′(Ŵ ).

There are two cases: (i) If F (Ŵ ) ≥ µ+α−L(λ+γ)
r , then F must be increasing on [0,W ∗],

so F ′′′(Ŵ ) ≤ 0. For ε > 0 small, continuity implies F ′′(Ŵ − ε) ≥ F ′′(Ŵ ) = 0, which

contradicts the definition Ŵ . (ii) F (Ŵ ) < µ+α−L(λ+γ)
r . There is also a contradiction

if F ′(Ŵ ) ≥ 0. So assume F ′(Ŵ ) < 0, we have F ′′′(Ŵ ) > 0. Take ε > 0, we have

F ′′(Ŵ + ε) > F ′′(Ŵ ) = 0 and F ′(Ŵ + ε) ≥ F ′(Ŵ ) (because F ′′(Ŵ ) ≥ 0). Using (??),

F (Ŵ + ε) > F (Ŵ ), contradicting F ′(Ŵ ) < 0. Now suppose Ŵ > W ∗. Differentiating (??)

at Ŵ , we have 1
2F
′′′(Ŵ )β2σ2 = −(ρ − r)F ′(Ŵ ) − λ(F ′(Ŵ − ψ) − F ′(Ŵ )). By definition

of Ŵ , F ′′ < 0 on [0, Ŵ ], thus F ′(Ŵ − ψ) − F ′(Ŵ ) > 0. If F ′(Ŵ ) ≥ 0, then F ′′′(Ŵ ) < 0.

Again for ε > 0 small, continuity implies F ′′(Ŵ − ε) > F ′′(Ŵ ) = 0, which contradicts

the definition Ŵ . Assume now F ′(Ŵ ) < 0 and F ′′′(Ŵ ) ≥ 0. Choose a small ε > 0, as

F ′′(Ŵ ) ≥ 0, we have F ′(Ŵ + ε) ≥ F ′(Ŵ ), F ′′(Ŵ + ε) ≥ 0, and because of F ′′′(Ŵ ) ≥ 0 and

continuity, together with strict concavity of F on the left of Ŵ , A(Ŵ + ε) ≥ A(Ŵ ). This

implies F (Ŵ + ε) ≥ F (Ŵ ), which contradicts F ′(Ŵ ) < 0.�
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Proof of Proposition 1.2.

The proof verifies that the contract described in proposition 1.2 in optimal. Take any

incentive compatible contract Γ = (I, τ, a) and define a gain process {Gt} by Gt ≡´ t
0 e
−rs(dYs − dIs) + e−rtF (Wt). Let rt = 1{ast=aR}. Under this contract, the agent’s

continuation value satisfies dWt = ρWt−dIt+βt(dXt− (µ+αrt))dt−ψt(dNt− (λ+γrt)dt)

for t < τ . Differentiating Gt and applying Ito’s lemma,

ertdGt =(µ+ αrt − L(λ+ γrt) + F ′(Wt)(ρWt + ψt(λ+ γrt)) +
1

2
F ′′(Wt)σ

2β2
t

+ (λ+ γrt)(F (Wt − ψt)− F (Wt))− rF (Wt))dt− dIt(1 + F ′(Wt))

+ (1 + βtF
′(Wt))σ(dXt − (µ+ αrt)dt)

+ (F (Wt − ψt)− F (Wt)− L)(dNt − (λ+ γrt)dt)

By the HJB equation (??), the first dt term is nonpositive. Also, dIt ≥ 0 and F ′(Wt) ≥

−1. So the drift term is nonpositive and {Gt} is a supermartingale under alternative policy.

Under the optimal contract dIt(1+F ′(Wt)) = 0. Moreover, rt = 1 implies (βt, ψt) = (Bµ , 0)

and rt = 0 implies (βt, ψt) = (Bµ ,
B
µ
α
γ ), therefore, for Wt ∈ [0,W ∗),

ertdGt =(µ+ α− L(λ+ γ) + F ′(Wt)ρWt +
1

2
F ′′(Wt)(

B

µ
)2σ2 − rF (Wt))dt

− (1 + F (Wt))dIt + (1 +
B

µ
F ′(Wt))σdZt − L(dNt − (λ+ γ)dt)

and for Wt ∈ [W ∗,W p],

ertdGt =(µ− Lλ+ F ′(Wt)ρWt +
1

2
F ′′(Wt)(

B

µ
)2σ2 + λ(F (Wt −

B

µ

α

γ
)− F (Wt))− rF (Wt))dt

− (1 + F (Wt))dIt + (1 +
B

µ
F ′(Wt))σdZt + (F (Wt −

B

µ

α

γ
)− F (Wt)− L)(dNt − λdt)
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In either case, the drift is zero, together with the boundedness of F ′ and F , {Gt} is a

martingale. Now evaluate the principal’s profit for any incentive compatible contract. For

all t <∞, since F (Wτ ) = l,

Ea[

ˆ τ

0
e−rs(dYs − dIs) + e−rτ l]

= Ea
[
Gmin(t,τ) + 1t≤τ

(ˆ τ

t
e−rs(dYs − dIs) + e−rτ l − e−rtF (Wt)

)]
= Ea

[
Gmin(t,τ)

]
+ Ea

[
1t≤τ

(
Eat (

ˆ τ

t
e−rs(dYs − dIs) + e−rτ l)− F (Wt)

)]

For any t, the first term is bounded by G0 = F (W0) because {Gt} is a supermartingale,

the stopped process {Gmin(t,τ)} is also a supermartingale. As for the second term, we have

Eat (
´ τ
t e
−r(s−t)(dYs − dIs) + e−r(τ−t)l) ≤ µ−Lλ

r −Wt = FFB(Wt). At any moment of time,

the principal can always pay the agent Wt and terminate the contract to get l, this implies

l −Wt ≤ F (Wt). It follows that µ−Lλ
r −Wt − F (Wt) ≤ µ−Lλ

r − l, so the intergrand of the

second term is bounded. Sending t to ∞, the second term vanishes and since min(t, τ) is a

bounded stopping time, Gmin(t,τ) → Gt a.s. as t → ∞, Ea
[´ τ

0 e
−rs(dYs − dIs) + e−rτ l

]
=

Ea(Gt) ≤ F (W0). Under the optimal contract, {Gt} is a martingale and profit F (W0) is

achieved with equality.�

Proof of Lemma 1.3.

Suppose FN,m(W p) +W p > µ+α−L(λ+γ)
r . Since F (W ) ≥ FN,m(W ) for all W , −(α−Lγ) >

µ−Lλ−r(FN,m(W p)+W p) > µ−Lλ−r(F (W p)+W p). Substituting F (W p) using (??) with

F ′(W p) = −1 and F ′′(W p) = 0, −(α−Lγ) > W p(ρ− r)−A(W p) > −A(W p). By lemma

A.2, W ∗ < W p. For the second part, by contrapositive, suppose FN,m(ψ)+ψ > µ+α−L(λ+γ)
r ,

repeating the above argument, A(ψ) > α− Lγ. So by lemma A.2, W ∗ = ψ.�
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Proof of Proposition 1.4.

Since Wt = βMt, dWt = βdMt. Using equation (??),

dWt =rβMtdt+ β(dXt − LdNt)− βdDt − βcdt− βpdt− βdRt

=ρβMtdt+ β(dXt − µdt)− βdDt − 1{Mt≥M∗}(ψ(dNt − λdt) + βαdt)

=ρWtdt− dIt + β(dXt − µdt)− 1{Wt≥W ∗}(ψ(dNt − λdt) + βαdt)

where the second line uses the definition of ct and dRt stated in the proposition. The third

line is obtained by defining dIt = βdDt and Wt = βMt with M∗ = 1
βW

∗. This calculation

shows that for Wt ≥ W ∗, dWt = (ρWt + ψλ)dt − dIt + β(dXt − µdt) − ψdNt, and for

Wt < W ∗, dWt = ρWtdt − dIt + β(dXt − (µ + α)dt). Therefore, incentive compatibility

follows from proposition 1.1. �

The proof of proposition 1.5 is equivalent to solving a Skorohod problem.

Definition. Let K = (−∞, k) for some k > 0. The Skorohod Problem for reflected jump

diffusions into K̄ (with respect to direction -1) is to find a pair (Mt, Dt) of RCLL and

Ft-adapted process such that the following conditions are satisfied:

dMt =
(
rMt −Ψt + µ+ 1{Mt<M∗}α

)
dt+ σdZt − LdNt − dDt

M0− =M0 ∈ R

Mt ∈K̄ for all t ≥ 0

Dt ∈R has finite variation and dDt = 0 if Mt ∈ K̄

Proof of Proposition 1.5.

Let C = {f |f : R+ → R, RCLL}, i.e., C is a set of RCLL functions. Define H : C → C by

H(f)(t) = f(t) − sup
0≤s≤t

fk(s), where fk(s) = max(f(s) − k, 0). Also define Q : C → C by

Q(f)(t) = H(f)(t) − f(t) = sup
0≤s≤t

fk(s). First, I show that there exists a solution (Lt) to
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the SDE

dMt =
(
rMt −Ψt + µ+ 1{Mt<M∗}α

)
dt+ σdZt − LdNt

with L0 = M0. Now define Mt = H(L)(t) and Dt = Q(L)(t). Then the pair (Mt, Dt)

satisfies the jump diffusion in Skorohod problem, because

dMt + dDt =d (H(L)(t)−Q(L)(t))

=d (H(L)(t)−H(L)(t) + L(t))

=dL(t)

=
(
rMt −Ψt + µ+ 1{Mt<M∗}α

)
dt+ σdZt − LdNt

By definition of H, Mt = H(L)(t) = L(t)− sup
0≤s≤t

Lk(s) ∈ K̄. And observe Dt = Q(L)(t) =

sup
0≤s≤t

Lk(s) is nondecreasing and hence has finite variation. Lastly, I need to show that

if Mt ∈ K, then dDt = 0. Suppose Mt ∈ K, L(t) − sup
0≤s≤t

Lk(s) < k, and thus L(t) <

k + sup
0≤s≤t

{max(L(s)− k, 0)}= max

{
sup

0≤s≤t
L(s), k

}
. This strict inequality implies both

L(t) < k, in which case dDt = 0, and L(t) < sup
0≤s≤t

L(s), which also implies dDt = 0.

Therefore, the pair (Mt, Dt) defined above solves the Skorohod problem. The proof is

completed by setting k = Mp. �

Proof of Proposition 1.6.

By equation (??), project i is chosen when F ′(W )ψiλ+λ(F (W −ψ)−F (W )) ≥ αi−Liγi.

Suppose αi − Liγi = K and λi = λ for all i = 1, ..., n. Then W ∗i is defined by

A(W ∗i ;ψi) ≡ λ(F ′(W ∗i )ψi + F (W ∗i − ψi)− F (W ∗i )) = K

Suppose αi
γi
≥ αj

γj
. By concavity of F , incentive constraints are binding and hency ψi ≥

ψj . Again by strict concavity of F on [0,W p], ∂A(W ;ψ)
∂ψ = λ(F ′(W ) − F ′(W − ψ)) < 0. It

follows that A(W ;ψi) ≤ A(W ;ψj) for all W . By lemma A.2, A(W ;ψ) is strictly increasing
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in W . As a result W ∗i ≥ W ∗j by the equation that defines the optimal switching point.

Conversely, suppose not,
αj
γj
> αi

γi
, then by the same argument, W ∗j > W ∗i . Thus the claim

follows. �

Proof of Proposition 1.7.

The proof goes as follows: write the contract on the compensated compound Poisson

process, this generates a value function F̃ that satisfies an intergo-differential equation.

Then I show that this value function is dominated by the solution to equation (??). Now

apply martingale representation theorem to {
∑Nt

k=1 Jk −
´ t

0

´ 0
−∞ λ(asu)JdH(J)du}t≥0, the

continuation value evolves according to

dWt = ρWt − dIt + βtσdZt + ψ̃t(JdNt − (λ+ astγ)E(J)dt)

To implement ast = 0, the required incentive constraint is ψ̃t ≥ βt
α
γ

1
E(−J) . Then resulting

HJB-equation is

rF̃ (W ) = µ−Lλ+as(α−Lγ) + F̃ ′(W )(ρW − (1−as)ψ̃λE(−J)) +
1

2
F̃ ′′(W )β2σ2 (A.0.4)

+λ

ˆ ∞
0

(F̃ (W − (1− as)ψ̃(−J))− F̃ (W ))dH(J)

where F̃ is a solution with boundary condition F̃ (0) = l, F̃ ′(W̃ p) = −1, and F̃ ′′(W̃ p) = 0.

Denote W̃ p and W̃ ∗ as the optimal payment boundary and switching point with jump size

incorporated respectively. Note that F̃ is concave and therefore the incentive constraints

are binding: β = B
µ and ψ̃ = B

µ
α
γ

1
E(−J) . Because F̃ strictly concave and as = 0 on [W̃ ∗, W̃ p],

by Jensen’s inequality,
´∞

0 F̃ (W − ψ̃(−J))dH(J) < F̃ (W − ψ̃E(−J)). Therefore, with W̃ p,

W̃ ∗ fixed,

rF̃ (W ) < µ−Lλ+ 1{W<W̃ ∗}(α−Lγ) + F̃ ′(W )(ρW − 1{W≥W̃ ∗}ψ̃λE(−J)) +
1

2
F̃ ′′(W )β2σ2

(A.0.5)
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+λ(F̃ (W − 1{W≥W̃ ∗}ψ̃E(−J))− F̃ (W ))

Observe that ψ̃ = ψ 1
E(−J) , and so the right-hand side of (??) can be satisfied by a dif-

ferential equation with solution FW̃ ∗,W̃ p that passes through (0, l) and (W̃ p, F̃ (W̃ p)). The

solution also satisfies equation (??), in fact, as W̃ p and W̃ ∗ are fixed, FW̃ ∗,W̃ p(W ) ≤ F (W )

for all W because W ∗ and W p are chosen optimally. �

Appendix to Chapter 2

Proof of Lemma 2.1.

See lemma 2 in He (2011). Note that his lemma is a form of single-agent revelation principle.

His proof directly extends to multi-agent environment. �

Proof of Lemma 2.2.

Fix an agent i and an arbitrary contract Γ. Suppose all the agents follow a. Then Ba
t =

(Ba
1t, ..., B

a
nt) with Ba

kt = Akt−
´ t

0

∑n
k=1 µk(as)ds for k is a n-dimensional Brownian motion

under measure P a. Define the value process for agent i, (Vit(Γ, a−i))t≥0 as follows

Vit(Γ, a−i) ≡ Eat
[ˆ t

0
e−rsui(cis, ais)ds

]

then the value process is a square-integrable Ft-martingale. By the martingale representa-

tion theorem, there exists for each i, a Ft-progressive measurable process βit = (βi1t , ..., β
in
t )

in L2 such that for all t,

Vit(Γ, a−i) = Vi0(Γ, a−i) +

ˆ t

0
e−rs(−γirWis)

n∑
k=1

βiks dB
a
ks
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Differentiating the above two representation of Vit with respect to t and using the relation

Bkt =
∑d

l=1 σkldZlt, we have

dWit(Γ, a−i) = (rWit(Γ, a−i)− ui(cit, ait))dt+ (−γirWit)
n∑
k=1

βikt (
d∑
l=1

σkldZlt)

Therefore the claim follows. �

Proof of Lemma 2.3.

See lemma 3 in He (2011). His proof follows by noting that the agent in my model takes

the effort of all other agents as given when she makes a consumption-saving decision.�

Appendix to Chapter 3

Proof of Proposition 3.1.

We verify T is a self-map. Since Ri, v are bounded and pi ∈ [0, 1], so as Tv. Moreover,

pi 7→
´
vdpi is continuous under the topology of weak convergence. Thus, by the Maximum

Theorem, min
pi∈Pi(xi)

´
v(x̃i)dpi(x̃i, xi) is continuous in xi. Thus, Tv is continuous in xi. Hence

T is a self-map. Verification of monotonicity and discounting are routine. The claim follows

from the contraction mapping theorem.�

Proof of Proposition 3.2.

Part (i): Define gi(xi) = Gi(xi)(1− β). We argue that gi(xi) = vi(xi).

Step 1 : show that vi(xi) ≥ gi(xi).

Let y < gi(xi), this implies m = y
1−β < Gi(xi). Given the terminal reward is m, the

optimal action is to continue to play arm i. By definition of Gi(xi), Vi(xi,m) > m. Let

τi(xi,m) be the optimal stopping time with arm i when terminal reward is m, then

Vi(xi,m) = min
pi∈Pi(xi)

Epi(
τi(xi,m)−1∑

t=0
βtRi(xit) +

∞∑
t=τi(xi,m)

y)

> m = y
1−β
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This implies for any pi ∈ Pi(xi)

Epi(
τi(xi,m)−1∑

t=0
βtRi(xit) +

∞∑
t=τi(xi,m)

y) > y
1−β

and

Epi(
τi(xi,m)−1∑

t=0
βtRi(xit)) > yEpi(

τi(xim)−1∑
t=0

βt)

It follows that

vi(xi, τi(xi,m)) = min
pi∈Pi(xi)

Epi (
τi(xi,m)−1∑

t=0
βtRi(xit))

Epi (
τi(xi,m)−1∑

t=0
βt)

> y

Hence, vi(xi) > y and vi(xi) ≥ gi(xi).

Step 2 : show that gi(xi) ≥ vi(xi).

Let y < vi(xi). By definition of vi, there exists a stopping time σ such that y < vi(xi, σ).

Hence for any pi ∈ Pi(xi),

Epi (
σ−1∑
t=0

βtRi(xit))

Epi (
σ−1∑
t=0

βt)

> y

and

Epi(
σ−1∑
t=0

βtRi(xit)) > Epi(
σ−1∑
t=0

βty)

Given a terminal reward m = y
1−β , the worth of σ is

wσ(xi,m) = min
pi∈Pi(xi)

Epi(
σ−1∑
t=0

βtRi(xit) + βσm)

> min
pi∈Pi(xi)

Epi(
σ−1∑
t=0

βty + βσm)

= m

Taking the supremum over the set of stopping times, Vi(xi,m) > m, thus continuation

is optimal and Gi(xi) > m by definition. It follows that gi(xi) > y, so gi(xi) ≥ vi(xi).

The second claim follows from:
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τi(xi) = inf {t : vi(xit) < vi(xi)}

= inf {t : Gi(xit) < Gi(xi)}

= τi(xi, Gi(xi))

where the second equality follows from the first part of the proposition.

Part (ii): By definition of infimum, at any xit, for any τ ∈ Tt+1 and p ∈ P0, we have

F p,τi (xit) ≥ inf
p∈Pi(xit)

F p,τi (xit). This implies sup
τ∈Tt+1

F p,τi (xit) ≥ sup
τ∈Tt+1

inf
p∈Pi(xit)

F p,τi (xit) and

hence inf
p∈Pi(xit)

Gpi (xit) ≥ Gi(xit).

Let p∗ and τ∗ be the measure that achieves the infimum and the stopping time that

achieves the supremum respectively. By definition of the MP-index, we have Gi(xit)
1−β =

Ep∗

(
τ∗−t∑
s=t

βs−tRi(xis) + βτ
∗−t Gi(xit)

1−β |xit
)

. Hence, Gi(xit) = F p
∗,τ∗(xit). But for p∗, the

Gittins Index Gp
∗

i (xit) satisfies
Gp
∗
i (xit)
1−β = sup

τ≥t+1
Ep∗

(
τ−1∑
s=t

βs−tRi(xis) + βτ−t
Gp
∗
i (xit)
1−β |xit

)
.

By the minimax result in Riedel (2009), we know τ∗ also achieves the supremum for

the right-hand side of the last equality. This implies for any stopping time τ ∈ Tt+1,

F p
∗,τ∗

i (xit) ≥ sup
τ≥t+1

F p
∗,τ

i (xit). Collecting the results,

sup
τ≥t+1

inf
p∈Pi(xit)

F p,τi (xit) = Gi(xit) = F p
∗,τ∗

i (xit)

≥ sup
τ≥t+1

F p
∗,τ

i (xit)

≥ inf
p∈Pi(xit)

sup
τ≥t+1

F p,τi (xit)

This completes the proof. �

Proof of Proposition 3.3.

We imitate Whittle’s (1980) retirement option argument. For the moment, we suppress

the subscript i, lemma A.4 to lemma A.6 hold for any i.

For any τ , define wτ : X ×M → R by wτ (x,m) = min
p∈P(x)

Ep[
τ−1∑
t=0

βtR(x) + βτm] as the

value of stopping time τ given x and m. The objective function fτ : ∆(X)×X ×M→ R

is given by fτ (p;x,m) = Ep[
τ−1∑
t=0

βtR(x) + βτm]. The following lemma characterizes the

right-hand derivative of wτ .
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Lemma A.4. For any τ , define a compact-valued and convex-valued correspondence Q :

X  ∆(X) by

Q(x) = {p ∈ P(x)|wτ (x,m) = fτ (p;x,m)}

Then the right-hand derivative of wτ (x, ·) at m in the direction h is given by

Dwτ (x,m)(h) = min
p∈Q(x)

Ep(β
τ )

Proof of Lemma A.4

Note that (i) P(x) is compact-valued for any x ∈ X. (ii) p 7−→ fτ (p;x,m) is continuous

everywhere. (iii) ∀x, ∀p ∈ P(x), m 7−→ fτ (p;x,m) is linear in m (hence concave), and

differentiable. The lemma is true by proposition 6, p.118 in Aubin (2007).�

Lemma A.5. For any x ∈ X, m 7−→ V (x,m) is nondecreasing and differentiable almost

everywhere. Moreover, let τ(x,m) be the optimal stopping time with retirement option m,

the derivative of V (x,m) is

∂

∂m
V (x,m) = min

p∈Q(x)
Ep(β

τ(x,m)) a.e.

Proof of Lemma A.5.

Monotonicity is obvious. We show that m 7−→ V (x,m) is absolutely continuous. First,

note that for any x and τ , the mapping m 7−→ wτ (x,m) is absolutely continuous. Since

fτ (p;x,m) is continuous in m, by Maximum Theorem, wτ (x,m) is continuous in m. More-

over, wτ (x,m) is concave in m as wτ (x,m) is defined via a minimum over a set of measures.

But any continuous and concave real function is absolutely continuous.

Second, since wτ (x,m) is absolutely continuous, it is almost everywhere differentiable

in m. When it exists, the derivative Dwτ (x,m) is equal to the right-hand derivative of

wτ (x,m) at m. Moreover, for almost all m ∈M, 0 ≤ Dwτ (x,m) ≤ 1 as Ep(β
τ ) is bounded
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between 0 and 1. Define b : M → R by b(m) = 1 ∀m. b is Lebesgue integrable and

|Dwτ (x,m)| ≤ b(m) for almost all m and for all x and τ . By theorem 2 in Milgrom and

Segal (2002), m 7−→ V (x,m) is absolutely continuous and therefore differentiable almost

everywhere.

Finally, let τ(x,m) denotes the optimal stopping time with terminal reward m and

initial state x. For any m ∈ int(M), when V is differentiable at m, wτ(x,m)(x,m) must

exist as V (x,m) = wτ(x,m)(x,m). Therefore, by theorem 1 in Milgrom and Segal (2002),

∂
∂mV (x,m) = Dwτ(x,m)(x,m) . But from lemma A.4, we know that wτ(x,m)(x,m) equals

to the right-hand derivative of w. Therefore, ∂
∂mV (x,m) = min

p∈Q(x)
Ep(β

τ(x,m)) almost

everywhere.�

Before proceeding, I need one more lemma.

Lemma A.6. The mapping m 7−→ min
p∈Q(x)

Ep(β
τ(x,m)) is increasing for all x ∈ X.

Proof of Lemma A.6.

By lemma 2.1 in Karoui and Karatzas (1993), m 7−→ τ(x,m) is decreasing. Therefore,

the objective function Ep(β
τ(x,m)) is increasing as β ∈ [0, 1). The claim follows from the

Monotone Maximum Theorem.�

The Bellman equation for the (K, (Ai)i∈K, β) bandit with retirement option m ∈M is

V (x,m) = max

{
m,max

i∈K

{
Ri(xi) + β min

pi∈P+1
i (xi)

ˆ
V (x̃i, x−i,m)dpi(x̃i, xi)

}}
(A.0.6)

and for the stopping problem with a single arm i

Vi(xi,m) = max

{
m,Ri(xi) + β min

pi∈P+1
i (xi)

ˆ
Xi

Vi(x̃i,m)dpi(x̃i, xi)

}
(A.0.7)
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Under the index policy specified in (a) and (b), one can conjecture the form of V (x,m).

Let τ(x,m) denote the stopping time for the entire bandit problem. Denote by τi(xi,m)

the retirement time for the single bandit i with retirement option m. (a) and (b) imply

τ(x,m) =
K∑
i=1

τi(xi,m) (A.0.8)

Lemma A.7. For almost all m,

∂

∂m
V (x,m) =

K∏
i=1

∂

∂m
Vi(xi,m)

Proof of Lemma A.7.

We have the following chain of equalities:

∂
∂mV (x,m) = min

p∈Q(x)
Ep(β

τ(x,m))

= min
p∈Q(x)

Ep(β
∑
i τi(xi,m))

= min
p∈Q(x)

K∏
i=1
Epi(β

τi(xi,m))

=
K∏
i=1

min
pi∈Qi(xi)

Epi(β
τi(xi,m))

=
K∏
i=1

∂
∂mVi(xi,m)

The first equality follows from lemma A.5. The second equality uses (??). For any

given p ∈ Q(x), the random variables {τi(xi,m)} are independent, hence the third equal-

ity. The forth equality requires also the stochastic independence of arms. In particular,

for any p ∈ Q(x), there exists pi ∈ Pi(xi) such that p =
K
×
i=1
pi and pi ∈ Qi(xi).The last

equality uses again lemma A.5, applied to arm i’s stopping problem.
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Integrating ∂
∂mV (x,m) from m to C

1−β , we obtain
´ C

1−β
m

∂
∂mV (x, m̃)dm̃ = V (x, C

1−β ) −

V (x,m). Notice for m ≥ C
1−β , immediate retirement is optimal, Φ(x, C

1−β ) = C
1−β . Hence

V (x,m) =
C

1− β
−
ˆ C

1−β

m

∂

∂m
V (x, m̃)dm̃ (A.0.9)

that is, the value function necessarily satisfies (??) under the index strategy. Therefore,

we define another value function Φ : X ×M→ R by

Φ(x,m) =
C

1− β
−
ˆ C

1−β

m

∏
j 6=i

∂

∂m
Vj(xj , m̃)dm̃ (A.0.10)

and show that Φ(x,m) = V (x,m) for any x and m under the index strategy. For

this purpose, define for each i, Hi(x,m) =
∏
j 6=i

∂
∂mVj(xj ,m). Note that Hi(x,m) is (i)

nonnegative as Epj (β
τj(xj ,m)) ≥ 0 for all pj ∈ Qj(xj). (ii) nondecreasing in m by lemma

A.6. (iii) Ranging from 0 to 1. Because for m ≤ − C
1−β , ‘never stop’ is optimal, so for all

j,τj(xj ,m) = ∞ a.e. and Epj (β
τj(xj ,m)) = 0. On the other hand, m ≥ C

1−β , ‘immediate

retirement’ is optimal, so for all j, τj(xj ,m) = 0 a.e. and Epj (β
τj(xj ,m)) = 1. Therefore,

Hi is a distribution function on M. Moreover, Hi(x,m) does not depend on xi.

Using the definition and integrate (??) by parts,

Φ(x,m) = Vi(xi,m)Hi(x,m) +

ˆ C
1−β

m
Vi(xi, m̃)dHi(x, m̃) (A.0.11)

We show that Φ satisfies the Bellman equation (??)

Step 1 : Show that Φ(x,m) ≥ m. From lemma A.5, Vi(xi,m) is nondecreasing in m.

This implies

Φ(x,m) ≥ Vi(xi,m)Hi(xi,m) + Vi(xi,m)
´ C

1−β
m dHi(xi, m̃)

= Vi(xi,m)Hi(x,m) + Vi(xi,m)
[
Hi(xi,

C
1−β )−Hi(xi,m)

]
= Vi(xi,m)Hi(xi,

C
1−β )

= Vi(xi,m) ≥ m
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where the last inequality follows from (??) for all i.

Step 2 : We show that ∆i ≥ 0 for all i, where

∆i = Φ(x,m)−Ri(xi)− β min
pi∈P+1

i (xi)

´
Xi

Φ(x̃i, x−i,m)dpi(x̃i, xi)

Substituting out Φ(x,m) in ∆i using (??),

∆i

= Vi(xi,m)Hi(x,m) +
´ C

1−β
m Vi(xi,m)dHi(xi, m̃)−Ri(xi)

−β min
pi∈P+1

i (xi)

´
Xi

[
Vi(x̃i,m)Hi(x̃i, x−i,m) +

´ C
1−β
m Vi(x̃i, m̃)dHi(x̃i, x−i,m)

]
dpi(x̃i, xi)

= Hi(x,m)

[
Vi(xi,m)−Ri(xi)− β min

pi∈P+1
i (xi)

´
Xi
Vi(x̃i,m)dpi(x̃i, xi)

]
+
´ C

1−β
m [Vi(xi, m̃)−Ri(xi)] dFi(x, m̃)− β min

pi∈P+1
i (xi)

´
Xi

´ C
1−β
m Vi(x̃i, m̃)dHi(x, m̃)dpi(x̃i, xi)

= Hi(x,m)

[
Vi(xi,m)−Ri(xi)− β min

pi∈P+1
i (xi)

´
Xi
Vi(x̃i,m)dpi(x̃i, xi)

]
+
´ C

1−β
m [Vi(xi, m̃)−Ri(xi)] dHi(x, m̃)

−β
´ C

1−β
m

[
min

pi∈P+1
i (xi)

´
Xi
Vi(x̃i, m̃)dpi(x̃i, xi)

]
dHi(x, m̃)

= Hi(x,m)

[
Vi(xi,m)−Ri(xi)− β min

pi∈P+1
i (xi)

´
Xi
Vi(x̃i,m)dpi(x̃i, xi)

]

+
´ C

1−β
m

[
Vi(xi, m̃)−Ri(xi)− β min

pi∈P+1
i (xi)

´
Xi
Vi(x̃i, m̃)dpi(x̃i, xi)

]
dHi(x, m̃)

Therefore, by the Bellman equation (??), ∆i ≥ 0 for all i.

Next, we show that Φ(x,m) = m and ∆i = 0 for all i under the index strategy. In

other words, the index strategy is uniquely optimal for the multi-armed bandit.

Step 3 : Show that Φ(x,m) = m on the event

{
m ≥ max

i∈K
{Gi(xi)}

}
for all x ∈ X.

For any m̃ ≥ m ≥ max
i∈K
{Gi(xi)}, the index strategy (a) requires the retirement for

all bandit processes. This implies that for any i, τi(xi,m) = 0 for all x ∈ X. Hence
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∂
∂mVi(xi,m) = 1 and Hi(x,m) = 1 and dHi(x,m) = 0. By (??) and Proposition 3.2,

Φ(x,m) = Vi(xi,m) = m for all i.

Step 4 : Show that Φ(x,m) = Rk(xk)+β min
pk∈P+1

k (xk)

´
Φk(x̃k,m)dpk(x̃k, xk) on the event{

m < Gk(xk) = max
i∈K
{Gi(xi)}

}
for all x ∈ X.

If i is such that m ≤ m̃ < Gi(xi), the index strategy (b) requires the continuation with

arm i. Hence, by proposition 3.2,

Vi(xi, m̃) = Ri(xi) + β min
pi∈P+1

i (xi)

ˆ
Xi

Vi(x̃i, m̃)dpi(x̃i, xi)

Then ∆i reduces to

∆i =
´ C

1−β
Gi(xi)

[
Vi(xi, m̃)−Ri(xi)− β min

pi∈P+1
i (xi)

´
Xi
Vi(x̃i, m̃)dpi(x̃i, xi)

]
dFi(x, m̃)

If k is such that m̃ ≥ Gk(xk) = max
i∈K
{Gi(xi)}, then dHi(x, m̃) = 0 and ∆k = 0. Then

Φ(x,m) = Rk(xk) + β min
pk∈P+1

k (xk)

ˆ
Xk

Vk(x̃k, m̃)dpk(x̃k, xk)

Therefore, Φ(x,m) satisfies the Bellman equation (??). In addition, for m ≥ Gk(xk),

V (x,m) = m so retirement is optimal. For m < Gk(xk), we have

V (x,m) = Rk(xk) + β min
pk∈P+1

k (xk)

ˆ
Xk

Vk(x̃k, m̃)dpk(x̃k, xk),

so continuation with arm k is optimal.�
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