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It is essential to build, maintain, and use our transportation systems in a manner 

that meets our current needs while addressing the social and economic needs of future 

generations. In today’s world, transportation congestion causes serious negative impacts 

to our societies. To this end, researchers have been utilizing various statistical methods to 

better study the flow of traffic into the road networks. However, these valuable studies 

cannot realize their true potential without solid in-depth understanding of the connectivity 

between the various traffic intersections. This paper bridges the gap between the 

engineering and social science domains. To this end, the authors propose a dynamic 

social network analysis framework to study the centrality of the existing road networks. 

This approach utilizes the field of network analysis where: (1) visualization and modeling 

techniques allow capturing the relationships, interactions, and attributes of and between 

network constituents, and (2) mathematical measurements facilitate analyzing 

quantitative relationships within the network. Connectivity and the importance of each 

intersection within the network will be understood using this method.  The author 

conducted social network analysis modeling using three studies in Louisiana and two 

studies in Mississippi.  Four types of centrality analysis were performed to identify the 



 

 

most central and important intersections within each study area.  Results indicate 

intersection social network analysis modeling aligns with current congestion studies and 

transportation planning decisions. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Traffic congestion is a common and frequently occurring phenomenon.  It is 

defined as the level at which transportation system performance is unacceptable due to 

excessive travel times and delays (23 C.F.R. § 500.109).  Traffic congestion can be 

caused by many factors.  According to the Traffic Congestion and Reliability:  Trends 

and Advanced Strategies for Congestion Mitigation report generated in 2005 by 

Cambridge Systematics for the FHWA, there are three categories and seven root causes 

of traffic congestion (Cambridge Systematics 2005).  The 2005 report details the 

categories and causes in the following manner: 

• Traffic-Influencing Events (Category 1) 

1. Traffic Incidents – events that disrupt traffic flow; 

2. Work Zones – construction work that physically changes to roadway 
environment; 

3. Weather – environmental factors that cause drivers to change behavior in a 
way that alters traffic flow; 

• Traffic Demand (Category 2) 

4. Fluctuations in Normal Traffic – variability in day-to-day transportation 
network demand; 

5. Special Events – demand fluctuations that are drastically different than 
normal network demand in the area surrounding a special event; 
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• Physical Highway Features (Category 3) 

6. Traffic Control Devices – traffic control devices such as traffic signals can 
cause traffic congestion; 

7. Physical Bottlenecks – actual roadway capacity can cause traffic 
congestion. 

The root causes listed above can cause a congested traffic situation at any time.  

Put simply, traffic congestion is caused by “too much traffic demand and/or not enough 

supply” (FHWA 2010).  It can occur at any time or on any day of the week.  It is often 

assumed that congestion occurs only during traditional morning and afternoon rush hour 

periods, however, 40 percent of congestion occurs during non-peak travel times (TTI 

2011).  No matter the time of day that congestion occurs, roadway capacity and travel 

speeds are reduced, travel time increases and varies and an unstable traffic condition is 

created (Jun and Lim 2009, Pulugurtha and Pasupuleti 2010).  Upon the manifestation of 

one or more of these indicators, the transportation network is not meeting the needs of its 

users, causing negative impacts to both individuals and businesses.    The 2011 Urban 

Mobility Report published by the Texas Transportation Institute, highlights the critical 

cost and time indicators of congestion in 2010 and forecasts these critical indicators for 

2020.  The indicators, 2010 to 2020 comparisons and forecasted increases are 

summarized in Table 1.1 below: 
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Table 1.1 Congestion Indicator Comparison and Forecast 

Indicators 2010 2020 Forecasted 
Increase (%) 

Total Cost ($) 101.0 billion 175.0 billion 73.3 
Per Commuter Cost ($) 713.0 1232.0 72.8 

Average Delay Per 
User (Hours) 34.0 41.0 20.6 

Total Individual Time 
Wasted (Hours) 4.8 billion 7.7 billion 60.4 

Wasted Fuel (Gallons) 1.9 billion 3.2 billion 68.4 
 

Other inauspicious 2010 congestion indicators found in the Texas Transportation 

Institute’s, 2011 Urban Mobility Report, are the following: 

 The most congested roadways which account for 21% of travel, were 
associated with 78% of congestion delays; and 

 Since 1982, congestion delay has grown nearly five times larger (TTI 
2011). 

Major findings detailed in the Texas Transportation Institute’s, 2011 Congested 

Roadways Report, are the following: 

 10% of metropolitan freeway vehicle travel miles are responsible for 36% 
of metropolitan area freeway delays; and 

 8% of the metropolitan freeway truck miles are responsible for 33% of 
metropolitan freeway truck delays (TTI 2011). 

The following year, the Texas Transportation Institute issued the 2012 Urban 

Mobility Report.  This report is the subsequent report to the 2011 report discussed earlier.  

The 2012 Urban Mobility Report detailed similar numbers to the 2011 report, noting that 

congestion parameters have worsened year over year, detailing several major factors that 

got worse, including, longer trips and less reliable trip times, longer congestion periods, 
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weekend and rural congestion occurrences, greater congestion impacts to personal and 

industrial traffic, and reduced air quality in regions with high congestion values (TTI 

2012). 

The costs noted above are driven by congestion related engine emissions, vehicle 

wear and tear, wasted time and associated fuel consumption costs (Zheng et al. 2010, 

Antipova and Wilmot 2012, GAO 1989).  In general, traffic congestion can have an 

overall diminishing effect on economic productivity by limiting mobility and reducing 

traffic safety (Quddus et al. 2010, Zheng et al. 2010).  

Individual health can also be negatively impacted by traffic congestion.  Traffic 

congestion has negatively impacted the physical and psychological well-being of 

commuters (Levy et al, 2012, GAO 1989).  Traffic congestion can cause stress and take 

time away from healthy or needed activities.  As such, high levels of congestion are 

dangerous to the mental and physical health of commuters.  In fact, the National Institutes 

of Health estimates the cost related to health impacts caused by congestion will be $13 

billion in 2020 (Levy et al. 2012).   

Many commuters and businesses deal with negative cost and health impacts 

derived from traffic congestion delays on a daily basis.  Transportation network users use 

the same routes and deal with frequent and/or severe congestion on a recurring basis.  

Once someone is comfortable with a route and able to regularly predict the route travel 

time, that route becomes the habitual route when traveling to and from a desired 

destination.  It seems counterintuitive to take a consistently congested route to a 

destination but commuters are known to take travel routes that they are most able to 

accurately predict the travel time on (Pulugurtha and Nagaswetha 2010).  Transportation 
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network users are therefore hesitant to use untested routes within their transportation 

network because the travel time prediction of a new route can be less reliable than the 

time prediction of their regular travel route.  Developing a tool that users can intuitively 

understand while accounting for the complex variables related to traffic congestion could 

increase new route selection and use.  

1.2 Problem Statement 

In today’s world, the problem of congestion in our infrastructure transportation 

systems has been causing serious negative time and cost impacts to our societies. Because 

of negative time and cost impacts to our societies and the congestion related conditions 

described above, an innovative traffic congestion mitigation solution is required.  Current 

investment levels have not met our infrastructure needs, requiring an innovative solution 

(Shrank et al. 2012).   

A solution that better utilizes various statistical methods to study the flow of 

traffic into the road networks for planning and development purposes is required.  Many 

currently used transportation planning systems, like CORSIM, require a wide variety of 

detailed information and assumptions to predict congestion and evaluate solutions.  The 

effort to complete traditional models can be very time consuming and costs.  To this end, 

a solution that better utilizes the information and tools available to transportation planners 

and engineers while maximizing the effectiveness of current infrastructure investment 

levels is needed.  However, these traditional studies cannot realize their true potential 

without solid in-depth understanding of the interrelated connectivity between traffic 

intersections in resolving transportation congestion problems. Typical traffic mitigation 

efforts are focused on creating additional capacity, making operational improvements and 
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managing demand (FHWA 2005).  Two of the top traffic influencing events noted earlier 

are traffic incidents and work zones.  A model that can quickly incorporate changing data 

or traffic conditions to develop alternatives to could help mitigate delays as a result of 

traffic incidents.  Work zone congestion leaves more time for decision makers to 

determine the best layout and schedule to avoid congestion.  However, there is usually 

not enough time or money for agencies or contractors to perform a full traffic analysis 

with traditional methods to determine the absolute best solution.  A tool that requires less 

time and resources but still develops helpful analytical data for decision makers would be 

an asset to project managers and potentially reduce congestion. 

According to the FHWA (2005), traditional efforts at creating additional capacity 

are typically focused on highway, transit and freight capacity improvements.  Adding 

capacity typically involves building new infrastructure, modifying existing networks and 

improving in place infrastructure.  Substantial resources and time are associated with 

capacity additions.  Feasibility studies, voter approval, design phases and construction 

phases are common components of the process to add capacity to the transportation 

network.  Each of these requires time and resources to complete.  As such, capacity 

additions cannot realize their true potential without solid in-depth understanding of the 

interrelated connectivity between traffic intersections in mitigating transportation 

congestion problems. 

Making operation adjustments is another method commonly used to mitigate 

traffic congestion.  For arterial streets, which is the focus of this research, common 

improvements include, information systems, geometric improvements, intersection 

improvements, access management, advanced signal systems, adjustable lane 
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assignments, incident and event management, signal optimization and parking restrictions 

(FHWA 2005).  Operational improvements to mitigate traffic congestion also focus on 

related freeway management systems to mitigate traffic congestion on highways.  Similar 

operational improvements can be implemented with transit and freight operations to 

better manage congestion, as well.  However, operational management strategies cannot 

realize their true potential without solid in-depth understanding of the interrelated 

connectivity between traffic intersections in mitigating transportation congestion 

problems. 

Demand management is the final method in which congestion management efforts 

are typically focused.  Under demand management considers the following strategies 

when attempting to mitigate traffic congestion:  travel alternatives, land use, pricing, 

HOV, transit and freight (FHWA 2005).  Within these strategies, there are numerous 

options which transportation planners and users may choose to mitigate traffic 

congestion.  Some of the most well-known options are use of alternative work schedules, 

telecommuting, transit oriented design, HOT lanes, vanpools, carpool parking priority, 

subsidized fares and freight delivery restrictions (FHWA 2005).  While many of these 

strategies have been implemented in many congested transportation networks and may 

help slow the increase of congestion, they have not reduced the congestion level 

experienced by transportation users.  As the 2011 Urban Mobility Report notes, 

congestion levels and costs are actually forecasted to increase between now and 2020, in 

spite of the implementation of many of the demand management strategies.  This is a 

clear indicator that the current tools are not as effective as they should be.  Engineers are 

spending time and money on tools and solutions that are not improving congestion 
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factors overall.  The reason why demand management, operational management or 

additional capacity strategies cannot realize their true potential is that none of them 

involves a solid, in-depth, understanding of the interrelated connectivity between traffic 

intersections in mitigating transportation congestion problems.  This research works to 

round out the required understanding of connectivity between traffic intersections in 

mitigating transportation congestion problems. 

1.3 Goals and Objectives 

The main goal of this proposal is to gather in depth analytic information which 

should enable decision makers to effectively and efficiently prioritize and optimize future 

infrastructure transportation projects.  This goal is in alignment with the first step of 

congestion mitigation guidelines detailed in manual titled, Guidelines for Operating 

Congested Traffic Signals.  Specifically, step 1 of these guidelines, requires the 

prioritization of locations in need of congestion mitigation (Chaudhary et al. 2010).  To 

accomplish this goal, the research has two main objectives detailed below: 

1. Study the centrality of the existing road networks using social network 
analysis.  In accomplishing this objective, the research will attempt to 
utilize four centrality measures.  In regards to Bonacich and Eigenvector 
centrality, how much traffic to neighboring nodes carry and how central 
are they to the network?  Regarding 2 Step Reach centrality, how many 
different intersections are within to connections of any specific 
intersection?  Finally, in regards to Betweenness centrality, which 
intersections have the shortest overall path to all other intersections in the 
network? 

2. Study methods and identify additional focus areas which may be included 
in this research or future studies and developments.  These methods and 
focus areas include, roadway and intersection geometry, signal timing, 
methods to collect traffic count data, and geographic layout of the 
transportation network.   
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1.4 Summary 

As America’s aging infrastructure struggles to meet the minimum safety 

requirements and current needs of the public, identifying and implementing innovative 

tools is critical.  The aim of this research and the tool developed is to help industry 

decision makers identify exact locations for the focus of infrastructure improvements.  

Utilizing social network analysis for transportation networks, the aim is to develop a 

holistic tool that may be integrated with other social networking studies and tools. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Traffic Congestion 

This section provides background information on traffic congestion.  It will 

discuss how and why traffic congestion occurs and the effects of congestions 

occurrences.  This section will then discuss the current tools, resources and procedures in 

use to mitigate traffic congestion.  From this information, it will be apparent why a new 

method that develops an in depth understanding of the interrelated connectivity between 

traffic intersections is required to mitigate transportation congestion problems. 

2.1.1 Causes of Traffic Congestion 

Traffic congestion is defined as the level at which transportation system 

performance is unacceptable due to excessive travel times and delays (23 C.F.R. § 

500.109).  It can be caused by a multitude of issues.  However, as noted in Section 1.1, 

there are seven main causes of congestion.  In the 2005 Traffic Congestion and 

Reliability:  Trends and Advanced Strategies for Congestion Mitigation, generated for the 

FHWA by Cambridge Systematics, the causes are, traffic incidents, work zones, weather, 

fluctuations in normal traffic, special events, traffic control devices and physical 

bottlenecks.  At times, only one of these congestion causing issues exist.  At other times, 

more than one of these issues may be present within a transportation network.  In some 

instances, one or more issues may cause give rise to another congestion causing issue, 
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potentially compounding the effect of these congestion causing issues.  For instance, a 

work zone may cause a physical bottleneck which results in congestion and traffic delay.  

Another example could be when a special event causes a fluctuation in normal traffic 

which results in congestion and traffic delay.  There are many more potential 

combinations of traffic causing issues.   

Martchouk et al. goes on to separate some of these traffic causing issues into 

recurring and nonrecurring groups (2011).  Recurrent traffic congestion is caused by 

traffic control devices, traffic demand fluctuations and inadequate base capacity while 

nonrecurring congestion is caused by work zones, weather and special events (Martchouk 

et al. 2011).  Martchouk et al. determined that weather is the primary source of 

nonrecurring traffic congestion (2011).   

Simply because one or more of the issues listed above is present within a traffic 

network does not indicate the presence of traffic congestion.  There are a variety of 

congestion indicators.  When one of these indicators is present or observable within a 

traffic network, traffic congestion and delay are likely present.  Potential indicators of 

congestion occurrence is reduced driving speeds, longer travel times and/or heavy traffic 

volumes (Jun and Lim 2009).  When vehicles are traveling at speeds less than the speed 

limit, it is an indicator that one of the congestion causing issues listed above is present 

and causing a congestion event.  Depending on the design capacity of the road, heavy 

traffic volumes may indicate that congestion is present, as well.  Longer travel times can 

also be an indicator that a congestion causing issue is occurring.  However, normal travel 

times may occur when traffic volumes are under capacity, likely reducing travel times.  



 

12 

Adding traffic volume to the network may increase the travel time without actually 

causing congestion if the network does not reach its capacity volume.   

Another indication that a traffic congestion event is occurring is the observance of 

traffic oscillations.  Traffic oscillations, or stop- and-go traffic, occur when repeated 

decelerations followed by accelerations are observed within the traffic network (Zheng et 

al. 2010).  Traffic oscillations not only indicate that congestion is occurring, but that there 

is an increased likelihood of a rear-end vehicle crash (Zheng et al. 2010).  The presence 

of stop-and-go traffic not only indicates that a congestion event is occurring, it also gives 

warning that the probability of a rear-end vehicle crash occurring has increased.  This 

indicates that even if a congestion event cannot be fully mitigated to eliminate its 

occurrence, mitigation of stop-and-go traffic may result in a safer transportation network.  

For example, maintaining slow, but more stable and consistent speeds may be an 

effective measure in mitigating stop-and-go traffic to reduce rear-end crashes within a 

transportation network. 

2.1.2 Effects of Traffic Congestion 

Upon the presence of one or more of the congestion causing issues or indicators 

listed above, numerous effects may impact transportation network users.  Effects of 

traffic congestion be present during or after one congestion event and/or may require 

multiple, repeated occurrences of congestion events to be present.  Both acute and 

chronically occurring congestion events may impact transportation network users.  

Effects may be related to economic conditions of individuals or society as a whole and 

may be related to the individual health of transportation network users.    
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Economically, traffic congestion can have large and drastic costs.  Nearly every 

effect of congestion has some economic cost related factor associated with it.  The first 

effects of congestion will focus on factors where reduced economic productivity and 

increased cost are the main concerns.  Congestion can result in an increase in fuel 

consumption (Wu et al. 2011).  Increased fuel consumption may be created frequent 

accelerations, idle time in congestion events or extra fuel used to take a longer travel 

route to bypass a congestion event.  Increased fuel consumption also creates a secondary 

negative effect on the environment.  Using more fuel creates more greenhouse gas and 

uses more of our limited petroleum resources.  Congestion also causes increased travel 

times which waste transportation network user time (Antipova and Wilmot 2012).  A 

major factor in economic productivity is enhanced mobility which is drastically reduced 

when individual drivers and commercial vehicles experience congestion delays (Quddus 

et al. 2010).  Time individual travelers spend in congestion is unproductive time.  This is 

time that could be spent at a job or in school in efforts to contribute to the overall success 

of the economy.  Congestion delay also increases costs to businesses.  Congestion may 

delay deliveries, cause employees to work longer hours due to increased travel and 

transportation times, and add new resources to make up for existing resources that are 

delayed and held up while in transit.  All of these issues add to the costs to operate a 

business and adversely impact the economic productivity of a market.   

Many of the economic factors listed above can also have implications on the 

health of transportation network users.  Two studies, one in 1989 and one in 2012, 

determine that traffic congestion has detrimental effects on physical and psychological 

health of transportation network users (GAO 1989, Levy et al. 2012).  High levels of 
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congestion are dangerous to both the mental and physical safety of commuters.  As a 

result, healthcare costs are associated with congestion events.  The Levy et al. article 

discussed above and published on the National Institutes of Health website estimates the 

costs related to health impacts caused by fine particulates released in the air because of 

congestion and other pollution sources will be $13 billion in 2020 (2010).  Levy et al. 

also determined that in many populated regions with high levels of congestions, 

economic and time costs associated with congestion are nearly equal to the health related 

costs due to congestion caused fine particulate pollution (2010).  A health impact that is 

difficult to quantify, but caused by congestion events, is a decreased driver comfort 

(Zheng et al. 2010).  Poor driver comfort can negatively both the physical and mental 

health of transportation network users. 

Potentially one of the most critical effects of traffic congestion is travel time 

reliability.  When a congestion event occurs, the roadway capacity is reduced, creating an 

unstable traffic condition, which then creates travel time variability (Pulugurtha and 

Pasupuleti 2010).  Travel time variability created by congestion events was determined to 

be the first or second most important consideration for choosing a particular route, 

meaning transportation network users will use the route in which they can best predict the 

travel time required to arrive at their destination (Abdelwahab and Abdel-Aty 2001).  As 

such, when faced with congestion many transportation network users will continue to use 

the same route if it gives them a consistent travel and destination time.  When severe 

congestion on a selected route occurs, it may be wise to travel on an alternate route, 

however, the literature indicates that transportation network users will likely continue to 

travel on the severely congested route.  This is because users are better able to predict 
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travel time on a consistently used route, even when severely congested, than they can on 

a less congested alternative route.  They can more accurately predict their travel time in 

severely congested conditions on the regular route than on the uncongested alternative 

route. 

2.1.3 Traditional and Current Congestion Mitigation Efforts 

As noted in the introduction section of this research, typical traffic mitigation 

efforts are focused on creating additional capacity, making operational improvements and 

managing demand (Cambridge Systematics 2005).  Within these focuses, there many 

focus areas and strategies in use to mitigate traffic congestion.   

For example, in evaluating the creation of additional transportation network 

capacity, adding new infrastructure and improving in the in place network are common 

solutions studied.  According to Antipova and Wilmot, a common practice to improve 

network capacity is to build loop bypasses (2012).  While building loop bypasses is a 

common practice to improve capacity, improving the existing road network can be an 

effective option for a much smaller price (Antipova and Wilmot 2012).  In reviewing 

alternatives to modify existing networks or build new infrastructure, many impacts and 

factors, as well as, capacity adding options should be considered.  Potential impacts that 

may be considered are actual capacity added, cost, sustainability, travel time and many 

more.  Potential options that may be considered to add capacity are road widenings, 

bridges, new roads, mass transit facilities and many more.  Only when all alternatives and 

impacts have been considered, should a capacity addition be implemented, if at all. 

Within demand management efforts to mitigate traffic congestion, pricing is one 

factor to consider.  In fact, effective pricing guarantees efficient use of infrastructure 
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(Gonzalez-Guzman and Robuste 2011).  Effective pricing of infrastructure components 

like toll lanes, mass transit use and parking facilities can influence the public toward 

efficient use of infrastructure, helping to mitigate congestion.  For example, if using mass 

transit components of a transportation network at a higher capacity will mitigate traffic 

congestion, pricing is used to encourage the public to use mass transit at higher rates.  

Tolling passenger vehicles and charging parking facility fees that cost more than mass 

transit options encourages individual use of available mass transit options. 

Operational improvements may focus on many of the areas described in the 

introduction.  An interesting operational improvement strategy is closure of a link to 

create a buffer or diversion.  Individual network users often treat congested network links 

like closures, naturally diverting when the observed congestion appears to be stable 

(Chen et al. 2010).  Knowing that individuals naturally divert, attempts to develop models 

for use in directing diversions have been undertaken.  One model may be used by 

individual drivers or government agencies to quantitatively determine if a traffic 

diversion should be carried out in a specific situation (Wu et al. 2011).  In another case, 

researchers developed a model for use during evacuation management situations that 

mitigates congestion by balancing the volume of traffic entering and exiting a specific 

segment of a transportation network through the forced detour some traffic.  These 

models fail to consider the full connectivity of the transportation network, often focusing 

on freeway congestion mitigation, potentially at the expense of the arterial network and 

its intended use.  
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2.1.4 Origin Destination Demand 

Origin-destination demand is a critical component of the four step transportation 

analysis.  Origin-destination demand is central to the trip distribution and mode split 

calculations and analyses.  For the purposes of this research, origin-destination demand in 

determining trip distribution will be the focus.  During trip distribution, origins and 

destinations are assigned for each trip.  All trips will be assigned an origin-destination 

pair.  Once all assignments are completed, the origin-destination demand matrix may be 

completed.  This origin-destination matrix may be applied in a variety of models.  The 

common models are listed below: 

 Uniform Growth Factor Model 

 Fratar Model 

 Demand Model 

 Choice Model (General) 

 Gravity Model 

These models have strengths and weaknesses.  Many are time consuming, require 

detailed calculations, and various data estimation.  These factors can lead to inaccurate or 

imprecise models.  Because no single model is 100% accurate, the potential for error 

exists in determining origin-destination demands.  Policy makers and engineers can use 

origin-destination demand calculations to determine transportation infrastructure needs, 

allocate funding and prioritize network changes or improvements.  Often, these decisions 

are made in very dynamic population areas which are subject to potentially large 

increases or decreases in origin-destination demand.  The cost, permanent nature and 

political ramifications of transportation infrastructure decisions further complicates the 
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origin-destination calculation and analysis.  A greater degree of certainty in origin-

destination demand analyses is required so that transportation networks can be designed, 

built and maintained, in a sustainable manner, at capacities that meet these demands.   

Origin-destination demands have large impacts on trip distribution and the overall 

transportation analysis process.  They may not provide the full picture of a transportation 

network though.  O-D matrices match one origin and one destination to create a pair, 

however, there is not much information on what happens between the origin and 

destination.  For example, the actual route taken could vary widely with traffic taking 

freeway routes, strictly surface streets, a rural route or some combination of the available 

options.  Related to route variability is traffic volume variability.  Traffic volume will 

increase or decrease with the increase or decrease in individual route usage.  The 

accuracy of O-D calculations is affected by two uncertainty causing variables:  route 

selection and traffic volume variability (Chootinan & Chen, 2011).  To accurately 

calculate origin-destination demands, more detailed information is required.  It is 

desirable to more to have more reliable capacity information to either know the exact 

capacity of the current network and to reliably forecast the capacity of the future network. 

As part of this research multiple origin-destination demand studies were review.  

No matter the focus of the research, each study focused on at least one of the two main 

categories in the origin-destination demand calculation:  route variability and/or traffic 

volume accuracy.  The route variability category will focus on research and literature that 

discusses route selection and use factors.  The traffic volume accuracy category will 

focus on research and literature that discusses traffic volume determination, accuracy and 

attempted improvements.  The literature will be reviewed, discussing the research and 
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findings, with a summary provided in a table to compare the findings of each set of 

research findings.  A summary of the literature study findings is contained in Table 1, at 

the end of this section. 

One problem or concern in determining origin-destination demand is the actual 

route a transportation network user takes between their origin and destination.  O-D 

values give an indication of the demand or importance of selected O-D pairs.  

Traditionally, telephone surveys, census data and roadside surveys have been used in an 

attempt to determine the actual route transportation network users prefer and actually use 

(Wang et al. 2013).  A problem with these methods is that as soon as the data has been 

collected, it is old and possibly obsolete.   

Recently, cell phone tracking has been used to estimate traffic volumes on 

selected links or roadways at specific times.  This tracking method provides almost real 

time transportation network user tracking.  This phone tracking method can also be used 

to determine which O-D pairs contribute to traffic volume on a selected link.  

Researchers can use this method to analyze how the O-D demand and route selection 

change when different travel/traffic and environmental events occur.  One study indicated 

that close to 60% of traffic on a congested highway route, during rush hour, was local in 

nature (Wang et al, 2013).  This indicates that the majority of the roadway users are 

“commuters” with the remaining 40% of traffic being intercity, if not, interstate travelers 

(Wang et al. 2013).   

Cell phone tracking has enabled the accurate tracking of route selection and traffic 

volume of selected routes.  The increased, and more detailed, route information afforded 
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by tracking cell phones could be used to by transportation planners to make more exact 

transportation network improvements and changes.   

The length of time it takes to travel between an O-D pair will impact route 

selection.  Routes with the shortest perceived travel time will be used to connect O-D 

pairs.  Perceived route length is based on several route characteristics:  physical length of 

each route, presence of congestion and the amount of actual traffic compared to the 

route’s capacity (Sofer et al. 2013).   A route’s perceived travel time is equal to its actual 

travel time when no congestion is present.  Once determined, perceived travel time is a 

major factor in determining system flexibility.  Factored with the number of different 

routes, as well as, the number of independent links available on these different routes, 

perceived travel time impacts the flexibility of a model (Sofer et al. 2013).  Increasing 

system flexibility, improves travel time reliability (Sofer et al, 2013).  While travel time 

reliability is increased, a network with a high level of flexibility may complicate the 

determination of route usage and congestion location.    

Cost of selected routes between O-D pairs was found to impact commuting 

volumes and patterns.  Upon completion of toll roads, one study found that the new roads 

experienced relatively low volumes of traffic between communities because of high tolls 

(McArthur et al. 2013).  Another studied reviewed the financial performance of toll road 

projects in comparison to the social welfare impacts.  These researchers found that 

project builders and financiers experienced higher profits with higher tolls and lower 

roadway capacities but lower profits or losses with decreased toll amounts and higher 

roadway capacities (Subprasom and Chen 2007).  These studies demonstrate that 

infrastructure funding is critical to roadway use and connectivity amongst communities.  
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The higher profits that builders and financiers make when high tolls are implemented are 

offset by the lack of connectivity and impact to the social welfare of the area 

communities.  Interesting, both of these studies suggested that government agencies 

either fully finance infrastructure construction or atleast subsidize the work so that 

projects can be profitable to builders and financiers while creating high capacity 

roadways which benefit the social welfare of the surrounding communities (McArthur et 

al. 2013, Subprasom and Chen 2007).   Interestingly, one study found that do-nothing 

alternatives often have the highest social cost impact (Kim and Kim 2006).   

Route uncertainty is one of two variables that directly contribute to uncertainty of 

the O-D calculation.  Route uncertainty is caused by multiple solutions because of 

incomplete nature of the O-D calculation and by errors in traffic counts (Chootinan and 

Chen 2011).  To control this uncertainty, a generalized demand scale model was 

developed.  This model attempts to account for as much route variability as possible 

through observed link flow constraints, capacity constraints of unused links and path set 

(Chootinan and Chen 2011).  Research found that this demand model was accurate and 

within the required confidence intervals when applied an actual transportation network 

(Chootinan and Chen 2011).  The generalized demand model reviewed can be used to 

more accurately identify critical routes and links within a studied network. 

Network capacity reliability is critical to transportation network design and use 

because it can be used by decision makers when managing infrastructure, improving 

roadways against disaster and providing a flow control implementation indicator (Chen et 

al. 2013).  Capacity reliability is the probability that a network, at a required service 

level, can meet the traffic volume demand requirements (Chen et al. 2013).  Chen et al., 
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defined 7 measures which use traditional links and nodes in calculating network 

reliability:  connectivity reliability, travel time reliability, within budget time reliability, 

travel demand reduction reliability, travel demand satisfaction reliability, encountered 

reliability and capacity reliability (2013).  Because these measures focus on individual 

links or nodes within specific modes of transportation, they do not give a good measure 

of the entire network capacity and reliability. 

To determine full network capacity reliability, a reserve capacity model and 

network capacity models based on the ultimate capacity and practical utility concepts 

were developed (Chen et al. 2013).  These capacity models are defined below: 

 Reserve capacity is the largest full network O-D matrix multiplier that be 
applied without exceeding individual link capacities or required levels of 
service; 

 Ultimate capacity is the maximum volume a system can process without 
exceeding individual link or zone capacities; 

 Practical capacity is the difference between the O-D that a system can 
handle and the actual O-D demand that is currently occurring (Chen et al. 
2013). 

The research found that application of the ultimate and practical capacity models 

enabled a non-uniform O-D growth, allowing for zonal activity allocation analysis, in 

conjunction with the physical capacity of zonal land use (Chen et al. 2013).  These 

models expand and improve on existing O-D models because non-uniform O-D growth 

more accurately reflects actual growth and use patterns.  As such, network capacity 

reliability is improved. 

Additional literature found that the amount of budget spent on a network 

influences capacity reliability.  Specifically, network capacity reliability is incrementally 

increased to a maximum as more budget is spent on a network to enhance volume and 
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capacity (Yim et al. 2011).  The incremental jumps could occur when smaller links are 

able to significantly expand capacities through relatively simple changes like lane 

additions.  Once right of way is used up, capacity increases can only occur through more 

limited options like improved ITS or by slightly modifying network or road layout.  As 

such, when major budget expenditures have been used up on a link within a network, 

spending more budget, will not improve capacity reliability. 

A third study focused on developing a new capacity model that could be used to 

estimate the throughput of a network so that higher level flow control and demand 

management can be performed (Yang et al. 2000).  This model can be used to forecast 

how much additional capacity a network could handle using the existing infrastructure, 

develop public policies to ensure the network is not overloaded and prepare for 

infrastructure additions or modifications to accommodate additional traffic flows (Yang 

et al. 2000).  Capacity modeling can be a strong transportation planning tool.  This is 

because it can be used to model future flows to develop policies that limit flow growth to 

remain within the capacity and plan for infrastructure improvements and additions.   

Traffic volume accuracy is key to O-D estimation.  Accurate traffic volume 

information enables a better understanding of the route selection between an O-D pair.  It 

has been determined that ITS programs that install detectors at various locations can 

accurately count and then predict traffic volume and flows (Lam et al. 2002).  Research 

has shown a strong correlation between predicted traffic flows determined by formulas 

derived from analyzing actual traffic flows and actual traffic flows observed by counting 

sensors (Lam et al. 2002).  Though not as high, there a correlation between predicted and 

actual travel time (Lam et al. 2002).  The ability to reasonably predict traffic volumes and 
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travel times can be used by transportation planning agencies to modify and maintain their 

infrastructure.  Accurate travel times and traffic volumes can also be used to give 

transportation network users real time information upon which they may react to use the 

network links that provide for the fastest travel time.   

A summary of the O-D related findings contained in the literature review is 

detailed in the table below.  It can be seen that no one study covered all factors and 

variables. 

Table 2.1 Key O-D Demand Finding Summary 

  
 

Canadian researchers studied the impact transport exclusion has on the mobility 

of network users.  Specifically, they looked to determine why O-D demand numbers were 

what they were.  Users would be excluded from transportation if they lacked access to a 

private vehicle or public transportation, did not have the time required to travel, or 

experienced unsafe travel routes (McCray and Brais 2007).  Specifically, these 

researchers focused on women transportation network users and why they did or did not 

travel.  They found that women living in low income communities located away from 

mass transit stations or stops often experienced high levels of transport exclusion, 

resulting in these women moving around minimally within their communities and rarely 
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venturing outside of their local communities (McCray and Brais 2007).  By seeking to 

understand why the women studied used various parts of a transportation network the 

researchers attempted to provide more detail to the O-D demand calculation.  Whereas 

traditional O-D demand can only determine the network volumes, these researchers took 

a step towards identifying why certain areas of a network have high demand or low 

demand.  

Other researchers have also looked at what influences O-D demand.  These 

researchers found that system flexibility through agency ability to add capacity and the 

ability of network users to utilize different paths, as well as, toll pricing impacted the O-

D demand of the network studied (Damnjanovic et al. 2008).  Depending on congestion 

patterns and toll pricing, the O-D demand of a network would change as users attempted 

to find the most efficient and fast travel routes.  The researchers determined that it was 

best transportation management professionals and agency decision makers to limit initial 

capacity, adding capacity after signs of building congestion were detected (Damnjanovic 

et al. 2008) 

2.1.5 Signal Timing and Intersection Geometry 

Two factors that impact the travel time and traffic volume, that are key in 

determining O-D demand, are signal timing and geometry.  Intersection and roadway 

geometry can impact the decision making of drivers and safety of the roadway.  Signal 

timing can significantly influence the O-D demand through negative travels times and 

increased congestion.   

Intersection and roadway geometry consists of the general layout of the roadway.  

Grade changes, both vertically and horizontally, are geometric considerations that can 
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negatively impact the roadway users.  Skewness and site distances impact intersections.  

Layout of minor cross streets and shopping center entrances also impact the overall 

geometry of the adjacent roadways and intersection.  Lane configuration is also a 

geometric factor that influences roadway and intersection design.  Further, it was found 

that typical four way intersections with turning lanes experience more congestion because 

they are negatively impacted by skewness and downgrade (Sando & Moses 2009).  This 

finding supports grid network roadway systems and 90 degree intersection crossings.  

The geometry and layout of shopping center access points and minor cross streets also 

impacts traffic flow.   

It has been determined when planners design roadways with no left turn or 

congested access out of shopping centers or with poorly timed signals at minor cross 

streets, roadway users may opt to take right turns, followed by u-turns in an effort to 

minimize their wait time and travel time (Liu et al. 2007).  Liu et al. also found turning 

right, then making a u-turn to avoid delayed left turns on congested roadways is a 

common practice used by drivers (2007).  Drivers estimate that they will be able to travel 

the extra distance required by these movements faster than the time they will be delayed 

prior to making the intended left turn movement.  Often, reduced travel time does not 

result from the right turn, left turn movement.  In fact, it has been found that performing a 

u-turn results in a longer travel time or delay than waiting to perform a left turn (Liu et al. 

2007).   

Related to roadway and intersection geometry, is overall transportation 

infrastructure design.  Right lanes often show lower saturation rates or vehicle counts 

than middle or left lanes on multiple lane roadways because less aggressive drivers use 
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the right lane and because worse pavement conditions are often present (Perez-Cartagena 

and Tarko 2005).  Another roadway design factor that can impact traffic flow is location 

of bus stops.  Busses stopped on roadways cause traffic to deviate from the right lane to 

continue.  This has the potential to cause congestion.  The longer a bus waits at a stop and 

the closer the stop is to the intersection, the more likely congestion is to occur in and 

around the intersection, potentially impacting the network as a whole (Rahka and Zhang 

2004).   

Signal timing is another major factor that impacts traffic volume and travel time.  

Improperly timed signals have the potential to reduce roadway capacity and increase 

travel time.  Well timed signals have the potential to increase roadway traffic counts and 

reduce travel time.  Regarding turns, it should be noted that protected only phasing causes 

the highest delay to left turning traffic (Asante 1992).  On poorly design left turns, this 

delay can cause vehicles waiting to turn to queue into the mainline vehicular traffic.  

Situations like this are dangerous and can cause congestion and delays in the mainline 

traffic.  It is obvious that poor signal timing can cause delays at the intersection where the 

timing is being used, however, poor signal timing can cause delays in traffic upstream.  In 

fact, upstream delay induced by downstream traffic can be caused by improper offset of 

signal green times (Ahmed et al. 2013).   

Attempts have been made to increase the travel speed and reduce the travel time 

of transit travel options like busses.  In order to expedite bus travel, transit options have 

been given signal priority.  This means that they are allowed to maintain their travel 

speed and route, even if it causes an out of sequence signal cycle.  Creating networks that 

allow for this action can result in some positive and negative effects.  A positive effect is 
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that fast moving bus routes may attract more riders, creating a high O-D demand for the 

stops on the selected route.  Specifically, when selecting bus routes, users choose routes 

that give them the shortest amount of travel time (Goh et al. 2014).  This behavior would 

obviously give bus routes with low travel times higher usage rates than routes with larger 

travel times.  It is somewhat unclear how bus route O-D demands interact with overall 

network O-D demands.  That being said, research has found that giving transit vehicles 

signal priority can cause delay at the intersection and in the overall network, especially, 

as the number of transit vehicles increases (Rahka and Zhang 2004).  It was unclear at 

which level of transit prioritization and individual user accommodation should be 

implemented to minimize travel time and optimize transportation network usage 

efficiency. 

2.2 Social Network Analysis 

This section provides background information on Social Network Analysis.  SNA 

has been in use for at least 100 years (Jasny 2012).  In the mid 1800’s, the first 

mathematical model applied to a social network study was developed, with SNA really 

coming into use in the 1960’s when the first computers were available, then through the 

1970’s where only one or two network properties could be studied using computers, to 

the 1980’s and today when the microcomputer enabled more complex SNA studies 

(Freeman 2006).  SNA has been used to study a wide variety of topics.  SNA has been 

applied to the study of gang violence in Los Angeles, ancient politics and people 

organizations, e-learning environments, the social aspects of the recent Egyptian 

revolution, insects, general communication, child psychology, criminal intelligence and 

terrorism, industrial organization and post war people displacement.  Though frequently 
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associated with social sciences, SNA has evolved into a normal science.  Freeman writes 

that a normal science exists when scientists share a paradigm and work together in a 

systematic effort to advance their field of study (2006).  SNA is a normal science because 

it uses graphs to study and communicate information, uses mathematical tools for 

modeling and uses computers to analyze large amounts of data (Freeman 2006).  SNA 

research is similar to typical research but also very distinct in its research focus and the 

results it produces.  Conventional research focuses on comparing attributes of individual 

components of the study to determine how similar or dissimilar they are, while SNA 

looks at actors to determine how they are embedded within a network, as well as, 

adjacent actors to determine holistic patterns of the entire network (Hanneman and Riddle 

2005).  SNA does this through building a network of actors and their mutual relationships 

as ties or edges (Trier 2008).  Traditional research defines actors by their individual 

uniqueness and/or similarities to other actors.  SNA evaluates individuals and actors in 

regards to their relationships with other actors.  SNA defines actors by their relationships 

and position within a selected network.  The data that SNA collects on the actors and 

relationships studied can be scaled in binary, multiple category, grouped ordinal, full rank 

ordinal, and interval measures of relations (Hanneman and Riddle 2005).  Data collected 

can be input in yes/no, type, grouped ranking number, full ranking number, and scaled 

ranking.  The various data types and scales can then be analyzed to study the makeup of a 

selected social network. 

The decision making of committees has been studied such that it can be 

determined how individuals make decisions.  Some individuals may make decisions 

without as much influence from the overall committee.  However, committees often make 
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decisions that are very similar to the decisions or opinions of individual committee 

members.   Researchers studied whether individuals and the committee would reach the 

same decision given identical data.  Specifically, a committee that determines the interest 

rate for a bank in England was studied.  The correct committee decision was determined 

based on previously developed and verified models.  Researchers found that individually 

and as a committee, decisions varied little from the previous period (Bhattacharjee and 

Holly 2013). Typical committee member relationships had a high strength and high level 

of interaction (Bhattacharjee and Holly 2013).  These findings indicate that there is strong 

and frequent communication amongst the committee members and that upon discussion, 

members generally agree with each other.  Because little change in interest rate occurs 

from month to month it also indicates that the committee has historically made correct 

decisions which only require minor adjustments during the next period. 

Influence of a small sets of nodes can be critical within a social network.  This 

small group of nodes could be considered “power players” within a much larger network.  

They may have a high level of centrality with the ability to positively or negatively 

influence a network.  Researchers have worked to determine the seed node size required 

to influence a selected network.  Though this type of SNA is relatively new, validated the 

use of a model that determined that as the seed size increases, the positive or negative 

influence increases (Li et al. 2014).  Though this is somewhat intuitive, previous research 

has not studied the use or effectiveness of mathematical and technology based models 

when evaluating node or seed influence.  This method is useful because it can evaluate 

the influence of nodes and seed groups quickly and correctly (Li et al. 2014). 
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The interaction of various groups during the development of urban regeneration 

programs in Europe has been studied using SNA.  Generally, it was determined that 

uneven distribution of power and resources impacted the overall planning and program 

decision making process (Bull and Jones 2006).  This indicates that groups in positions of 

power and with greater resources influenced the process more than other, possibly, more 

knowledgeable and useful groups.  Finances, political connections outside of the groups, 

competing interests, uncooperative group members, trust, and ineffective laws often 

created ineffective power balances amongst the groups (Bull and Jones 2006).  These 

causes of power imbalances are somewhat common assumptions which were verified as 

potential causes of power imbalances in this research.   

SNA research has studied which connection configurations are most effective in 

communicating.  One study found that Bi-fan configurations are the most effective 

(Zhang et al. 2013).  Essentially, bi-fan networks are configured in the same manner that 

a one-way street network is configured.  In this setup, communication is directed with 

nodes either receiving or giving communication to the nodes adjacent to their location.  

Transferred to transportation planning, this method indicates that intersections are best 

able to handle traffic flow in two directions only.  Research has also found that nodes 

with strong prior relationships with their neighbors will maintain a strong connection, 

however, strong third party ties may weaken the direct connection strength of two nodes 

because if connecting better with a 3rd node looks attractive, multiple related nodes may 

change their connection focus (Greve et al. 2010).  This would indicate that increasing 

the capacity of an intersection can alter the tie strength and centrality of a network.  For 

example, in a network with major collector streets and intersection along with multiple 
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minor streets and intersections experienced a capacity change at a major intersection area, 

local traffic volumes and intersection tie strengths would change.  The strength of 

adjacent major intersection ties would change, as well as, the strength of the minor 

intersection ties connected to the major intersections.  Depending on the change in 

connection strength with the intersections directly adjacent to the modified intersection, 

the traffic volume (connection strength) of 2nd and 3rd step reach intersection would be 

either pushed to or pulled from the changed intersection. 

SNA of medical relationships and communication structures is a common focus 

of SNA research.  Medical networks and relationships can be quite large in hospitals, 

making understanding them complex and time consuming.  As a result, developing and 

implementing change can be difficult and time consuming.  When implementing change, 

researchers determined that identifying nurses that are central to operations, with high 

levels of influence, are critical for success (Pow et al. 2011).  Essentially change 

champions, these central individuals are very helpful in influencing others to learn and 

adopt changed systems and tools. 

SNA model development can be static or dynamic in nature.  When time is a 

critical component of model development, a dynamic model should be implemented.  A 

static network is a snap shot of an SNA model (Zhou et al. 2011).  A dynamic model 

enables researchers to determine how important nodes came into specific positions and if 

their status is already diminishing (Trier 2008).  In the study of traffic congestion, a 

dynamic model would take into account network congestion and intersection importance 

at any given point in time.  For example, a specific intersection and its edges may be 

studied to determine how and when it becomes congested.  Simply studying the same 
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intersection in a static manner would only consider its state of congestion at a certain 

point in time.  A static SNA study would not consider the traffic conditions before or 

after the study.  If congestion was occurring at the time of the study, the network 

conditions leading to the congestion event, as well as, the conditions leading to a non-

congested state would be unknown.  As such, it would be difficult to determine how to 

mitigate congestion and how to model potential solutions.  One study that focuses on 

social network analysis in coaching evaluated networks and nodes in three functions.  It 

found that SNA can be used in the following manner: 

 Identify the current state of the network to determine how the overall 
network may be changed; 

 Determine which individuals may be need to be evaluated, perform 
evaluations, develop implementation plans, and then carryout the required 
changes; 

 Measure the benefits of modifying or altering individuals, as well as, the 
overall network (Terblanche 2014).   

Though this study focused on a team based social network and improving 

coaching, the finding could be applied to improving transportation networks through 

issue identification, plan development, and measurement of impact the changes had on 

network performance.   

Other SNA research has found that distance and cost of a relationship impact the 

strength of a tie (van den Berg et al. 2012).  Simply put, this means that a tie between two 

nodes that covers a long distance or requires a high cost (effort, time, dollars) to maintain 

will likely have a weaker strength.  Weaker tie strength will result in nodes being 

assigned lower centrality values.  In a transportation network, a rural section of a network 
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would likely carry less traffic than a suburban network, resulting in this part of the overall 

network being less central or critical to network performance. 

SNA applications in traffic congestion are worthy of study because, in general, 

SNA use has not been fully explored (Rodriguez Diaz 2009).  SNA cycles and their 

associated dynamics and structures can become predictive or explanatory during their 

study which enables users to make predictions about future events and aid in influencing 

positive future events (Rodriguez Diaz 2009).  This knowledge is very useful to the 

traffic congestion problem.  Developing a predictive model that aids in predicting future 

congestion in a specific traffic network would be beneficial to network users.  

Developing a SNA model that enables decisions makers to positively influence future 

events would be very beneficial to transportation networks, improving the sustainability 

of a network and society, as a whole.  Developing a social network of intersections and 

roadways could also be integrated with traditional social network studies.  This step of 

linking transportation engineering and planning to the social science of travel patterns has 

not been done before but would be an innovative tool if done and proven successful. 

2.2.1 Social Network Analysis Terms and Definitions 

In SNA, there are many familiar terms with unique definitions.  The terms related 

to traffic congestion and brief definitions are provided below. 

 Nodes – also known as actors are the individuals or organizations that 
make up social networks (Hanneman and Riddle 2005).  In this research, 
intersections are considered nodes. 

 Edges – are the connections or relations between nodes two nodes 
(Hanneman and Riddle 2005).  Roads connecting intersections are 
considered edges during the research. 
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 Adjacent – two nodes are adjacent when they share an edge (Friedkin 
2011). 

 Degree – is the number of nodes adjacent to a selected node (Park et al. 
2011). 

 Path – a sequence of consecutive edges (Loosemore 1998).   

 Closed walk – is a path that can involve the same node or edge multiple 
times but  begins and ends with the same node (Hanneman and Riddle 
2005). 

 Cycle – is a path of three or unique nodes, except for the node that the 
path begins and finishes with (Hanneman and Riddle 2005).  A cycle is 
different than a closed walk in that no edges are repeated and the only 
node that is used more than once is the beginning and ending node.   

 Distance – number of edges that make a path (Loosemore 1998). 

 Density – is the fraction of possible edges within a network (Friedkin 
2011).  A high density indicates that the nodes within a network are well 
connected and that few structural holes are likely to exist.  

 Sparseness – is a low density of nodes in SNA and is a result of budget 
constraints in time or money (Cowan and Jonard 2009).  In addition to 
being applied to nodes, the definition of sparseness can be applied to the 
edges or potential edges within a selected network.   

 Neighborhood – is the  subset of adjacent nodes, for a selected node (Park 
et al. 2011).  The clustering coefficient measures the density of the 
selected neighborhood (Park et al. 2011).   

 Geodesic distance – is the length of the shortest path between two nodes  
(Hanneman and Riddle 2005).   

 Direction – is the source of the connection.  For example, in a two node 
network, one node may perform all of the communication and one node 
receives all communication.  The direction of this network would be one 
way.  Related to direction is the understanding that networks can be 
directed or undirected.  In undirected networks, two nodes are connected 
no matter which one initiates the connection and which receives.  A 
node’s indegree is the number of nodes that that supply relationships to 
that node and a node’s outdegree is the number of nodes that accept 
relationships from that node (Park et al. 2011)  A network of directed 
connections is called a diagraph and defined below.   
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 Diagraphs – is a plot with directed edges (Loosemore 1998).  Directed 
edges indicate which nodes initiate and which nodes receive edges.  In 
diagraphs, edges can indicate that one or both nodes initiates the edge with 
the other.  In transportation congestion research a diagraph would exist if 
both two way and one way streets are part of a particular transportation 
network studied. 

 Faction – is a group of nodes which are more tightly connected to each 
other than members of other factions (Hanneman and Riddle 2005).  In 
transportation networks factions may be different neighborhoods or 
districts within a city or regional area.   

 Structural equivalence – is a measure of how closely a pair of nodes 
within a network have an identical pattern of contacts (Loosemore 1998).  
In transportation networks, complete structural equivalence is very rare 
because many edges are created on a grid layout and most edges do not 
often overlap.   

 Structural fold – situation in which two groups connect and overlap by one 
node (Vedres and Stark 2010).  This situation occurs when two groups 
share one node which serves as the connection point between the groups.  
An equivalent definition in traffic congestion terms would be a connection 
of two neighborhoods, where one shared intersection serves as the 
connection point between the neighborhoods. 

 Structural hole – a gap between two nodes where there is potential for 
beneficial information flow (Buskens and van de Rijt 2008).  A simple 
example of a structural hole in a transportation network is a gap between 
two intersections or road end points caused by a physical obstacle.  
Structural holes should be avoided in traffic networks. 

 Cutpoint – is a node that if removed, would cause a network to be divided 
into un-connected parts (Hanneman and Riddle 2005).  A transportation 
network situation where a cutpoint may exist would be on either side of a 
river bridge crossing.  If either node is removed, the bridge is removed 
from the network, dividing it into un-connected parts. 

 Bridge – is an edge that would cause the network to become un-connected 
if removed (Hanneman and Riddle 2005). 

 Centrality – describes the social power and influence of a node based on 
how well connected the node is (Park et al. 2011).  The measure of a 
node’s centrality is important because it is an indicator of the network 
influence in may have (Ahuja, Galletta and Carey 2003).  Centrality is the 
focus of this research and related analysis. 
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 Eigenvector centrality – an extension of basic centrality in which the 
centrality of a chosen node is proportional to the centralities of all of the 
nodes it is connected to (De Stefano et al. 2011). 

 Betweenness – it is a component of centrality that measures how much a 
selected node is between other points in the network (Loosemore 1998).  It 
can be visualized as the node that has the shortest overall path to all nodes 
in the network.   

 Inertia – nodes tend to repeat ties with former partners (Cowan and Jonard 
2009).  In the study of traffic congestion, knowledge of SNA inertia could 
be used to study why certain paths experience recurring congestion, while 
other paths do not. 

 Skewness – occurs in SNA when new nodes are attached to existing nodes 
with larger degrees, increasing their already larger degree (Cowan and 
Jonard 2009).  Skewness could be analyzed in transportation networks to 
determine if potential modifications or additions will balance or 
potentially overload a portion of the network. 

 Asymmetry – related to skewness, asymmetry is a situation in which most 
nodes have a smaller degree than the average, with a few nodes having 
many more than the average (Cowan and Jonard 2009). 

 Small world network – it is a network with dense local clustering and 
short network distances (De Stefano et al. 2011).  In SNA, small world 
network has short path lengths, creating a dynamic situation, with quick 
information flows, behavioral transfers and behavior coordination 
(Friedkin 2011).  A simple example of this in transportation congestion is 
an extremely congestion intersection where the adjacent intersections 
quickly experience increased congestion due to diverting network users.   

 

2.2.2 Social Network Analysis Applications Relevant to Traffic Congestion 

The literature review also determined there located several published study 

findings that are relevant to this research.  They are relevant because they are a blend of 

SNA and psychology.  This blend is helpful in attempting to improve traffic congestion 

as network performance is measured while individual decisions impact the performance. 
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Vaisey and Lizardo conducted a SNA in which they determined that network 

characteristics are likely to stay the same once they are established (2010).  Their study 

also determined that prior network behavior is a good predictor of future network 

composition (Vaisey and Lizardo 2010).   Using these findings one could predict future 

network behavior based on previous and consistent network behavior.  Knowing that the 

past, current and future network behaviors will be consistent, means it can be assumed 

that networks behavior is commonly stable with small fluctuations and change.  Any 

change that may occur would be incremental. 

Related to the findings of Vaisey and Lizardo, Jones et al determined that network 

exchanges are not random or uniform, but patterned based on division (1997).  Their 

findings indicate that nodes within a network interact in patterned ways.  It also indicates 

that nodes interact with, and therefore, affect like nodes.  For example, in studying traffic 

networks of arterial streets, major intersections will be most defined by the other major 

intersections they interact with.  Major intersections will also be most affected by other, 

similar, major intersections.  When planning for a new intersection or transportation 

network modification, this understanding can be used to help determine what new work 

or modification should take place, as well as, how this change will impact the network 

and various specific nodes.  

Another study with applicable results is one in which negative interactions were 

found to disproportionately affect the studied variables (Labianca and Brass 2006).  This 

finding can be related to traffic congestion in which reliability is a major factor in 

commuters choosing travel routes.  A negative traffic congestion interaction that may 

affect travel route selection is time variability which leads to delayed and late destination 
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arrival times.  Transportation network users view late arrivals negatively, even if they 

occur relatively infrequently.  To avoid this negative result, they will often select the 

travel routes with the most consistent travel times, even if it takes a little longer.  Routes 

that are perceived to have a tendency towards unplanned delays, and negative outcomes, 

will not be selected. 

2.3 Social Network Analysis Applications in Civil Engineering 

The use of SNA in civil engineering has not been in practice for a long period of 

time.  SNA has been used in civil engineering applications for about the last 20 years.  

Typical SNA uses in civil engineering are similar to SNA uses in other disciplines, 

focusing on the relationship makeup of individual people and organizations.   

Chinowsky et al. used SNA methods in studying project effectiveness.  They 

introduce the Project Network Interdependency Alignment (PNIA) model which 

evaluates the actual project stakeholder knowledge exchange against the knowledge 

exchange requirements of each task relationship (Chinowsky et al. 2011).  The 

development of a PNIA model consists of three steps.  The first step involves collecting 

communication and knowledge exchange data, the second involves evaluating the 

interdependency of each pair of tasks in the project schedule and the third involves 

analyzing how well the SNA model and PNIA model align (Chinowsky et al. 2011).  The 

PNIA model translated to traffic congestion mitigation efforts would evaluate the actual 

traffic volume against the required traffic volume for each pair of intersections.  The 

three steps required to do this would be collecting actual and required traffic volumes, 

evaluating the interdependency of each pair of intersections and analyzing how well the 

SNA model and PNIA model align when applying them to traffic congestion mitigation 
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functions.  The PNIA model was effectively used by Chinowsky et al. to identify 

potential stakeholder disconnects and to demonstrate that inappropriate or misaligned 

communication can cause miscommunication and project delays (2011).  Applied to 

traffic congestion mitigation a similar model may be able to identify potential 

mismatches in planned versus actual traffic volumes and the resulting traffic delays. 

Another civil engineering related SNA study focused on the collaborative 

ventures of corporations.  In this study, individuals, or nodes, were defined as different 

corporations.  Focusing on Korean firms, the SNA of the study determined that large 

companies experience more profit by broadly strengthening their overall network while 

small and medium sized companies experience more profit by focusing on building 

relationships with a few strategically selected large companies (Park et al. 2011).  The 

study also verified that company performance is strongly related to company makeup at 

the corporate level and not related to individual project performance (Park et al. 2011).  

Key SNA factors analyzed in developing the study findings were density, direct and 

indirect ties, indegree and outdegree, as well as, degree centrality, betweenness centrality 

and closeness centrality (Park et al. 2011). 

Two studies focused on the social network of individual projects.  Wambeke et al. 

focus on the social network of the different construction trades involved with a project 

while Chinowsky et al. focus on the social network of different construction management 

individuals.  Through their study, Wambeke et al. identified mechanical, electrical and 

drywall subcontractors as the key trades on a construction project (2012).  Second 

eigenvector analysis was used to determine key trades, with number of tasks the 

determining factor.  In their study, Chinowsky et al. indentified several team attributes 
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which lead to poor project performance.  The attributes identified for combining to cause 

poor team performance are over centralized decision making, lack of knowledge and 

information, lack of trust and isolated individuals (Chinowsky et al. 2008).   

It has been determined that certain project types facilitate strong social networks 

(Ruan et al. 2012).  Specifically, collaborative project methods typically utilized in 

alternative project delivery methods improve project collaboration and social network 

strength.  Construction research regarding SNA has evaluated the best way to 

communicate to improve safety.  For example, depending on the demographics of 

individuals, certain communication methods work more effectively and build stronger 

relationships (Carlan et al. 2012).  Specifically, SNA methods can be used to create high 

performance teams and effective stakeholder management which are the two most critical 

factors to project success (Mohan and Paila 2013).  Transferred to SNA of transportation 

networks, this could match with the fact that different intersections can handle different 

types and volumes of traffic than others, managing selected intersections in conjunction 

with nearby intersections, and other related variables are critical to overall transportation 

planning and management.   

2.4 Network Analysis and SNA Applications in Transportation Planning 

SNA is increasingly being used to evaluate the social networks that utilize 

transportation networks.  Research has begun to examine what social networks utilize 

certain transportation methods and networks and why.  Social networks have been 

studied so that the social welfare of the traveling population, often focusing on 

disadvantaged people, can be maximized. 
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Two related studies indirectly apply SNA techniques in developing methods to 

mitigate traffic congestion.  One study determined that increasing link redundancy and 

reducing link length are possible traffic congestion mitigation solutions (Jenelius 2009).  

This study did not study the cost associated with these alternatives.  As such, the best 

alternative could not be determined.  A second study evaluated the cost of improving a 

transportation network against the cost to build a loop around a congested city.  The 

findings of this study determined that travel hours would decrease the most and require 

the least amount of money to implement by improving the existing travel network 

(Antipova and Wilmot 2012).  Based on these findings, an SNA model that evaluates an 

existing transportation network to determine exact locations for improvements would 

likely be cost and travel time effective. 

Researchers in Italy have compared SNA measures of connectivity with more 

traditional methods of transportation planning measurements.  This research found the 

following SNA centrality measure correlations: 

1. In general transportation accessibility and centrality measures evaluate the 
same data from different perspectives; 

2. Accessibility is strongly correlated with closeness centrality; 

3. Place rank of intersections gives results that are similar to running 
betweenness centrality analysis; 

4. Similar to eigenvector centrality, researchers determined that a zone is 
more accessible and central if it is linked with other important and well 
connected zones (Rubulotta et al. 2013).   

Taylor performed a type of network analysis that is similar to SNA but focused on 

network vulnerability.  Specifically, he attempted to identify vulnerable network points 

which would cause major network delays if problems occurred in their area (Taylor 
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2008).  High traffic areas were found to be points of focus and points of vulnerability in a 

similar study (Murray et al. 2008).  These high traffic areas could be considered central 

based on the higher than average traffic they receive.  The vulnerable points in both of 

the studies discussed roughly match the central points in a social network.  One 

researcher studied the use of online social networks in transportation planning.  Several 

advantages and disadvantages were determine.  For example, several ethical and legal 

concerns regarding the collection of information, most specifically, related to 

discrimination (Salkin 2011).  Positive attributes of using online social networks is 

generally greater overall participation in studies and real time data collection (Salkin 

2011).   

Related to this finding is that certain people may fill specific or multiple roles 

within a specific social network (Green 2007).  When applied to roadway networks, this 

finding indicates that some nodes or intersections may fulfill one or more role within the 

network.  For example, some intersections may only take collector street traffic, whereas, 

others may take collector street traffic in two directions and neighborhood traffic in two 

other directions.   

In evaluating how social networks of individuals may impact travel patterns, 

researchers studied elderly and handicapped people.  Research indicates that elderly 

people travel mainly for social functions (Jansuwan et al. 2013).  In areas with a high 

elderly person demographic, it would be likely that the transportation social network 

would likely be similar to the overall social network of the population in the area.  It was 

also determined that the strength of the social network for handicapped people, which 

aided them with their transportation needs, was a strong indicator of how mobile these 
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people were (Jansuwan et al. 2013).  Using social network analysis to study the travel 

patterns of the handicapped individuals and the people that aided them would possibly 

result in centrality measures that are similar to the actual social network of these 

individuals. 

In related research, in person social networks were compared to online social 

networks.  Specifically, offline social networks and health were studied for comparison to 

online social networks.  Based on an extensive review of existing research, it has been 

proposed that online social networks can be a valuable tool in evaluating a person’s 

health factors and could possibly be used to develop intervention and treatment plans 

(Durst et al. 2013).  This proposed finding indicates that online networks appear to mirror 

or reinforce offline relationships and networks (Durst et al 2013).  Applied to 

transportation planning, this development would indicate that social networks of 

individual transportation network users would likely mirror their frequent travel paths 

and patterns.  Individual social networks could be drivers of O-D demand calculations 

and analyses.   

The social network of the public individuals and agencies involved in 

transportation network planning has been studied.  Researchers studied two Canadian 

communities that participated in pilot Municipal Sustainability Planning (MSP) 

programs.  Through their studies, researchers found that MSP programs helped 

communities plan in a more sustainable manner (Calder and Beckie 2011).  This was 

accomplished through increased communication and engagement methods where MSP 

leaders tapped into and strengthened existing social networks, while also adding several 

beneficial weak ties which enabled them to share information about the MSP programs in 
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a more widespread manner.  (Calder and Beckie 2011).  In the previous research, the 

main function of social network analysis was to create a more complete and holistic 

network to facilitate more sound and sustainable decisions.  This method could be 

expanded to social network analysis of the complete network such that all people, 

agencies, companies, roadway intersections, bus stops, etc. are incorporated into the 

decision making process such that the most complete and sustainable decisions are made 

every time. 

In transportation planning, network analysis is a commonly performed function.  

One particular study focused on the different scale and location of subway and railway 

transportation networks.  Thought somewhat intuitive, the authors determined that 

railway stations are located at much greater intervals and over a much larger area than 

subway stations (Louf et al. 2014).  The authors worked to determine if there is a 

correlation between Gross Domestic Product (GDP) and/or Gross Metropolitan Product 

(GMP) and the number of and distance between railway and subway stations.  They 

found that as GMP and GDP increased, the length and number of stations generally 

increased for both railway and subway systems (Louf et al. 2014).  These results mean 

that more densely populated and/or more wealthy areas are likely to have more developed 

railway and subway networks. 

Similarly to traditional social network analysis, it was determined that most 

related research in civil engineering and construction focused on the literal social 

interactions of individuals.  As such, social network analysis has been applied to 

interactions between individual people and individual companies (in actor roles) in civil 

engineering and construction.  However, no attempts were made in which the network’s 
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main actors were not people or organizations controlled by people. Thus, applying this 

tool to transportation congestion where the actors are intersections is a new and 

innovative research focus worthy of more in depth study.  Results derived from each of 

these studies could be effectively used to study more projects to improve performance.  

The models applications.  Just as key attributes, functions and individuals were 

determined for these studies, similar determinations developed could potentially be used 

in traffic congestion mitigation could be made for SNA use in traffic congestion 

mitigation  
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CHAPTER III 

METHODOLOGY 

3.1 Case Study Selection 

A total of five case studies were utilized for this research.  These studies are 

located in the Southern United States.  Specifically, these studies are located in Louisiana 

and Mississippi.  Four are located within established within individual city limits while 

one study encompass three cities that are separated by brief rural sections.  Studies from 

the following locations were utilized: 

 Case Study 1 

o Location – Baton Rouge, LA 

o Agency with Jurisdiction – Louisiana Department of 
Transportation and Development 

o Description – Continuous Flow Intersection located at Siegen Lane 
and Airline Highway.  This intersection is located in suburban 
Baton Rouge. 

 Case Study 2 

o Location – New Orleans, LA 

o Agency with Jurisdiction – Regional Planning Commission for 
Jefferson, Orleans, Plaquemines, St. Bernard, St. Tammany, and 
Tangipahoa Parishes. 

o Description – Study of Tulane Avenue corridor from Carrolton 
Avenue to Interstate Highway 10.  This study focused on urban 
street networks in New Orleans, LA. 

 Case Study 3 
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o Location – Shreveport, LA 

o Agency with Jurisdiction – Shreveport, LA Traffic Engineering 
Department 

o Description – Intersections utilized were located in urban 
Shreveport.  Ranking of the Traffic Engineering Department’s Top 
50 Intersections by volume was compared to centrality 
calculations. 

 Case Study 4 

o Location – Jackson, MS 

o Agency with Jurisdiction – Mississippi Department of 
Transportation 

o Description – Study utilized intersections in urban Jackson, 
focusing on the area inside I-20, I-220, and I-55.   

 Case Study 5 

o Location – Gulfport, Biloxi, and Pascagoula, MS 

o Agency with Jurisdiction – Mississippi Department of 
Transportation 

o Description – Intersections located in and around the Mississippi 
Gulf Coast cities of Gulfport, Biloxi, and Pascagoula, MS were 
utilized for this study.  
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Figure 3.1 details the location of the five case studies utilized in the research. 

 

Figure 3.1 Overall Case Study Location Map 

 

The study locations were selected because existing traffic count data was easily 

accessible and they are well traveled areas.  The locations represent a diverse set of 

transportation networks.  Three locations are within metropolitan areas whose total 

population is less than 1,000,000 people.  One location has a metropolitan population 

over 1,000,000 people.  A final location encompasses three cities with individual 

populations of less than 100,000 and an overall population of less than 500,000 people in 

the metropolitan area.  This location is unique in that it serves a large tourist population 

for much of the year. 
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3.2 SNA Use and Implementation 

3.2.1 Traffic Volume and Connection Strength 

The associated traffic volumes between connected nodes were used to describe 

the strength of the connection.  The higher the traffic count is between two nodes, the 

stronger is the connection.  To evaluate the social makeup of the intersection network, 

traffic volume data was entered into a social network analysis program.  The connection 

strength of two intersections was considered equal to the traffic volume between the same 

two intersections.  For example, if there is a traffic count of 15,000 between intersection 

A and B, the connection strength would be 15,000 for the purposes of this research.  

Traffic counts can vary in different directions which could give different connection 

strengths into or out of an intersection.  That being said, the data that was available for 

this research was not directed traffic counts.  Only the combined traffic count for each 

direction of traffic was utilized for this research as connection strengths.   

Centrality was calculated using multiple functions within the Unicet 6 social 

network analysis software.  Essentially, each type of centrality quantitatively measures 

the power or importance of a chosen node.  Relative to transportation planning, a central 

intersection should be one that is given more focus to maintain consistent and non-

extended travel time.  Performance of central intersections drives the overall performance 

of the area roadway network.  For instance, if an intersection that is central to the network 

is improved, the overall travel time will improve.  However, if a non-central intersection 

is improved, the network will likely see little improvement in reducing travel time and 

travel time variability.  To determine which intersections are most important for this 

research, four types of centrality were analyzed.  They are defined below: 
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 Bonacich Power – a degree centrality measure that determines node 
centrality based on the degree centrality and power of adjacent nodes 
(Borgatti et al. 2002).  Having connections with high numbers of 
connections results in a high centrality value.  High levels of power is 
associated with being connected to nodes with few other connections 
(Borgatti et al. 2002).  A node could have a high Bonacich power by being 
connected to both nodes with high or low numbers of additional 
connections.  For this study, power could be achieved by an intersection 
that is connected to an intersection with low volumes of traffic.  Higher 
centrality values could be achieved by an intersection that is connected to 
other intersections with high volumes of traffic.  

 2 Step Reach – determines centrality by summing the number of other 
nodes within 2 steps/links of a particular node (Borgatti et al. 2002).  This 
is calculation is performed by simply counting the number of additional 
nodes that may be reached by traveling two links from the focus node.  
Nodes on the perimeter of a network will struggle to reach high values 
while nodes that are more central to the network will more easily derive 
higher 2 step reach values.  For this study, 2 step reach is calculated by 
selecting an intersection and then counting how many other intersections 
are within two links from the selected intersection. 

 Eigenvector – a closeness centrality measure that determines node 
centrality based on the closeness centrality of adjacent nodes (Borgatti et 
al. 2002).  Closeness centrality is calculated by determining how many 
connections are required to connect a selected node to all other nodes.  
Based on how many connections are required, a weighted value is 
assigned to each node.  In this study, closeness centrality is a function of 
how many intersections lie between any two selected intersections. 

 Betweeness – a value to determine how central/between other nodes 
within the studied network a particular node is.  Nodes with a value of 
zero are on the edge or periphery of the network (Borgatti et al. 2002).  In 
a transportation network, assuming similar traffic volumes, intersections 
located on a loop roadway would have a lower betweeness measures than 
intersections located on a roadway that goes through the center of the city 
and connects many other roadways in the process. 

Centrality analysis for each of the aforementioned attributes was calculated 

individually and compiled in a spreadsheet comparison chart.  Analysis was also 

performed using images.  Diagrams for Eigenvector and Betweeness Centrality with node 

size scaled based on these measures, were analyzed to gain a better understanding of 
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where the “central” nodes were located.  Strength of nodes and clusters can be easily 

determined using network images. Details for each step of the research are described 

below.  Specifics on the centrality measures are provided in the results and analysis 

section of this work, as well as, the Appendices.   

The steps required to perform social network analysis as part of this research are 

detailed below. 

1. Gather Traffic Count and/or Case Study Data 

a. Traffic counts from existing data sources were located and utilized 
for this research.   

b. Where possible, traffic count data that was associated with a 
previous case study was utilized.  This enabled a more complete 
analysis and comparison to current transportation planning 
analyses.   

2. Label Key Intersections in the Traffic Count or Study Area 

a. Utilizing Google Earth, key intersections were labeled such that 
they could be tracked and input into Unicet (Social Network 
Analysis software).   

b. Key intersections in this research were those that are located on 
major surface streets.  In rare occasions, residential or rural 
roadways that intersected with major intersections were considered 
key and utilized for this research.  Where there was a great 
distance between major intersections or these minor roadways 
carried exceptionally large traffic volumes, there were labeled and 
included in the Social Network Analysis study.  This was done so 
as to not create any gaps or holes in the network. 

3. Label Roadway Links with Traffic Counts 

a. Traffic count data was utilized to label the roadways between the 
already labeled intersections.   

b. Traffic count numbers were the strength of connection between 
two adjacent intersections.  The higher the traffic count, the greater 
the strength of connection between two intersections. 

4. Input Traffic Count Information into Unicet Spreadsheet 
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a. In this step, a matrix spreadsheet was created in Unicet where 
every intersection node was input on both the X and Y axis.  
Traffic counts were then input into the two cells that corresponded 
intersection connections.  These spreadsheets can be reviewed in 
the Appendices of this work.  

b. For example, if intersection A was connected to intersection B 
with a traffic count of 1,000, the strength of connection input into 
cell A-B and B-A was 1,000.  This theory was repeated for each 
connection in each case study until complete networks were setup 
in Unicet.  See Figure 3.2. 

 

Figure 3.2 Unicet Data Input Screen Shot 

 

5. Run Unicet Analysis for the Four Centrality Factors 

a. During this step, Unicet was utilized to run Bonacich Power, 2 
Step Reach, Eigenvector, and Betweeness Centrality measures.   

b. Each report was saved for later use. 

c. Raw numerical data was exported to Excel so that rankings could 
quickly and accurately be made. 

6. Run NetDraw to Develop Network Diagrams 



 

54 

a. NetDraw, which is graphical function within the Unicet software, 
was run for Eigenvector and Betweeness Centrality for each case 
study.   

b. The diagrams generated were saved for later use. 

7. Use Diagrams to Visually Verify that Holes or Extra Links are Included 

a. Holes (missing connections/links) and extra connections/links, if 
any, were identified.   

b. If any were identified, revisions to the base data set were carried 
out to ensure a complete and 100% accurate model was created.   

c. This step was repeated until a complete and accurate base data set 
was created. 

8. Organize “Top Ten” Ranking Intersections in Each Centrality Measure in 
Tables 

a. For each centrality measure, the “Top 10” ranking intersections 
were identified.   

b. These intersections were ranked in descending order.  For each 
case study, the “Top 10” intersections for each centrality measure 
were ranked and then compiled in a summary table. 

9. Analyze Tables and Diagrams to Determine Which Intersections are the 
Most Central to the Case Study Area 

a. Trends amongst the ranked intersections were identified.  The 
Social Network Analysis Flow Chart below summarizes the steps 
taken to gather traffic data and analyze it using centrality measures 
derived through social network analysis.   
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Figure 3.3 Social Network Analysis Flow Chart 

 

3.2.2 Case Study 1 

The first case study was based on a continuous flow intersection (CFI) in Baton 

Rouge, LA.  CFI’s maintain “continuous” flow by allowing left turn and through traffic 

movements of perpendicular streets to occur at the same time.  CFI’s allow left turn 

traffic to cross over on-coming traffic while perpendicular traffic of a cross street is 

allowed to proceed through.  Once left turn traffic has been given time to cross over to 

the left side of opposing traffic lanes, the signals are changed, allowing opposing traffic 

to proceed while also allowing left turns to take place unimpeded.  This is because left 

turn traffic has already moved to the left of on-coming traffic.  The data for this study is 

focused around the intersection of US 61 (Airline Highway) and LA 3246 (Siegen Lane). 

Data was obtained from a study that evaluated the change from a typical four leg 

signalized intersection where each approach consisted of two through lanes, two left turn 

lanes and a dedicated right turn lane to a continuous flow intersection (CFI) (LADOTD 

2007). Figure 3.4 details the location, intersections included and numbering system 

utilized in analyzing the first case study. This specific location was selected because of 
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the abundance of traffic count data for intersections located within the “neighborhood” of 

this intersection.   

 

Figure 3.4 Baton Rouge Transportation Network Map – CFI Study 

 

Based on traffic congestion information provided in the LADOTD report, the 

model development process involved identifying 35 nodes or intersections, which would 

have traffic volumes studied. 

3.2.3 Case Study 2 

The second case study involved the Tulane Avenue Feasibility project in New 

Orleans, LA (Regional Planning Commission 2011). This project represents a pre-

construction/change study, and though does not have before and after information, it 

involved abundant data about the local network for the intersection as well as associated 

businesses and stakeholders.  The related network map was plotted in a manner similar to 
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case study 1. Similar analysis to the one described for the first case study was also 

conducted for the second case study.  Figure 3.5 diagrams the area and layout of the 

intersections utilized.   

 

Figure 3.5 New Orleans Network Map & Layout 

 

3.2.4 Case Study 3 

The third case study analyzed traffic data in Shreveport, LA.  The traffic 

engineering department of Shreveport, LA posts annual traffic counts in a report.  This 

report also lists the intersections with the highest traffic volume.  For the purposes of this 

research, the traffic counts for various roadways was used.  Intersections which were 

ranked in the Shreveport traffic report were labeled with their rank.  Intersections not 

ranked in the annual traffic counts report but used in this case study were labeled with 

letters to differentiate between city ranked intersections and other intersections used for 
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research purposes.  Figure 3.6 details the layout of the intersections and the area utilized 

for this study.   

 

Figure 3.6 Shreveport Network Map & Layout 

 

3.2.5 Case Study 4 

The fourth case study focused on “principal arterial” streets in Jackson, MS.  This 

classification and the associated traffic counts are provided on the Central Mississippi 

Planning and Development District website.  The principal arterial streets used in the 

research were located in the I-220, I-55, and I-20 triangle within the City of Jackson.  

This was done to minimize the potential for distortion or shadow that an interstate 

roadway can cause when analyzing the centrality of roadway networks.  A total of 56 

nodes were included in this study.  Figure 3.7 provides a map of the area within I-220, I-

55, and I-20 that was utilized for this study.  
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Figure 3.7 Jackson Network Map & Layout 

 

3.2.6 Case Study 5 

The fifth case study analyzed traffic data in the Biloxi, Gulfport, and Pascagoula 

metropolitan area.  Of the case studies performed, this area included the most rural 

roadways.  It was also adjacent to a popular beach and port area with the full network 

extending inland to rural areas.  A total of 118 nodes located in these three cities and 

inland rural areas were included in this case study.  Figure 3.8 details the Gulfport, 

Biloxi, and Pascagoula areas that were utilized for this study.   
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Figure 3.8 Mississippi Gulf Coast Network Map & Layout 
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CHAPTER IV 

RESULTS AND ANALYSIS 

4.1 Case Study 1 – Baton Rouge Data Output 

The centrality measures derived from the data generated for the CFI in Baton 

Rouge are detailed in the Unicet output below (Table 4.1).  In each centrality measure, a 

larger number indicates that it has a higher centrality measure and is more central to the 

overall network studied.   

Table 4.1 Centrality Measures for All Nodes in Baton Rouge CFI Study 

MULTIPLE CENTRALITY MEASURES 

-------------------------------------------------------------------------------- 
Input dataset:                           Baton Rouge Base File (C:\School\Unicet\Baton Rouge 

Base File) 
Output dataset:                       Baton Rouge Measures for Dissertation (C:\Program Files 

(x86)\Analytic Technologies\Baton Rouge Measures for 
Dissertation) 

Treat data as:                          Undirected 
Type of scores to output:       Raw scores 
Value of Beta was:                  0.293685016030104 
Principal eigenvalue was:     3.38798352081216 
Centrality Measures 

1  2  3  4 
BonPwr   2Step   Eigenvec   Between 
--------   --------   --------   -------- 

     1    136.235     5.000     0.041    35.333 
     2    224.911    9.000     0.069    69.767 
     3    123.146     7.000     0.037    43.467 
     4     50.346     5.000     0.014    13.000 
     5     84.063    6.000     0.025    31.000 
     6    237.952     9.000     0.073    101.867 
     7    315.894     8.000     0.100    91.000 
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Table 4.1 (continued) 

BonPwr   2Step   Eigenvec   Between 
     8    733.681     9.000     0.235    91.133 
     9    133.840     6.000     0.041    24.100 
    10    325.770    10.000     0.102    88.500 
    11    727.242    13.000     0.230    180.767 
    12    496.230    10.000     0.156    128.450 
    13    588.590     8.000     0.187    17.550 
    14    730.549     9.000     0.233    59.100 
    15    361.482     6.000     0.115     7.333 
    16    493.491     7.000     0.158    30.667 
    17    987.690    13.000     0.316    87.400 
    18   1052.056    12.000     0.337    159.017 
    19   1120.027    10.000     0.360    154.833 
    20   1073.376    11.000     0.345    59.883 
    21    592.548    9.000     0.190    31.100 
    22    613.088    10.000     0.196    87.133 
    23    359.379     7.000     0.114    66.667 
    24    940.968    10.000     0.302    139.067 
    25    41.010     3.000     0.012     0.000 
    26    187.745    6.000     0.058    24.600 
    27    70.883    4.000     0.022     0.000 
    28    93.773     3.000     0.029     0.000 
    29    536.147     8.000     0.170    34.067 
    30    320.954     6.000     0.103    12.000 
    31    181.055     4.000     0.058     0.000 
    32    106.544     4.000     0.034     0.000 
    33    106.544     4.000     0.034     0.000 
    34    383.892     7.000     0.123    35.200 
    35    41.474     4.000     0.012    13.000 
---------------------------------------- 
Running time:  00:00:01 
Output generated:  07 Feb 15 14:27:17 
UCINET 6.501 Copyright (c) 1992-2012 Analytic Technologies 

4.1.1 Case Study 1 – General Discussion 

As noted in the Chapter 3, the data above was exported to Excel which enabled a 

quick and accurate ranking for each node in each centrality measure.  Though each node 

can be ranked from top to bottom for each centrality measure studied, the highest ranking 

nodes are most critical for this research.  As such, a “Top Ten” list of intersections for 
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each measure was generated.  This ranking is detailed in Table 4.2.  For this study, node 

11 and node 19 each ranked number one in two of the centrality measures.  As shown in 

Figure 3.3, Node 11 was the CFI intersection of US 61 (Airline Highway) and LA 3246 

(Siegen Lane). Interestingly, the traffic volume at the intersection represented by node 11 

increased after construction of the CFI, as reported in the case study. This result indicates 

that this intersection is central to the network studied, aligning with the general findings 

of the social network analyses. As such, this intersection is critical to the overall level of 

traffic congestion within its network. For instance, in a more restricted state, prior to 

constructing the CFI, the intersection was more congested with higher delay times and 

reduced traffic volume. As a result, the other intersections within the network had to 

carry higher traffic volumes and likely higher congestion. Upon construction completion, 

the CFI carried a higher traffic volume with reduced congestion delay times. The 

congestion of this intersection was reduced while also improving the traffic volume it can 

handle. This change likely reduced the traffic volume at other intersections within the 

network, reducing the overall congestion delays within the network.  This ability makes 

node 11 central and very important to the congestion of the overall network.  

Node 19 was ranked first in two centrality measures and highest overall.  In 

addressing the high overall centrality measure rankings of node 19, these indicate that it 

is an important intersection within the overall network.  This social network analysis tool 

can be used to identify intersections which may require additional study and potential 

redesign or reconstruction to improve the network as a whole. 

Interestingly, the Bonacich Power and Eigenvector Centrality rankings are 

identical for the Top Ten ranked nodes.  As Bonacich Power incorporates power into its 
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calculation, this finding is a good indicator that the “Top Ten” intersections are both 

central and powerful meaning they are critical pieces of the overall network, whereby any 

changes to them would impact the greater network.  These factors match but rank the 

intersections differently than 2 Step Reach and Betweeness because node 19 and other 

nodes are located on the edge or towards the periphery of the network.  Generally, low 2 

Step Reach and Betweeness values will be realized by intersections located on the 

outskirts of the network.  

Table 4.2 Centrality Measures Summary and Rankings by Node for First Case Study 

 Bonacich Power 2 Step Reach Eigenvector Betweeness 

Rank Unicet 
Value Node Unicet 

Value Node Unicet 
Value Node Unicet 

Value Node 

1 1,120.03 19 13.00 11 0.36 19 180.77 11 
2 1,073.38 20 13.00 17 0.34 20 159.02 18 
3 1,052.06 18 12.00 18 0.34 18 154.83 19 
4 987.69 17 11.00 20 0.32 17 139.07 24 
5 940.97 24 10.00 10 0.30 24 128.45 12 
6 733.68 8 10.00 12 0.23 8 101.87 6 
7 730.55 14 10.00 19 0.23 14 91.13 8 
8 727.24 11 10.00 22 0.23 11 91.00 7 
9 613.09 22 10.00 24 0.20 22 88.50 10 
10 592.55 21 9.00 2 0.19 21 87.40 17 

 

4.1.2 Case Study 1 – Betweeness Centrality 

The Betweeness centrality is shown in Table 4.2 where the “Top Ten” most 

central (i.e. important and powerful) nodes as determined by four different measures are 

detailed.  It is interesting to note that node 19 was highly ranked in two different 

measures - that based part of the centrality calculation on the centrality of each node 
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connections - even though it was towards the edge of the network.  In addition, node 11 is 

shown as the largest node in the network in the Betweeness diagram.  It clearly shows 

that node 11 has the highest Betweeness centrality in the network.  Reviewing the 

network Betweeness centrality diagram also shows that node 11 is not in the center of the 

network.  There are roughly 15 nodes to the right of node 11 and 19 nodes to the left of 

node 11, indicating that the network may not be totally balanced on either side of it.  

However, using Betweeness centrality indicates that this node is “between” all other 

nodes and the node with the highest centrality in the network.  Figure 4.1 depicts the 

layout and Betweeness centrality this case study. 

 

Figure 4.1 Network Betweeness Centrality Diagram for First Case Study 

 

4.1.3 Case Study 1 – Eigenvector Centrality 

When computing the Eigenvector centrality of the case study 1 network, it was 

determined that node 19 had the highest Eigenvector centrality value and was most 
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central to the network.  When trying to understand why this result occurred, it was 

determined that the connections had much higher values than connections located on the 

other side of the network.  This was especially true of edges located on the perimeter of 

the network.  Typically, perimeter connections often have lower values which is true for 

many of the perimeter connections located towards the east perimeter of this network.  

However, many of the connections located on or near the west perimeter of this network 

maintained high values.  Thus, node 19 was assigned the highest Eigenvector centrality 

measure.  See Figure 4.2 for details. 

 

Figure 4.2 Eigenvector Centrality Diagram for First Case Study 

 

4.1.4 Case Study 1 – Bonacich Power 

When computing Bonachich Power centrality, which is an indicator of how well a 

node’s connections are connected, matches Eigenvector centrality for the “Top Ten” 

ranking nodes (Table 4.2).  Each of the “Top Ten” nodes was ranked in the same position 
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for these centrality measures.  Given that Bonacich Power and Eigenvector centrality 

consider the centrality of nearby nodes when determining overall centrality measures, this 

is a strong indication that the “Top Ten” nodes, as ranked by these measures are central 

to this network 

4.1.5 Case Study 1 – 2 Step Reach 

The 2 Step Reach centrality measure ranked node 11 as the most central in the 

network.  This centrality measure counts how many nodes are within two connections of 

the selected node.  It is similar to Betweeness centrality in that nodes on the perimeter of 

the network will have lower centrality measures.  As such, it had a similar overall node 

ranking with the “Top Ten” including seven of the same nodes. 

4.2 Case Study 2 – New Orleans Data Output 

The centrality measures derived from the data generated for the Tulane Avenue 

Feasibility Study in New Orleans are detailed in the Unicet output below (Table 4.3).   
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Table 4.3 Centrality Measures for All Nodes in New Orleans Tulane Avenue 
Feasibility Study 

MULTIPLE CENTRALITY MEASURES 
-------------------------------------------------------------------------------- 

Input dataset:                          New Orleans Data Set (C:\School\Dissertation\Unicet Data 
and Models\New Orleans Data Set) 

Output dataset:                      New Orleans Data Output (C:\School\Dissertation\Unicet 
Data and Models\New Orleans Data Output) 

Treat data as:                        Undirected 
Type of scores to output:       Raw scores 
Value of Beta was:               0.2815029323096 
Principal eigenvalue was:     3.53459902106683 
Centrality Measures 

1  2  3  4 
          BonPwr     2Step   Eigenvec   Between 

--------   --------   --------   -------- 
     1   1102.112    12.000     0.254    381.965 
     2   1147.531    12.000     0.265    424.121 
     3    947.090    11.000     0.217    189.636 
     4    740.506    10.000     0.170    166.615 
     5    999.950    11.000     0.231    293.816 
     6    916.050    10.000     0.212    154.278 
     7    672.847    13.000     0.153    496.771 
     8    757.437    11.000     0.173    248.568 
     9    750.140    12.000     0.171    182.354 
    10    283.209    10.000     0.063    277.335 
    11    124.175     7.000     0.027    65.372 
    12    150.799    10.000     0.032    174.728 
    13    594.835    14.000     0.135    581.876 
    14    287.898    12.000     0.063    403.536 
    15    95.234     7.000     0.020    67.612 
    16    43.304     4.000     0.009    10.000 
    17    51.491     4.000     0.011    19.388 
    18    132.508     5.000     0.030    86.388 
    19    779.306    11.000     0.180    206.439 
    20   1096.004    12.000     0.254    435.986 
    21   1031.773    10.000     0.239    167.248 
    22    997.183    11.000     0.231    436.768 
    23    934.186    11.000     0.216    590.201 
    24    293.173     6.000     0.067    290.441 
    25    767.649    10.000     0.177    250.751 
    26   1109.885    14.000     0.255    698.734 
    27    806.319    12.000     0.185    366.725 
    28    641.685    13.000     0.146    359.627 
    29    304.348     8.000     0.069     9.169 
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Table 4.3 (continued) 

BonPwr   2Step   Eigenvec   Between 
    30    323.909    10.000     0.072    104.112 
    31    149.026     8.000     0.032    15.867 
    32    198.382    10.000     0.042    333.368 
    33    306.402     8.000     0.069    42.509 
    34    376.655    13.000     0.084    396.317 
    35    181.866    10.000     0.039    334.626 
    36    332.173     8.000     0.075    64.657 
    37    531.210    12.000     0.120    280.865 
    38    188.106     7.000     0.042    39.575 
    39    310.943     7.000     0.072    166.267 
    40    100.163     6.000     0.022    241.941 
    41    672.240    12.000     0.153    632.223 
    42    285.187    11.000     0.063    455.556 
    43    118.850     7.000     0.026    40.850  
    44    129.907     8.000     0.028    56.025 
    45    91.263    6.000     0.020    142.001 
    46    211.108     6.000     0.048    161.167 
    47    70.587     4.000     0.015    107.501 
    48    32.538     6.000     0.006    68.533 
    49    31.909     4.000     0.006    81.118 
    50    14.983     4.000     0.002    32.701 
    51    14.211     6.000     0.002    31.700 
    52    28.395     7.000     0.004    252.549 
    53    20.661     8.000     0.003    137.975 
    54    37.895     9.000     0.006    264.441 
    55    55.540     9.000     0.010    324.250 
    56    100.292     4.000     0.022    117.767 
    57    87.519     2.000     0.020     0.000 
    58    778.527     9.000     0.180    308.620 
    59    76.413     6.000     0.016    82.004 
    60    176.343     7.000     0.039    179.258 
    61    242.676    10.000   0.054    294.298 
    62    143.862    10.000     0.030    309.202 
    63    75.300     7.000     0.015    170.000 
    64    116.525     8.000     0.025    318.330 
    65    48.957     6.000     0.010    87.933 
    66    22.946     4.000     0.004    63.542 
    67    38.226     4.000     0.008    86.560 
    68    25.451     4.000     0.005    66.692 
    69    60.361     5.000     0.012    99.025 
    70    82.044     5.000     0.018     0.000 
    71    82.044     5.000     0.018     0.000 
    72    43.450     4.000     0.009     0.000 
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Table 4.3 (continued) 

BonPwr   2Step   Eigenvec   Between 
    73    42.796     7.000     0.008    226.674 
    74    8.993     4.000     0.001     0.000 
    75    11.667     4.000     0.002     0.000 
    76    28.395     6.000     0.005    89.119 
    77    16.635     4.000     0.003     0.000 
    78    412.119     8.000     0.093    160.388 
    79    307.347     6.000     0.071    79.000 
    80    725.994    10.000   0.166    481.281 
    81    65.961     6.000     0.013    55.165 
---------------------------------------- 
Running time:  00:00:01 
Output generated:  07 Feb 15 14:33:46 
UCINET 6.501 Copyright (c) 1992-2012 Analytic Technologies 

4.2.1 Case Study 2 – General Discussion 

The “Top Ten” nodes for each centrality measure are detailed in Table 4.4 below.  

The four major intersections identified in the feasibility study are labeled as node 1, 2, 3 

and 23.  These nodes consistently appear in the “Top Ten” most central intersections 

when the data was analyzed.  Though not all of the intersections within the Tulane 

Avenue study appeared in the “Top Ten” under each centrality analysis category, all four 

intersections appeared in the “Top Ten” at least twice, with node 2 appearing in the “Top 

Ten” under all centrality measures.  Nodes 1 and 23 were ranked in the “Top Ten” three 

times each. 

Running the Eigenvector and Bonacich Power measures resulted in identical “Top 

Ten” intersection rankings.  Betweeness and 2 Step Reach rankings were similar but did 

not match or include all of the same intersections as Eigenvector and Bonacich Power.  

This is network geography and traffic volumes between the various intersections. 
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The intersections used in the Tulane Avenue study are circled in red in Figures 

4.3 and 4.4.  Regarding these intersections, this indicates that the centrality measures 

correlate with existing methods to determine critical intersections or corridors for 

improvement.  The intersections covered in the Tulane Avenue study are also important 

when looking at O-D demand.  The roadway network in this area is adjacent to busy 

commercial areas and a hospital.  As such, there could be high volumes of traffic both 

day and night.  The Tulane Avenue study intersections also closely align with the nodes 

that the SNA study found central to the network.  As such, SNA, the Tulane Avenue 

study, and O-D demand analysis appear to closely align on this case study.  

Table 4.4 Centrality Values Summary and Rankings by Node for Second Case Study 

  Bonacich Power 2 Step Reach Eigenvector Betweeness 

Rank 
Unicet 
Value Node 

Unicet 
Value Node 

Unicet 
Value Node 

Unicet 
Value Node 

1 1,124.78 2 14.00 13 0.25 2 698.31 26 
2 1,115.99 1 14.00 26 0.25 1 632.16 41 
3 1,083.89 26 13.00 7 0.24 26 589.51 23 
4 1,055.45 20 13.00 28 0.24 20 573.47 13 
5 1,024.44 3 13.00 34 0.23 3 480.50 80 
6 1,007.25 5 12.00 1 0.23 5 465.30 7 
7 995.41 21 12.00 2 0.22 21 455.46 42 
8 957.12 22 12.00 9 0.22 22 436.62 22 
9 902.01 23 12.00 10 0.20 23 434.86 20 
10 896.48 6 12.00 14 0.20 6 422.69 2 

 

4.2.2 Case Study 2 – Betweeness Centrality 

Somewhat surprisingly, nodes 1, 2, 3, and 23 do not rank very high in the 

Betweeness centrality measures because these nodes are located at or near the center of 
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the network.  Upon in depth review of the traffic volumes within the network, it was 

determined that this corridor had large traffic volumes but smaller volumes than several 

other intersections.  The corridor was congested and in need of improvements because  

the roadway was not designed to efficiently move the volume of traffic it was handling at 

the time of the study.   

Nodes 26 and 41 have the highest ranking Betweeness centrality.  A quick review 

of the traffic volumes connecting them to adjacent nodes, prove they directly carry high 

volumes of traffic.  As such, they have high Betweeness centrality measures.  Node 23, 

ranked third in Betweeness centrality, was the highest ranking node that was the focus of 

the feasibility study.  Figure 4.3 depicts the Betweeness centrality measures for this case 

study. 

 

Figure 4.3 Network Betweeness Centrality Diagram for Second Case Study 
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4.2.3 Case Study 2 – Eigenvector Centrality 

In the Eigenvector centrality measures, the nodes that are the focus of the 

feasibility study all appear in the “Top Ten” nodes of the network.  This is logical as 

these nodes are connected to other nodes by high traffic volumes and because their 

immediate connections also have high volume connections to other nodes.  These 

attributes lead to high Eigenvector centrality measures in nodes 1, 2, 3, and 23.  Figure 

4.4 depicts and details the Eigenvector centrality measures for Case Study 2.   

 

Figure 4.4 Eigenvector Centrality Diagram for Second Case Study 

 

4.2.4 Case Study 2 – Bonacich Power 

As with Case Study 1, the Bonacich Power centrality measures for Case Study 2 

resulted in an identical rankings with Eigenvector centrality.  As noted in Table 4.4, the 

high Bonacich Power centrality measure rankings indicate that the nodes located on the 
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study corridor, are in general, “close” to the other nodes in the network.  This ranking 

gives these nodes a high centrality ranking and power within the network.   

4.2.5 Case Study 2 – 2 Step Reach 

As noted in Table 4.4, the 2 Step Reach centrality ranked node 13 and 26 as the 

top ranked nodes for 2 Step Reach centrality measures.  In reviewing the network layout, 

their high ranking is due to their immediate connection with five different nodes or their 

connection with a node that has four additional connections. 

4.3 Case Study 3 – Shreveport Data Output 

The centrality measures derived from the data generated for the Shreveport, LA 

case study are detailed in the Unicet output below (Table 4.5).   

Table 4.5 Centrality Measures for All Nodes in Shreveport, LA Case Study 

MULTIPLE CENTRALITY MEASURES 
-------------------------------------------------------------------------------- 

Input dataset:                           Excel Model Final1 Dissertation 
(C:\School\Shreveport\Excel Model Final1 Dissertation) 

Output dataset:                         Excel Model Final1 Dissertation-cent (C:\Program Files 
(x86)\Analytic Technologies\Excel Model Final1 
Dissertation-cent) 

Treat data as:                       Auto-detect 
Type of scores to output:        Raw scores 
Value of Beta was:                  0.277557500961711 
Principal eigenvalue was:      3.58484276740862 
Centrality Measures 

1  2  3  4 
Node BonPwr     2Step   Eigenvec   Between 

--------   --------   --------   -------- 
  1   1    176.940    11.000     0.022    317.259 
  2   2    213.313    12.000     0.028    479.706 
  3   3    296.221    12.000     0.067    451.790 
  4   7    120.410     9.000     0.016    302.948 
  5   9     17.392     4.000     0.002    99.399 
  6  10     87.527    10.000     0.007    435.894 
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Table 4.5 (continued) 

Node BonPwr     2Step   Eigenvec   Between 
  7  12    179.364    11.000     0.020    261.373 
  8  13    198.053     7.000     0.047    383.087 
  9  14    156.227    10.000     0.017    258.344 
 10 17    205.822    11.000     0.032    733.480 
 11 21   1461.375    16.000     0.356   1643.417 
 12  22    176.921    11.000     0.023    734.672 
 13  23    273.774    11.000     0.061    551.492 
 14  24     72.785     6.000     0.015    155.711 
 15  27    185.055     8.000     0.044    159.721 
 16  29     30.193     4.000     0.006    123.381 
 17  30    135.451     9.000     0.029    313.194 
 18  31    212.752    11.000     0.041   1202.210 
 19  32    225.130    11.000     0.043   1166.718 
 20  33    170.426    10.000     0.037    294.188 
 21  37     86.368     6.000     0.019    190.025 
 22  39     40.248     5.000     0.005    151.327 
 23  40    348.784     8.000     0.082    170.343 
 24  41    194.441    10.000     0.023    162.380 
 25  48    398.171    12.000     0.091    637.292 
 26  49     69.495     9.000     0.011    583.286 
 27   A     15.208     4.000     0.002    94.120 
 28   B    194.796    12.000     0.041    760.475 
 29   C    124.362    11.000     0.022    865.066 
 30   E    104.330    9.000     0.014    470.858 
 31   F     51.850     5.000     0.007     0.000 
 32   G     75.272     6.000     0.009    85.442 
 33   H    109.992     9.000     0.013    238.099 
 34   I    104.205     8.000     0.012    142.529 
 35   J    137.226     9.000     0.016    84.168 
 36   K    112.235    10.000     0.012    56.226 
 37   L     62.413     7.000     0.006    133.036 
 38   N     48.008     7.000     0.004    143.893 
 39   O     32.320     7.000     0.002    99.805 
 40   P     61.229     8.000     0.004    189.421 
 41   Q     69.438     9.000     0.005    260.963 
 42   T     38.268     6.000     0.002     0.000 
 43   U     54.996     9.000     0.006    445.609 
 44   V     57.387     9.000     0.010    460.101 
 45   W     32.374     6.000     0.005    36.450 
 46   X     52.046     8.000     0.008    207.058 
 47   Y    91.705     8.000     0.018    509.077 
 48   Z     52.627    10.000     0.006    137.006 
 49  AA     78.813    11.000     0.006    210.123 
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Table 4.5 (continued) 

Node BonPwr     2Step   Eigenvec   Between 
 50  AB     66.163    10.000     0.005    188.273 
 51  AC     62.184    10.000     0.005    189.265 
 52  AD     46.891    8.000     0.005    165.577 
 53  AE    168.284    10.000     0.027    632.952 
 54  AF     99.004     8.000     0.018    438.080 
 55  AG    234.206    10.000     0.051    515.799 
 56  AH     21.202     3.000     0.004     0.000 
 57  AI     59.798     7.000     0.012    26.667 
 58  AJ    615.939    11.000     0.148    627.704 
 59  AK    773.304    11.000     0.187   1013.674 
 60  AM    279.123     8.000     0.064    639.877 
 61  AN    266.046     7.000     0.062    558.546 
 62  AO    108.577     9.000     0.023    543.973 
 63  AP    280.014    12.000     0.065    780.538 
 64  AQ     39.066     4.000     0.008     1.000 
 65  AR    180.656     8.000     0.042    183.289 
 66  AS    614.644    12.000     0.149   1041.446 
 67  AT    308.915    9.000     0.074    195.864 
 68  AU     51.143     3.000     0.012     0.000 
 69  AV    761.546    12.000     0.185    397.066 
 70  AW    581.662    10.000     0.142    231.303 
 71  AX   1610.799    13.000     0.394   1313.044 
 72  AY    738.569    10.000     0.179    688.478 
 73  AZ    897.813    12.000     0.219    410.453 
 74  BA    608.988     9.000     0.149    132.854 
 75  BB    846.106    13.000     0.206    785.173 
 76  BC    333.651     7.000     0.080    48.833 
 77  BD     78.986     7.000     0.017    153.393 
 78  BE    141.917     8.000     0.032    341.337 
 79  BF     80.361     8.000     0.017    166.626 
 80  BG     23.305     3.000     0.005     0.000 
 81  BH     38.596     4.000     0.008     0.000 
 82  BI     66.006     4.000     0.014     0.000 
 83  BJ     55.067     4.000     0.011     0.000 
 84  BK     35.518    4.000     0.006     0.000 
 85  BT    260.207     8.000     0.062    203.821 
 86  BU   1063.083    11.000     0.260    257.733 
 87  BV   1224.108    11.000     0.300    303.681 
 88  BW     68.404     9.000     0.006    100.240 
 89  BX    292.625     8.000     0.069    256.394 
 90  BY    230.283    10.000     0.054    259.636 
 91  BZ    364.217    10.000     0.087    262.185 
 92  CA    341.150    10.000     0.081    528.107 
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Table 4.5 (continued) 

Node BonPwr     2Step   Eigenvec   Between 
 93  CB    113.501     9.000     0.025    209.864 
 94  CC     32.503     4.000     0.007     0.000 
 95  CD     51.368     6.000     0.011    27.869 
 96  CE     64.364     5.000     0.014    55.447 
 97  CF    173.319     8.000     0.041    207.281 
 98  CG    159.964     6.000     0.038    70.878 
 99  CH     90.563     6.000     0.021    82.720 
100  CI     42.979     5.000     0.009    26.280 
101  CK     61.434     8.000     0.005    155.990 
102  CL    100.106    10.000     0.010    181.772 
103  CM    104.185    11.000     0.011    554.523 
104  CN    960.449    10.000     0.235    743.941 
105  CO    222.393     6.000     0.054    32.131 
106  CP     57.454    10.000     0.005    330.968 
107  CQ     71.755    11.000     0.006    293.917 
108  CR     55.220    10.000     0.006    282.606 
109  CS     40.729     6.000     0.006    134.259 
Table 4.5 (continued) 

Node BonPwr     2Step   Eigenvec   Between 
110  CT     92.644     9.000     0.016    679.474 
111  CU   1400.968    13.000     0.343    512.040 
112  CJ     16.265     4.000     0.002     0.000 
---------------------------------------- 
Running time:  00:00:05 
Table 4.5 (continued) 
Output generated:  07 Feb 15 10:32:45 
UCINET 6.501 Copyright (c) 1992-2012 Analytic Technologies 

4.3.1 Case Study 3 – General Discussion 

Traffic data and intersection rankings from a Shreveport, LA traffic report were 

utilized for this case study.  Interestingly, few of the Shreveport, LA ranked intersections 

were ranked in the “Top Ten” nodes for the third case study (Table 4.6).  The intersection 

ranked 21st in the traffic report was ranked first in two centrality measures.  However, 

node AX was the overall highest ranking intersection in regards to centrality measures.  It 

was ranked in the top four of each centrality measure.   It is located near a major highway 
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and adjacent to a commercial area, however, it was not one of the 50 busiest intersections 

determined by the City of Shreveport traffic engineering team.   

Interestingly, Eigenvector and Bonacich Power rankings contained the same 10 

intersections in the “Top Ten”.  However, the rankings of the top 5 intersections differed.  

This could be a result of the geographic location of the intersections.  The layout of the 

highway network in the area created some separation and open areas within the network 

that impact the overall centrality and power of individual intersections.   

After completion of the study, it was determined that few of the intersections with 

the highest traffic volume were ranked high in regards to centrality measures.  For 

Shreveport, the highest ranked intersections in regards to centrality measures were 

generally centrally located within the network that was input into Unicet.  Most of the 

intersections that had the highest traffic volumes/ranks in the Shreveport traffic 

engineering report are located on the periphery of the network, adjacent to large shopping 

centers and industrial areas.  Because of their geographic location, it could be difficult for 

these nodes to receive high centrality ranks. 
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Table 4.6 Centrality Values Summary and Rankings by Node for 3rd Case Study 

 

4.3.2 Case Study 3 – Betweeness Centrality 

Figure 4.5 graphically depicts Betweeness centrality measures.  Node 21 has the 

highest Betweeness centrality measure as noted in the Table 4.6.  The superior size of 

node 21 in Figure 4.5 is much larger than the other nodes indicating it is a central 

intersection.  As depicted in Figure 4.5, node 21 is connected to two other nodes that are 

ranked in the “Top Ten” Betweeness centrality measures.  This is a strong indicator that 

this area of the network is located between many of the remaining network nodes. 

  Bonacich Power 2 Step Reach Eigenvector Betweeness 

Rank Unicet 
Value Node Unicet 

Value Node Unicet 
Value Node Unicet 

Value Node 

1 1,400.97 CU 16.00 21 0.39 AX 1,643.42 21 
2 1,224.11 BV 13.00 AX 0.36 21 1,313.04 AX 
3 1,063.08 BU 13.00 BB 0.34 CU 1,202.21 31 
4 1,610.80 AX 13.00 CU 0.30 BV 1,166.72 32 
5 1,461.38 21 12.00 2 0.26 BU 1,041.45 AS 
6 960.45 CN 12.00 48 0.24 CN 1,013.67 AK 
7 868.82 AZ 12.00 AP 0.22 AZ 865.07 C 
8 846.11 BB 12.00 AS 0.21 BB 785.17 BB 
9 761.55 AV 12.00 AV 0.19 AK 780.54 AP 
10 773.30 AK 12.00 AZ 0.19 AV 760.48 B 
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Figure 4.5 Network Betweeness Centrality Diagram for Third Case Study 

 

4.3.3 Case Study 3 – Eigenvector Centrality 

The Eigenvector centrality measures for the third case study revealed that only 

one Shreveport, LA traffic report ranked study was also ranked in the “Top Ten” (Table 

4.6).  This apparent discrepancy between the city rankings and the Eigenvector centrality 

measure rankings is likely due to the location of the intersections within the study.  As 

noted in the general discussion for this study, many of the top ranked city intersections 

were towards the perimeter of the network, whereas, the intersections that are ranked in 

the “Top Ten” of the Eigenvector centrality measures are generally located in the interior 

of the network studied.  Top ranked intersections are also generally located on major 

north/south and east/west travel corridors.  In Figure 4.6, node AX is clearly the largest 

and most central to the network according to Eigenvector centrality measures.   
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Figure 4.6 Eigenvector Centrality Diagram for Third Case Study 

 

4.3.4 Case Study 3 – Bonacich Power 

Unlike the previous two case studies, the ranking of the “Top Ten” nodes in the 

Bonacich Power centrality measures do not match the ranking of the nodes in the 

Eigenvector centrality measures.  However, these two measures did rank the same 10 

nodes in different orders.  The three nodes ranked higher than node AX in Bonacich 

Power centrality rankings are all within two degrees it.  These nodes are also located on 

major north/south and east/west travel corridors.   

4.3.5 Case Study 3 – 2 Step Reach 

2 Step Reach centrality measures ranked node 21 as the most central within the 

network.  This measure also ranked two other Shreveport, LA traffic report ranked nodes 

in the “Top Ten”.  That being said, node 21 had 16 nodes within a 2 Step Reach, three 

nodes had 13 nodes within a 2 Step Reach, and six nodes had 12 nodes within a Two Step 
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Reach.  The spread amongst the “Top Ten” nodes was narrow except for node 21 which 

was the top ranked node.  The others had a close number of 2 Step Reach values 

indicating that the network is similarly connected throughout. 

4.4 Case Study 4 – Jackson, MS Data Output 

The centrality measures derived from the data generated for the Jackson, MS case 

study are detailed in the Unicet output below (Table 4.7).   

Table 4.7 Centrality Measures for All Nodes in Jackson, MS Case Study 

MULTIPLE CENTRALITY MEASURES 
-------------------------------------------------------------------------------- 

Input dataset:                       Jackson (C:\School\Jackson\Jackson) 
Output dataset:                    Jackson Data Output (C:\School\Dissertation\Unicet Data 

and Models\Jackson Data Output) 
Treat data as:                      Undirected 
Type of scores to output:      Raw scores 
Value of Beta was:                0.305663503612875 
Principal eigenvalue was:       3.2552136397685 
Centrality Measures 

1  2  3  4 
     BonPwr     2Step   Eigenvec   Between 

--------   --------   --------   -------- 
     1    589.500    12.000     0.153    299.924 
     2    257.195     6.000     0.065    159.000 
     3    702.336    11.000     0.182    206.874 
     4     79.615     4.000     0.020     0.000 
     5     79.615     4.000    0.020     0.000 
     6     79.615     4.000     0.020     0.000 
     7    215.678     4.000     0.056     0.000 
     8    606.289     9.000     0.157    164.991 
     9    186.321     4.000     0.048     0.000 
    10    627.553    10.000     0.162    122.690 
    11    868.817    10.000     0.224    198.510 
    12    568.164     7.000     0.146    107.000 
    13    174.667     4.000     0.045     0.000 
    14    174.667     4.000     0.045     0.000 
    15    454.222     7.000     0.118    14.950 
    16    873.189    10.000     0.227    111.317 
    17    800.758    10.000     0.208    108.440 
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Table 4.7 (continued) 

BonPwr     2Step   Eigenvec   Between 
    18    959.246     9.000     0.249    261.391 
    19   1037.136    11.000     0.269    328.514 
    20    612.222     6.000     0.159     0.000 
    21    751.178    11.000     0.193    353.678 
    22    230.608     4.000     0.059     0.000 
    23    629.566    10.000     0.161    218.512 
    24    721.873    10.000     0.187    203.695 
    25   1057.336    11.000     0.275    167.157 
    26    886.298    10.000     0.231    61.517 
    27    664.942    10.000     0.172    157.829 
    28   679.396     9.000     0.176    101.688 
    29    747.177     9.000     0.193    45.521 
    30    886.416     9.000     0.229    191.155 
    31    764.322    10.000     0.196    298.488 
    32    506.571     6.000     0.131     0.000 
    33    429.520    10.000     0.108    252.707 
    34    329.148     8.000     0.081    105.757 
    35   278.917     7.000     0.069    30.474 
    36    576.805    12.000     0.145    282.821 
    37    547.137    11.000     0.138    296.250 
    38    168.240     4.000     0.042     0.000 
    39    280.687     9.000     0.069    186.067 
    40    86.796     3.000     0.021     0.000 
    41    274.540    10.000     0.066    323.567 
    42    418.354    14.000     0.102    408.333 
    43    358.578    11.000     0.087    250.400 
    44    301.921     8.000     0.074    180.783 
    45    93.286     4.000     0.023     0.000 
    46    93.286     4.000     0.023     0.000 
    47    110.604     4.000     0.027     0.000 
    48    145.665     6.000     0.035    106.000 
    49    51.656     3.000     0.012    54.000 
    50    16.789     2.000     0.004     0.000 
    51    84.917     4.000     0.020     0.000 
    52    101.134     8.000     0.023    204.000 
    53    49.784     5.000     0.010    159.000 
    54    16.217     4.000     0.003     0.000 
    55    16.217     4.000     0.003     0.000 
    56    16.217     4.000     0.003     0.000 
---------------------------------------- 
Running time:  00:00:01 
Output generated:  07 Feb 15 15:15:00 
UCINET 6.501 Copyright (c) 1992-2012 Analytic Technologies 
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4.4.1 Case Study 4 – General Discussion 

This case study analyzed the centrality of “primary arterial” streets in downtown 

Jackson, MS.  The findings of the centrality analysis were generally what was expected.  

It was found that the most central intersections were in downtown Jackson or in higher 

traffic areas.  In some locations, downtown Jackson roadways had lower traffic volumes 

than some of the outlying streets.  This is likely a result of right of way and roadway 

width restrictions in the downtown area, as well as, more roadways to choose from within 

close proximity of a desired route.  Streets towards the perimeter of the network were 

frequently spaced farther apart than downtown streets but they often carried higher 

volumes of traffic.  Though they had a lower volume per individual street, there was a 

greater traffic volume density in the downtown Jackson area which resulted in higher 

overall centrality measures for the intersections located in this area.   

The “Top Ten” rankings for Bonacich Power and Eigenvector contained the same 

10 intersections with only two intersections ranked differently under the two measures.  

These intersections are generally concentrated in the downtown Jackson area.  

Betweeness and 2 Step Reach were more similar to each other than the other two 

measures.  This is due to their non-scaled location,  as well as, their geographic location 

within the overall network. 

Table 4.8 below details the “Top Ten” rankings of the centrality analyses for the 

fourth case study.  Figure 4.7 details the betweeness centrality of this network.   
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Table 4.8 Centrality Values Summary and Rankings by Node for 4th Case Study 

 Bonacich Power 2 Step Reach Eigenvector Betweeness 

Rank Unicet 
Value Node Unicet 

Value Node Unicet 
Value Node Unicet 

Value Node 

1 1,057.34 25 14 42 0.28 25 408.33 42 
2 1,037.14 19 12 36 0.27 19 353.68 21 
3 959.25 18 12 1 0.25 18 328.51 19 
4 886.42 30 11 3 0.23 26 323.57 41 
5 886.30 26 11 19 0.23 30 299.92 1 
6 873.19 16 11 21 0.23 16 298.49 31 
7 868.82 11 11 25 0.22 11 296.25 37 
8 800.76 17 11 37 0.21 17 282.82 36 
9 764.32 31 11 43 0.19 21 261.39 18 
10 751.18 21 10 41 0.19 29 252.71 33 

 

4.4.2 Case Study 4 – Betweeness Centrality 

Figure 4.7 graphically depicts Betweeness centrality for Case Study 4.  Upon 

review of this centrality measure is determined that node 42 has the highest Betweeness 

centrality in this network.  Interestingly, based on distance, this intersection is not located 

in a high O-D demand area, however, it is located on a roadway with a high individual 

traffic count.  Because traffic counts connected directly to a node greatly impact its 

Betweeness centrality measure, this high traffic count results in a high rank for node 42 

and other nodes in the area.  The downtown Jackson area is represented by three nodes in 

this centrality measure.   
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Figure 4.7 Network Betweeness Centrality Diagram for Fourth Case Study 

 

4.4.3 Case Study 4 – Eigenvector Centrality 

Figure 4.8 graphically depicts Eigenvector centrality for the Jackson case study.  

Intersections located in downtown Jackson are heavily represented in the “Top Ten” of 

this measures (Table 4.8).  In fact, eight of the ten nodes in the “Top Ten” are located in 

downtown Jackson.  The other two nodes are connected to nearly all downtown nodes by 

one or two degrees.  This centrality ranking for downtown Jackson indicates that focus 

should be given to ensure that traffic congestion is controlled and mitigated in this area.  

Other areas should not be neglected but attention should be first given to these high 

centrality intersections first.  
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Figure 4.8 Eigenvector Centrality Diagram for Fourth Case Study 

 

4.4.4 Case Study 4 – Bonacich Power 

The “Top Ten” rankings for Bonacich Power centrality includes seven 

intersections that are geographically located in the downtown Jackson area.  The 

intersections not located downtown are connected to intersections that are located 

downtown, indicating that the downtown area is a central transportation are in Jackson.  

This is logical as the downtown intersections carry fairly large volumes of traffic and 

have many connections nearby. 

4.4.5 Case Study 4 – 2 Step Reach 

The “Top Ten” rankings for the 2 Step Reach centrality measure tend to favor 

intersections located outside of downtown Jackson.  During detailed review of the top 

ranking nodes, it was determined that these findings occurred because many of the 

downtown Jackson nodes had nodes within their 2 Step Reach paths that overlapped 

when tracing the routes.  This overlap was caused by the tight spacing and geometry of 

the downtown roadway network.  That being said, it resulted in lower 2 Step Reach 

centrality measures for downtown intersections.  Because of the spacing between 
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intersections and overall geometry of the network outside of the downtown area, node 42 

had the highest 2 Step Reach centrality in this case study. 

4.5 Case Study 4 – Mississippi Gulf Coast Network Data Output 

The centrality measures derived from the data generated for the Jackson, MS case 

study are detailed in the Unicet output below (Table 4.9).   

Table 4.9 Centrality Measures for All Nodes in Mississippi Gulf Coast Case Study 

MULTIPLE CENTRALITY MEASURES 
-------------------------------------------------------------------------------- 

Input dataset:                          Biloxi Data (C:\School\Biloxi\Biloxi Data) 
Output dataset:              Biloxi Data-cent (C:\Program Files (x86)\Analytic 

Technologies\Biloxi Data-cent) 
Treat data as:                       Undirected 
Type of scores to output:       Raw scores 
Value of Beta was:                 0.317182587884423 
Principal eigenvalue was:      3.13699429267256 
Centrality Measures 

1  2  3  4 
Node BonPwr     2Step   Eigenvec   Between  

--------   --------   --------   -------- 
  1    1     11.999     2.000     0.002     0.000 
  2    2     34.678     4.000     0.007    116.000 
  3    3    106.129     3.000     0.024     0.000 
  4    4     91.027     6.000     0.020    344.000 
  5    5    212.977     8.000    0.049    855.026 
  6    6    110.910     6.000     0.025    352.392 
  7    7     82.183     6.000     0.017    178.776 
  8    8    92.187     6.000     0.020    47.000 
  9    9    507.854     8.000     0.121    149.904 
 10   10    460.069     8.000     0.110   1078.920 
 11   11    619.785     8.000     0.149   1404.680 
 12   12    869.886     9.000     0.210    61.067 
 13   13    484.765     6.000     0.117    34.995 
 14   14   541.409     8.000     0.130    167.907 
 15   15    779.758    11.000     0.187    418.935 
 16   16    315.472     7.000     0.075    122.495 
 17   17   1014.186    10.000     0.245    315.649 
 18   18   1050.465    10.000     0.254    616.830 
 19   20    873.771    10.000     0.211    972.758 
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Table 4.9 (continued) 

Node BonPwr     2Step   Eigenvec   Between  
 20   21    527.495     7.000     0.126    322.934 
 21   22    501.014     8.000     0.120    96.025 
 22   23   1167.368    13.000     0.281   1391.285 
 23   24    816.075     9.000     0.197   1603.513 
 24   25    776.277     8.000     0.186   1569.041 
 25   26   1075.879    12.000     0.258   1524.491 
 26   27    546.001     8.000     0.129   1964.959 
 27   28    722.569    11.000     0.171   2222.867 
 28   29    902.092    10.000     0.217    233.225 
 29   30    514.330     6.000     0.124     1.000 
 30   31    713.161     8.000     0.172    230.900 
 31   32    312.148     7.000     0.073    706.758 
 32   33    331.446     9.000     0.076   1714.832 
 33   34    206.812     9.000     0.043   1688.998 
 34   35    122.467     9.000     0.023   1106.333 
 35   36    97.351     7.000     0.016   1320.999 
 36   37     98.475     6.000     0.019    518.999 
 37   38     76.522     8.000     0.009   1338.165 
 38   39     97.414     9.000     0.007   1349.683 
 39   40    177.480     9.000     0.012   2813.684 
 40   41     74.118     6.000     0.010   1448.335 
 41   42    213.106     6.000     0.048   1801.169 
 42   43    119.564     6.000     0.022   1778.169 
 43   44     80.275     7.000     0.011    240.333 
 44   45    127.218     8.000     0.013    229.000 
 45   46    107.806     8.000     0.011   1482.501 
 46   47     88.141     6.000     0.008    116.000 
 47   48     28.957     3.000     0.003     0.000 
 48   49    112.254     7.000     0.010    148.000 
 49   50    129.093     9.000     0.010   1666.169 
 50   51    160.216     7.000     0.009   1261.500 
 51   52    160.216     7.000     0.009   1261.500 
 52   53    157.969     9.000     0.008   2516.000 
 53   54     32.420     4.000     0.001     0.000 
 54   55     99.059    10.000     0.004   2274.000 
 55   56     62.058     8.000     0.002   2036.000 
 56   57     20.683     3.000     0.001     0.000 
 57   58     66.452     8.000     0.001   1862.000 
 58   59     58.787     7.000     0.001    410.750 
 59   60     79.206    11.000     0.001   1327.167 
 60   61     49.929     9.000     0.000    421.167 
 61   62     24.314     5.000     0.000    106.167 
 62   63     20.423     5.000     0.000     3.000 
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Table 4.9 (continued) 

Node BonPwr     2Step   Eigenvec   Between  
 63   64     33.769     7.000     0.000    12.833 
 64   65     61.936    11.000     0.001    778.250 
 65   66     32.150     6.000     0.000    123.417 
 66   67     11.197     3.000     0.000     0.000 
 67   68     25.291     6.000     0.000    230.000 
 68   69     11.496     3.000     0.000    116.000 
 69   70      4.646     2.000     0.000     0.000 
 70   71     30.226     7.000     0.000    305.750 
 71   72     31.225     8.000     0.000    37.250 
 72   73     30.203     6.000     0.000    236.000 
 73   74     10.580     4.000     0.000     0.000 
 74   75     10.580     4.000     0.000     0.000 
 75   76     65.936     7.000     0.003    180.000 
 76   77     43.604     5.000     0.002    117.000 
 77   78     47.250     7.000     0.002    48.000 
 78   79     14.831    3.000     0.001     0.000 
 79   80     43.661     6.000     0.003    168.667 
 80   81     37.035     6.000     0.004    109.500 
 81   82     33.933     6.000     0.002    180.167 
 82   83     16.829     5.000     0.001    98.000 
 83   84     12.817     4.000     0.001    79.000 
 84   85     72.488     9.000     0.012    509.833 
 85   86     35.345     6.000     0.005    277.833 
 86   87     12.211     3.000     0.002     0.000 
 87   88     87.030     7.000     0.017    190.000 
 88   89     61.267     7.000     0.010    236.000 
 89   90     24.183     4.000     0.004    116.000 
 90   91     8.670     2.000     0.001     0.000 
 91   92    255.251     6.000    0.059    638.175 
 92   93    177.826     5.000     0.041    160.719 
 93   94    299.085     8.000     0.069    277.730 
 94   95    305.315     8.000     0.070    351.519 
 95   96    450.343    10.000     0.104    276.199 
 96   97    229.662     5.000     0.053    27.070 
 97   98    398.787     9.000     0.093    184.552 
 98   99    671.178    11.000     0.159    215.719 
 99  100  648.756     8.000     0.156    124.100 
100  101    420.660     7.000     0.100    58.400 
101  102    271.329     7.000     0.063     9.333 
102  103    782.991    13.000     0.186    468.460 
103  104    607.137    10.000     0.142    268.153 
104  105    267.418     5.000     0.062    19.833 
105  106    400.792     7.000     0.095    57.632 



 

91 

Table 4.9 (continued) 

Node BonPwr     2Step   Eigenvec   Between  
106  107    650.158     9.000     0.154    409.720 
107  108    311.988     7.000     0.074    221.621 
108  109    327.160     8.000     0.077    257.711 
109  110    208.540     8.000     0.048    121.779 
110  111    130.391     8.000     0.029    305.509 
111  112    29.872     3.000     0.006     0.000 
112  113     27.067     3.000     0.006     0.000 
113  114    202.154     8.000     0.046    159.642 
114  115     17.276     5.000     0.002    102.000 
115  116    608.266     9.000     0.146    322.434 
116 117    668.429     8.000     0.161    264.294 
117  118     46.936     9.000     0.000    242.833 
118  119     44.435     8.000     0.000    114.417 
---------------------------------------- 
Running time:  00:00:01 
Output generated:  07 Feb 15 15:55:13 
UCINET 6.501 Copyright (c) 1992-2012 Analytic Technologies 

4.5.1 Case Study 5 – General Discussion 

Study 5 focused on the coastal area of Mississippi.  Centrality analysis determined 

that all critical intersections are located on or near the coast.  Both Bonacich Power and 

the Eigenvector measure of centrality determined that nodes 23, 26, and 18 are the most 

critical intersections.  Interestingly, none of these intersections is located on Highway 90 

which carries consistently high volumes of traffic and connects the entire network area.  

They are also located in Gulfport, towards the west end of the network.  It is interesting 

to note that the “Top Ten” for both of these measures are identical.  The Betweeness and 

2 Step Reach rankings differ substantially from the Bonacich Power and Eigenvector 

because of the geographic layout of the network in which there are several pinch points 

that create high Betweeness values.  The “Top Ten” for each centrality measure are listed 

in Table 4.10 below. 
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Table 4.10 Centrality Values Summary and Rankings by Node for 5th Case Study 

  Bonacich Power 2 Step Reach Eigenvector Betweeness 

Rank Unicet 
Value Node Unicet 

Value Node Unicet 
Value Node Unicet 

Value Node 

1 1,218.76  23 14 23 0.29  23 2,822.20  40 
2 1,050.09  26 13 103 0.25  26 2,516.00  53 
3 1,026.78  18 12 26 0.25  18 2,513.56  27 
4 1,015.79  24 12 28 0.25  24 2,332.55  24 
5 987.27  17 11 15 0.24  17 2,274.00  55 
6 905.52  29 11 24 0.22  29 2,036.00  56 
7 874.11  20 11 60 0.21  20 2,015.86  42 
8 856.17  12 11 65 0.21  12 1,992.86  43 
9 761.15  15 11 99 0.18  15 1,880.87  50 
10 741.79  28 10 17 0.18  28 1,862.00  58 

 

4.5.2 Case Study 5 – Betweeness Centrality 

The Betweeness centrality measure determined that the top 3 intersections were 

located on Highway 90, directly adjacent to Gulf of Mexico.  The Pascagoula area 

experienced some of the highest traffic volumes but they were confined to limited areas 

were commercial traffic is likely to travel.  In Figure 4.9, nodes 40, 53, 24, and 56 are 

clearly the largest, indicating that they have the highest Betweeness centrality of the 

transportation network.  Nodes 40 and 53 have the highest Betweeness centrality 

measures because they are located at at bottlenecks,  meaning that all pathways must go 

through them to connect one side of the network to the other.  They are essentially pinch 

points and earn a high betweeness ranking because of this fact.  Other nodes in the 

network are in similar geographic positions but may have one additional connection 

which makes them slightly less between all nodes in the network.  
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Figure 4.9 Network Betweeness Centrality Diagram for 5th Case Study 

 

4.5.3 Case Study 5 – Eigenvector Centrality 

As noted in the general discussion for Case Study 5, Eigenvector centrality 

measures indicate the network is skewed to the west, towards Gulfport.  Upon review of 

traffic volumes and total population counts for Gulfport, Biloxi, and Pascagoula, the 

skewed appearance of Figure 4.10, mirrors these factors.  Higher traffic counts were 

observed in the Gulfport area and Gulfport has the largest population of the three major 

cities included in this study.  Gulfport’s population is approximately 50% larger than 

Biloxi’s and is nearly three times larger than the population of Pascagoula.  Combining 

the populations of Biloxi and Pascagoula results in a number that is only slightly larger 

than Gulfport’s individual population.  As such, it makes logical sense and is 

demonstrated by the skewed layout of the network that Gulfport is the most central area 

according to Eigenvector centrality measures. 
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Figure 4.10 Eigenvector Centrality Diagram for Fourth Case Study 

 

4.5.4 Case Study 5 – Bonacich Power 

The “Top Ten” ranked nodes according to Bonacich Power centrality are the same 

“Top Ten” as for Eigenvector centrality.  The Bonacich Power centrality measures rank 

these same Gulfport based nodes highly because there are generally a large number of 

high traffic count connections.  Bonacich Power centrality gives nodes located in areas 

with high overall traffic counts, high centrality measures which results in the Gulfport 

nodes receiving high Bonacich Power centrality measures.   

4.5.5 Case Study 5 – 2 Step Reach 

Gulfport based nodes dominate the 2 Step Reach Centrality measures “Top Ten”.  

Of the three sub-networks, Gulfport is the largest and best connected as noted in relevant 

figures and maps.  This size and connectivity creates a situation where nodes have the 

ability to connect with large numbers of nodes within two steps of their position.  As 
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such, the west side of this study has large numbers of nodes ranked in the “Top Ten” of 

the 2 Step Reach centrality measures.  This skews the 2 Step Reach Centrality measures 

to the west and to Gulfport. 

4.6 Results Comparison 

It should be noted that in all of the studies, the Bonacich Power and Eigenvector 

results were similar or identical for the “Top Ten” ranked intersections.  This somewhat 

interesting as Bonacich Power utilizes power of an intersection as part of the calculation 

in determining the intersection rank.  Knowing that power is partly determine by how 

much the adjacent nodes depend on the focus node for a relationship, it could be assumed 

that Bonacich Power would be a hybrid ranking or sorts, not matching Eigenvector 

Centrality, Betweeness, or 2 Step Reach.  However, Bonacich Power and Eigenvector 

Centrality were identical or nearly identical in their “Top Ten” ranks for each study.   

It is also noteworthy that 2 Step Reach and Betweeness differed substantially in 

their “Top Ten” ranks from the Bonacich Power and Eigenvector Centrality rankings.  

Intersections ranking high in Betweeness were often found at pinch points, sometimes in 

the central geographic area of the study, but did not rank high in other categories.   

What this means for decision makers is that, assuming the network is complete 

with no holes or closures, intersections with high Bonacich Power and Eigenvector 

Centrality ranks are the most central and critical to the network.  As such efforts should 

be focused on improving network capabilities in these areas.  However, this assumes that 

pinch points do not become a hindrance and that there are no holes or closures in the 

network.  For example, a bridge may not rank high on Bonacich Power and Eigenvector 

Centrality measures but could be ranked very high in 2 Step Reach or Betweeness 
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measures.  Ranking high in Betweeness measures means that it is used more than any 

other intersection in travelling from one intersection to another in the network.   

For instance, in the Mississippi Gulf Coast Study, intersections west of the bay 

bridge were required to use the bay bridge to reach intersections on the east side.  

Without this relationship, these nodes are not connected in the network.  This type of 

situation results in a high Betweeness ranking for bridges, pinch points, and other links in 

networks.   

What this means for this and other similarly networks is that if one of the 

“Between” intersections is removed, traffic must make significant detours, directly 

impacting many other intersections.  For infrastructure agencies, these findings indicate 

that high ranking Bonacich Power and Eigenvector Centrality intersections should be 

studied to improve daily commutes that involve large volumes of traffic.   

Regarding Betweeness and 2 Step Reach, these measures can be used to identify 

intersections and relationships that have minimal or no redundancy.  Locating these types 

of intersections for preparation and closure prevention during times of disaster or 

emergency is critical and these measures can help decision makers identify critical 

locations. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Based on the results of this research, it is shown that using social network analysis 

is a viable traffic congestion management tool, worth further and more in depth study.  

Proven successful in real world situations, using social network analysis will create a new 

perspective for evaluating traffic congestion and making related infrastructure network 

decisions. It will help decision makers determine critical intersections to focus research 

and decision making on. 

In the CFI study, the model helped determine the exact areas for infrastructure 

improvement.  Just as the LADOTD report focused on node 11, the research zeroed in on 

node 11 as one of the most critical and important intersections for congestion 

improvement.   

In the Tulane Avenue study performed by the New Orleans Regional Planning 

Commission, the four intersections within the study area frequently earned high levels of 

centrality measures and power when utilizing SNA methods to analyze the transportation 

network.  They ranked highly in all four major centrality measures.  Combined, this 

indicates that the Tulane Avenue area is important to maximizing the traffic performance 

within the downtown New Orleans area.  Improving this section of the network should be 
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among the priorities for evaluating and improving the surface street transportation 

network in downtown New Orleans. 

Case Study 3 which occurred in Shreveport, LA determined that intersections not 

listed in The City of Shreveport’s “Top 50 Intersections Ranked by Volume” Report 

often play central roles in the overall network.  This is because these intersections are 

located in key locations where any change to their capacity or congestion 

causing/mitigation abilities will have a large impact on the overall network.  This is 

because of the geographic layout of the network where the intersections ranked highly by 

Shreveport’s Report allow for easy route adjustments when changes to the traffic flow or 

congestion occur.  In the other unranked intersections, many of which received high 

centrality measures, if they experience changes to traffic flow or congestion, there are 

few viable alternatives for network users to utilize.   

The findings for the Jackson, MS case study were relatively straight forward.  

Generally, downtown Jackson intersections received high centrality measures when 

performing SNA on the traffic data.  There were some intersections on the perimeter of 

the downtown Jackson area that earner high centrality measures.  Interestingly, these 

rankings can be generally explained by the spread out nature and high traffic volumes of 

the intersections on the perimeters.  Because there was less overlapping connectivity, 

these intersections were connected to a larger number of intersections which created 

higher centrality measures. 

Three of the four centrality measures for the Mississippi Gulf Coast Case Study 

found that a large number of intersections in the Gulfport area were central to the 

network.  This is largely due to the larger permanent population base being located in 
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Gulfport.  Betweeness centrality found that an intersection located in nearly the center of 

the network, between all other nodes, had the highest Betweeness centrality measures.  

Specifically, intersections located in areas where they are isolated by fewer other 

intersections and relationships had the highest ranked betweeness centrality measures. 

As noted in the Section 4.6 of this work, Bonacich Power and Eigenvector 

Centrality measures are most useful in identifying the most central and critical 

intersections in the day to day operation of the network.  This is because they generally 

track higher traffic volumes and are similar to O-D demand studies where travel patterns 

of people are identified.  They can help decision makers identify critical intersections and 

relationships for changes to improve performance and reduce congestion in the overall 

network.  Improving these intersections and relationships will likely have smaller 

individual impacts but large cumulative network impacts when congestion reduction for 

each user is included.   

2 Step Reach and Betweeness are also important factors.  They are less useful in 

day to day operations and more useful in emergency planning or disaster prevention 

efforts.  This is because they help identify intersections and relationships that have little 

to no redundancy, meaning, if those intersections or relationships fail, great impacts to 

the entire network will occur.  When an event occurs at one of these intersections or 

relationships, the impact is fast and great to the overall network, often requiring days or 

months to remedy.   

Using this model, design, construction and funding resources can be focused on 

the most critical intersections, getting more out of existing transportation infrastructure 
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networks and pinpointing areas requiring modified infrastructure while helping to ensure 

that overreaction to congestion does not result in unnecessary construction efforts.   

This model may also be able to help identify intersections that are not typically 

given a high priority when making infrastructure decisions.  Because this method took 

much less time than traditional congestion or O-D demand studies, it could be very useful 

upon additional upon additional validation through additional case study work.  This 

model could help transportation planners develop innovative solutions to infrastructure 

dilemmas.   

Utilizing this model, finite resources can be focused on the areas that need 

improvement and that which improvement will have the biggest positive impact on the 

entire network.  Sustainability will be increased through maximizing the traffic flow 

capacity of already in place infrastructure and by minimizing monetary and natural 

resource use to modify or add infrastructure.  

Given that budgets for many individuals and organizations are limited do to 

current economic conditions, minimizing the money required to reduce traffic congestion 

is of utmost importance. Heightened awareness of environmental impacts of various 

aspects of life, including, traffic congestion and infrastructure modifications or additions, 

has also made maximizing the capabilities of existing infrastructure and minimizing the 

impacts of adding infrastructure critical.   

Based on this first study and analysis, this model is worthy of additional study and 

real world validation to determine if it can supplement or replace traditional models in 

helping to reduce congestion.  Doing this could improve the experience of the individual 
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transportation network user and society as a whole.  It has the potential to improve the 

lives of anyone who uses a transportation network. 

5.2 Future Work 

Future work should compare and validate this model against existing models, 

such as, O-D demand models.  Doing this would ensure accuracy of this model in real 

world situations.   

There are multiple other factors worthy of additional and more in depth study.  

Roadway geometry, signal timing, distances between intersections, geographic layout of 

the transportation network, data collection methods, and type of data collected should be 

evaluated in more detail.  These factors will impact the centrality measures derived by 

utilizing SNA to identify central intersections for review during congestion management 

and mitigation.  Roadway geometry will dictate how much traffic volume a roadway and 

handle prior to reaching congestion levels.   

Signal timing can also impact travel time and network congestion.  Certain 

intersections or roadway sections may appear congested if poor signal timing is 

implemented.  Proper signal timing management will mitigate congestion where possible.  

As such, signal timing can impact roadway and intersection capacity within a network 

which could then impact the centrality measures of the network.   

Distances between intersections could impact route selection and connectivity.  

Geographic layout will also impact network centrality measures.  Roadway layout 

impacts how intersections are connected to other intersections and the routes utilized by 

network users.   
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Finally, data collection methods and the type of data utilized should be evaluated 

for improvement.  Currently, traffic volumes taken at specific points in time are utilized 

for this work.  This type of data does not always show a complete picture of a given 

section of the transportation network.  All of the factors discussed above can impact the 

centrality of a network and deserve more study to ensure that they are properly accounted 

for when utilizing centrality measures to evaluate and improve traffic congestion within a 

network. 

Currently, central intersections may be identified by utilizing this research model 

but there is not a definitive method to quantify congestion or delay based on a 

combination of centrality measures and other factors.  As such, developing a method to 

quantify congestion based on centrality measures would be worthy of future research.   

What-if scenarios should be performed.  This means that alternative network 

layouts, traffic volumes, signal timings, and roadway geometries should be incorporated 

into the SNA data.  Various scenarios could be played out to determine which scenario 

may best improve network congestion.   

SNA of transportation networks could be integrated with developing SNA 

information for individual transportation network users.  Multiple studies have begun to 

identify social networks and utilize these networks to identify and predict travel patterns.  

It is possible that these models could be integrated with the SNA model for the actual 

transportation network.  Integrating these models would create a more holistic method for 

managing traffic congestion, improving the efficiency and sustainability of our complete 

transportation networks. 
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As the study requirements, comparisons, and validation discussed above take 

place, additional case studies should be undertaken.  These studies could take place 

outside of Mississippi and Louisiana so that the case study and data sets could begin to be 

diversified more.   

As more people are impacted by congestion in major metropolitan areas, future 

work should be focused on large areas.  Metropolitan areas in the Southern United States 

that could benefit from this study are Atlanta and Dallas/Fort Worth.  These cities have 

large volumes of single passenger car commuters.  Cities like Los Angeles, Chicago, 

New York, etc. that have large and highly used mass transportation systems would also 

be good case study candidates.  This is because a highly developed mass transit system 

has not been part of any of the networks studied to date.  Mass transit stops and parking 

centers could impact network usage patterns, vehicular traffic flow, and congestion 

related delays. 
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File Name:  Baton_Rouge_Excel_Export 

Date Created:  07/19/15 

Description:  Unicet traffic count data input 

Created using:  Unicet export to Excel  

View using:  Excel 

 

File Name:  New_Orleans_Excel_Export 

Date Created:  07/19/15 

Description:  Unicet traffic count data input 

Created using:  Unicet export to Excel  

View using:  Excel 

 

File Name:  Shreveport_Excel_Export 

Date Created:  07/19/15 

Description:  Unicet traffic count data input 

Created using:  Unicet export to Excel  

View using:  Excel 

 

File Name:  Jackson_Excel_Export 

Date Created:  07/19/15 

Description:  Unicet traffic count data input 

Created using:  Unicet export to Excel  

View using:  Excel 
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File Name:  Biloxi_Excel_Export 

Date Created:  07/19/15 

Description:  Unicet traffic count data input 

Created using:  Unicet export to Excel  

View using:  Excel 
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