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ABSTRACT

The dissertation includes two sections, which apply dynamic economic models to

study different economic issues.

The Section Two studies the optimal design of the Pacific Salmon Treaty, which was

signed by the U.S. and Canada in 1999 to share salmon on the Pacific coast. Moral hazard

exists because countries may steal from each other. If a country’s observed output is sus-

piciously too high, the treaty either reduces the country’s future share, or asks the country

to make a monetary transfer to its opponent. A calibrated version of our model shows that

it is optimal for the U.S. to pay Canada $327.58 million every 30.68 years. Switching to

the optimal contract improves the total welfare by 1.54%.

The Section Three studies Chinese housing market.China’s housing price has been

growing steadily over the past decade, despite the fact that capital return has fallen dra-

matically. In a rational bubble framework, the fast growth rate of housing price implies

a risk of the burst of housing bubble. We study the impact of bubble burst on China’s

economy, where the government’s infrastructure investment, largely funded by land sale,

is excessive. Our calibrated model shows that if the bubble bursts in 2017, then in the short

run GDP growth rate falls to 2.3% due to the hit to the housing sector, but GDP in the long

run exceeds that under the bubble because excessive infrastructure investment is no longer

sustainable. If the bubble remains, however, implementing property tax will reduce its size

and increase long-run output.
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1. INTRODUCTION

The main focus of my doctoral research is to apply different techniques in economic

dynamics to study some important public policies. The first work uses dynamic mecha-

nism design approach to study the Pacific Salmon Treaty, which was signed by the U.S.

and Canada. We find switching to the optimal contract improves the total welfare by

1.54%. The second work tries to use a dynamic rational bubble model to explain the high

growth of Chinese housing price and the falling capital return. We find if the asset bubble

was to burst in 2017, then in the short run China’s GDP would fall by 3.5 percent due to

the hit to the housing sector, but GDP in the long run would exceed that under the bubble

because excessive infrastructure investment would no longer be sustainable.

In the first research applies dynamic-contract method in studying Pacific Salmon Treaty.

which was signed by the U.S. and Canada in 1999 to share salmon on the Pacific coast.

Moral hazard exists because countries may steal from each other. If a country’s observed

output is suspiciously too high, the treaty either reduces the country’s future share, or asks

the country to make a monetary transfer to its opponent. A calibrated version of our model

shows that it is optimal for the U.S. to pay Canada $327.58 million every 30.68 years.

Switching to the optimal contract improves the total welfare by 1.54%. Also in this pa-

per, we have theoretical contribution on continuous-time game theory. Sannikov (2007)

shows that the boundary of the set of equilibrium payoffs satisfies a differential equation.

However, the differential equation is not easy to solve because its boundary condition is

unknown and needs to be obtained by trial and error. The boundary condition in our setup

is given by smooth pasting conditions. Under smooth pasting conditions, we show that the

optimality equation admits only two solutions. This greatly simplifies the calculation of

the set of equilibrium payoffs.

1



In the second research, I apply asset pricing model in studying China’s housing market.

China’s housing price has been growing fast and steadily over the past decade, despite the

fact that capital return has fallen dramatically. In my job-market paper Boom and Bust in

China’s Housing Market. I build a rational bubble model to answer two important ques-

tions: 1) what is the consequence of a housing market crash? and 2) how does the adoption

of property tax affect housing market? Our calibrated model shows that if the bubble was

to burst in 2017, then in the short run ChinaâĂŹs GDP would fall by 3.5 percent due to

the hit to the housing sector, but GDP in the long run would exceed that under the bubble

because excessive infrastructure investment, which is largely funded by land sales, would

no longer be sustainable. We also find that if the bubble remains, however, implementing

a property tax will reduce the size of the bubble and increase long-run output.
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2. ON THE PACIFIC SALMON TREATY

2.1 Introduction

Pacific salmon are a resource shared by the United States and Canada. In both coun-

tries, salmon are bred in rivers, streams, and lakes. After hatching, they go downriver to

the ocean, and live there for years before returning to the freshwater habitats to spawn and

die. In the ocean, salmon migrate across international boundaries, passing through coastal

areas of Oregon, Washington, British Columbia, and Alaska. As a result, U.S. fishers

inevitably intercept salmon originally from Canada, and vice versa.

The two countries have a long history of squabbling over their respective shares of the

catch. In 1995, the state of Alaska defended its catch of sockeye (a high value species

of salmon) originating in British Columbia using an argument unsupported by the United

Nations Law of the Sea Convention.1 Canada proposed third-party binding arbitration,

but the U.S. opposed. In July 1997, after the Canadian government accused the U.S. of

aggressive fishery, angry Canadian fishermen blockaded the Alaskan ferry Malaspina with

200 fishing vessels, preventing it from leaving the Prince Rupert port in British Columbia.2

In an effort to end the escalating fish war, the two governments entered into a long-term

fishing agreement under the Pacific Salmon Treaty in 1999.3

This paper studies the optimal design of the Pacific Salmon Treaty. It features two

countries sharing a natural resource under moral hazard in an infinite-horizon model. At

time zero, countries sign a contract/treaty to specify the sharing rule in all future dates.

1This “pasturage” argument is that salmon originating in British Columbia spend part of their life cycle
within U.S. waters (see [1]). However, Article 66(1) of the United Nations Law of the Sea Convention states
that “States in whose rivers anadromous species originate shall have the primary interest in and responsibility
for such stocks.”

2Another violent incident happened in May 1997, when three U.S. commercial fishing vessels were
arrested for failing to comply with Canadian regulations while in Canadian waters.

3The original Pacific Salmon Treaty was signed in 1985, but it was ill-designed and poorly enforced. See
Appendix A for a brief history of the Pacific Salmon Treaty.
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Afterwards, they play a continuous-time hidden-action game a la [2], where the public

signal is the sum of hidden action and some Brownian motion shock, and hidden action

is modeled as countries deviating from the pre-specified sharing rule and stealing from

each other. There are two instruments in the contract to prevent stealing. If a country’s

observed output is suspiciously too high or its opponent’s output is suspiciously too low,

the contract may (1) reduce the country’s future share, and (2) ask the country to make a

monetary transfer to its opponent. We allow both instruments to be fully history dependent.

Our assumptions of moral hazard and side payment are motivated by the data. First,

stealing in our model corresponds to the behavior in reality that a country intercepts

more salmon than what the Pacific Salmon Treaty specifies. Over interception cannot

be perfectly detected because both countries’ fishing weights are affected by large ran-

dom shocks such as climate change.4 Second, the U.S. has made two payments to Canada

since 1999, with an average payment of $56.31 million. Since Canada’s value added from

salmon is only $6.16 million per year, side payments have played an important role in

compensating Canada’s loss so that Canada does not walk away.

There are two main results in this paper: one is theoretical and the other is empirical.

Our theoretical result is on continuous-time game theory. [2] shows that the boundary of

the set of equilibrium payoffs satisfies a differential equation (i.e., the optimality equa-

tion). However, the differential equation is not easy to solve because its boundary condi-

tion is unknown and needs to be obtained by trial and error. Thanks to the possibility of

side payment, the boundary condition in our setup is given by smooth pasting conditions.

Under smooth pasting conditions, we show that the optimality equation admits only two

solutions. This greatly simplifies the calculation of the set of equilibrium payoffs.

Our empirical result recommends a policy change in the Pacific Salmon Treaty. Be-

4The coefficients of variation of salmon catching weights in the U.S. and Canada are, respectively,
13.37% and 43.56%.
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cause the U.S. production function is more efficient than Canada’s, we find that the optimal

contract assigns a bigger share of salmon to the U.S. than the current treaty does. Making

this change will improve the total welfare of both countries by 1.54%.

Although we only study the sharing of Pacific salmon between the U.S. and Canada

in the paper, international fishery sharing agreements are actually very common. In the

database of the Food and Agriculture Organization of the United Nations, there are 1927

agreements registered (over 300 of which are signed by the U.S.) and the earliest can be

traced back to the year 1351. Many agreements involve disputes. For instance, disputes

have occurred multiple times between Australia and New Zealand in the South Tasman

Rise Trawl fishery, and also between the United Kingdom and Iceland in the North Atlantic

cod fishery. Moreover, the issue of sharing natural resources with side payment goes

beyond fisheries. In an international river-sharing agreement, the upstream country of

the Syr Darya River, Kyrgyzstan, agreed to increase summer discharges to supply to the

downstream country, Uzbekistan, in exchange for fossil fuel transfers.

Related literature There are two theories of incentives in the literature on dynamic

games and contracts. One emphasizes variations of continuation payoff as an incentive

device and the other emphasizes side payments. [3] and [2] develop methods for solving

moral-hazard repeated games, in discrete time and continuous time, respectively. In these

games, the only incentive is provided by the sensitivity of continuation payoffs to signals

about players’ actions. Moreover, the folk theorem states that such incentive is strong

enough to support any individual-rational payoff as an equilibrium outcome, when players

are patient. On the other hand, recent papers on relational contracts (e.g., [4], [5], [6], [7])

emphasize the role played by side payments. They show that, when people are risk neutral

and side payments are possible, optimal contracts (or efficient equilibria) are stationary,

i.e., the same payment scheme and action profile are repeated in every period. In stationary

contracts (or equilibria), side payments completely crowd out variation of continuation

3



payoffs as an incentive device, because continuation payoffs are fixed. Our paper bridges

the above two theories by incorporating side payments into a continuous-time game built

on [2]. Both incentives are utilized in our model: continuation payoffs vary with public

signals at all times, while side payments are used only when one player’s participation

constraint binds. In contrast to relational contracts where people “settle up” with side

payments each period, payments are used less frequently in our model because payments

are costless in relational contracts, but costly here.

Our paper is related to a large literature on the tragedy of the commons (e.g., [8],

[9], [10], [11], [12], [13]). When a resource is shared by many individuals, a tragedy

of the commons occurs because an individual does not internalize the effect that his or

her extraction reduces future stock of the resource, and hence reduces the welfare of other

individuals. Consequently, the equilibrium level of extraction is more than what is socially

optimal. Our paper differs from this literature because we assume a fixed stock of salmon

over time, and thus the issue of over-extraction does not exist. This simplifying assumption

is supported by the fact that the salmon stock has been well preserved since 1999 (see

the last paragraph of Appendix A). Another difference is that while the tragedy-of-the-

commons literature typically assumes away hidden action/moral hazard, hidden action

plays an important role in our model: without it, side payments are no longer needed as an

incentive device in our optimal contract.

Our paper is organized as follows. Section 2.2 studies the model under linear cost

for side payment. The main result is that the optimality equation admits two solutions.

Section 2.3 extends the model to the case with fixed cost for side payment. We calibrate

the fixed-cost model and find that the welfare gain of switching to the optimal contract is

1.54%. Section 2.4 concludes. Appendix A provides a brief history of the Pacific Salmon

Treaty, Appendix B has additional calibration details, and Appendix C contains proofs of

all the results.
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2.2 Model

Two players share a natural resource through long-term contracting at time zero. If the

players sign a contract, then after time zero they participate in a repeated game with moral

hazard in continuous time; otherwise, they receive outside options u1 and u2, respectively.

Before solving the contracting problem at time zero, we shall first describe the details of

the repeated game after time zero.

At each time t ∈ [0,∞), there is one unit of natural resource to be shared. If player 1

gets share x ∈ [0, 1], then player 2 gets 1−x. The players’ payoffs are, respectively, p1(x)

and p2(x), where p1 is strictly increasing and concave in x, and p2 is strictly decreasing

and concave in x.

Moral hazard exists because players may steal the natural resource from their oppo-

nents. If player i steals, then player j loses 1 + µ dollars whenever player i gains 1 dollar.

We can interpret µ > 0 as additional damages to player j’s environment caused by illegal

extraction. If the two players’ payoffs are (p1(xt), p2(xt)) and their stealing efforts are

(e1t, e2t), then their utility flows are:

(p1(xt) + e1t)dt+ (−(1 + µ)e2tdt+ σ1dZ1t),

(p2(xt) + e2t)dt+ (−(1 + µ)e1tdt+ σ2dZ2t).

Here, Z1t and Z2t are two independent standard Brownian motions that represent the un-

certainty in the environment, and (σ1, σ2) measure the size of uncertainty.5

Players’ actions (e1t, e2t) are private (i.e., eit is not observable by player j), but their

utility flows are public. The public history at time t contains the observed utility flows
5We have modeled stealing as players stealing each other’s payoffs rather than the underlying resource.

A more realistic model would specify players’ utilities as p1(xt+ e1t− (1 +µ)e2t)dt+σ1dZ1t and p2(xt+
(1 + µ)e1t − e2t)dt + σ2dZ2t. Our specification makes it easier to calibrate µ in Section 2.3.2, because
financial gains and losses due to illegal fishing are reported in dollar amounts, not in physical units of the
resource (such as tons in the fishing industry).
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before t and is captured by the filtration {Ft}. Because player 1 knows both his utility

flow and his action e1t, he can infer (−(1 + µ)e2tdt + σ1dZ1t), but he cannot distinguish

−(1 + µ)e2tdt from the uncertainty σ1dZ1t. In other words, if player 1 experiences a year

of low output, he does not know whether it is due to player 2’s stealing, or unfavorable

climate change in that year.

We allow for side payments between the two players. In particular, if player i pays qi

to player j, then the total expense for player i is (1 + τ)qi, where τ > 0 represents a linear

transaction cost. Player i’s discounted payoff is

Wi = E

[∫ ∞
0

re−rt ((pit + eit − (1 + µ)ejt − (1 + τ)qit + qjt)dt+ σidZit)

]
(2.1)

= E

[∫ ∞
0

re−rt ((pit + eit − (1 + µ)ejt)dt− (1 + τ)dQit + dQjt + σidZit)

]
,

where r > 0 is the discount rate and Qit :=
∫ t

0
qisds is the cumulative payment by player

i up to time t.

A long-term contract that the two players enter at time zero specifies a sharing-rule

process x = {xt; t ≥ 0}, action processes e = {(e1t, e2t); t ≥ 0} for the players to take,

and side-payment processes Q = {(Q1t, Q2t); t ≥ 0}. Processes (x, e,Q) must be adapted

to the public information available to the players, {Ft}.

2.2.1 Incentive compatibility

Because actions (e1t, e2t) are not publicly observable, contracts will have to satisfy

incentive compatibility constraints. A contract is incentive compatible (IC) if stealing

cannot make the players better off. We will express IC constraints using the following

results of [2].

For any contract (x, e,Q), define its associated continuation payoff process W =

6



{(W1t,W2t); t ≥ 0} as

Wit := E
[ ∫ ∞

t

re−r(s−t)
(

(pis + eis − (1 + µ)ejs)ds− (1 + τ)dQis

+dQjs + σidZis

)]
. (2.2)

There exists a process βi = {(βi1t , βi2t ); t ≥ 0} such that the continuation payoffs evolve

as

dWit = r(Wit − (pit + eit − (1 + µ)ejt))dt+ r(1 + τ)dQit − rdQjt

+rβi1t dZ1t + rβi2t dZ2t, i = 1, 2.

Here, βijt represents the sensitivity of player i’s continuation payoffWit to player j’s signal

(i.e., player j’s observed output). The IC constraint for player i is, for all t ≥ 0 and ẽi ≥ 0,

eit + βiit eit − (1 + µ)βijt eit ≥ ẽi + βiit ẽi − (1 + µ)βijt ẽi.

This means

1 + βiit − (1 + µ)βijt ≤ 0, (2.3)

with equality if eit > 0.

2.2.2 The set of continuation payoffs

Since players have outside options (u1, u2), their continuation payoffs in any contract

must satisfy the participation constraint:

Wit ≥ ui, ∀t ≥ 0, i = 1, 2. (2.4)

7



For convenience, we can define A := {(w1, w2) : w1 ≥ u1, w2 ≥ u2} and write the

participation constraint as (W1t,W2t) ∈ A.

Let E be the set of continuation payoff pairs achieved by all IC contracts, i.e.,

E := {(W1t,W2t) ∈ A : (W1t,W2t) satisfies (2.2) for some IC contract}.

The following lemma shows that E is monotonic: if (w1, w2) belongs to E , then the vectors

below (w1, w2) also belong to E . In particular, (u1, u2) ∈ E .

Lemma 1. If (w1, w2) ∈ E and for some Q1 ≥ 0 and Q2 ≥ 0,

w̃1 = w1 − r(1 + τ)Q1 + rQ2 ≥ u1,

w̃2 = w2 − r(1 + τ)Q2 + rQ1 ≥ u2,

then (w̃1, w̃2) ∈ E .

The proof of this lemma is straightforward. Suppose at time 0 a contract lets player i pay

Qi to his opponent and restarts from (w1, w2). This contract delivers payoff w1 − r(1 +

τ)Q1 + rQ2 to player 1 and w2 − r(1 + τ)Q2 + rQ1 to player 2, thus (w̃1, w̃2) ∈ E .

The next subsection studies the boundary of E , which we denote as ∂E .

2.2.3 Pareto frontier

This subsection shows that ∂E consists of three portions: a horizontal portion, a vertical

portion, and a downward sloping portion.

We first characterize the horizontal portion and the vertical portion of ∂E . Define

u1 := max{w1 : (w1, u2) ∈ E}, u2 := max{w2 : (u1, w2) ∈ E}. (2.5)

That is, ui is the highest payoff for player iwhen player j’s payoff is at the minimum. Then

8



the horizontal portion and vertical portion of ∂E are, respectively, {(w1, u2) : u1 ≤ w1 ≤

u1} and {(u1, w2) : u2 ≤ w2 ≤ u2}. To see that these boundaries are non-degenerate,

we need to show ui < ui. Pick w ∈ E such that w 6= (u1, u2). Lemma 1 states that if

Q1 =
w1−u1

r(1+τ)
and Q2 = 0, then (w̃1, w̃2) = (u1, w2 + (w1 − u1)/(1 + τ)) ∈ E . Therefore,

u2 < w2 + (w1 − u1)/(1 + τ) ≤ u2.

Similarly, we can show that u1 < u1.

Then, we study the portion of the boundary from (u1, u2) to (u1, u2). This portion stays

above the straight line connecting the two points because E is convex. We show below that

this boundary is downward sloping.

Let T(w) and N(w) be the unit tangent and outward normal vectors to ∂E at a boundary

pointw. If θ is the angle between N(w) and the x-axis, then T(w) = (− sin(θ), cos(θ)) and

N(w) = (cos(θ), sin(θ)). To see that the boundary from (u1, u2) to (u1, u2) is downward

sloping, it is sufficient to show that the slope of the boundary, − cos(θ)
sin(θ)

, satisfies

−(1 + τ) ≤ −cos(θ)

sin(θ)
≤ −(1 + τ)−1. (2.6)

Lemma 1 states that (w1−r(1+τ)Q1, w2+rQ1) ∈ E , (w1+rQ2, w2−r(1+τ)Q2) ∈ E for

Q1 ∈ [0,
w1−u1

r(1+τ)
] and Q2 ∈ [0,

w2−u2

r(1+τ)
]. Since the convex set E is either above or below the

tangent line atw, we know that (w1−r(1+τ)Q1, w2+rQ1) and (w1+rQ2, w2−r(1+τ)Q2)

stay on the same side of the tangent line. This implies (2.6).

Since the boundary from (u1, u2) to (u1, u2) is downward sloping, we can define the

mapping from w1 to w2 as f(·). Function f(·) represents the Pareto frontier of E because

w2 = f(w1) is the highest payoff for player 2 if player 1’s payoff is w1 ∈ [u1, u1].

In the following analysis, we further characterize the Pareto frontier as the solution to

9



some differential equation.

2.2.4 Restriction to no stealing

In this paper, we restrict ourselves to contracts that recommend no stealing, i.e., e1t =

e2t = 0 for all t. Under the following assumption, this restriction is without loss of

generality.

Assumption 1. Stealing is more costly than making a transfer through side payments, i.e.,

µ ≥ τ .

Lemma 2. Under Assumption 1, it is optimal to recommend e1t = e2t = 0 for all t.

Two remarks regarding the assumption are in order. First, data suggest that stealing is

costly. In Section 2.3.2, we calibrate µ to be 0.84, which seems to be much larger than

typical costs associated with money transfer. Second, even if Assumption 1 is violated, a

treaty that allows countries to steal might be too controversial to be politically viable.

2.2.5 Optimality equation for the Pareto frontier

[2] shows that, at any point w on the Pareto frontier, the sensitivities βi = (βi1, βi2) in

the IC constraints are given by a vector of tangential volatilities (φ1, φ2) as follows:

 β11 β12

β21 β22

 =

 − sin(θ)φ1 sin(θ)φ2

cos(θ)φ1 − cos(θ)φ2

 . (2.7)

Furthermore, the curvature of the boundary at w satisfies the following optimality equa-

tion:

κ(w) = max
x∈[0,1],

q1≥0,q2≥0

2N(θ)((p1(x), p2(x)) + q1(−1− τ, 1) + q2(1,−1− τ)− w)

r|φ(θ)|2
,

10



where |φ(θ)|2 is given by

|φ(θ)|2 = min
φ1,φ2

σ2
1φ

2
1 + σ2

2φ
2
2

subject to (2.3), (2.7).

Lemma 3 below shows that both |φ(θ)|2 and the optimal x in the optimality equation

can be solved explicitly. This result greatly simplifies the analysis in the next subsection.

Lemma 3. 1. The optimal (φ1, φ2) is given by

(φ1, φ2) =



(
σ2

2

sin(θ)(σ2
2+(1+µ)2σ2

1)
,

(1+µ)σ2
1

sin(θ)(σ2
2+(1+µ)2σ2

1)

)
, if θ ∈ (0, θ1];(

1+µ
cos(θ)

− 1
sin(θ)

(1+µ)2−1
,

1+µ
sin(θ)

− 1
cos(θ)

(1+µ)2−1

)
, if θ ∈ [θ1, θ2];(

(1+µ)σ2
2

cos(θ)(σ2
1+(1+µ)2σ2

2)
,

σ2
1

cos(θ)(σ2
1+(1+µ)2σ2

2)

)
, if θ ∈ [θ2,

π
2
),

where θ1 := arctan
(

(σ2
1+σ2

2)(1+µ)

σ2
2+(1+µ)2σ2

1

)
and θ2 := arctan

(
σ2

1+(1+µ)2σ2
2

(σ2
1+σ2

2)(1+µ)

)
.

2. The optimal x∗ is uniquely pinned down by cos(θ)p′1(x∗) + sin(θ)p′2(x∗) = 0 for any

θ.

Remark 1. Both φ1 and φ2 are positive in Lemma 3. This and (2.7) imply that βii < 0

but βji > 0. That is, when player i’s output is higher than the expectation (dZit > 0),

then player i is punished (both his continuation value Wit and his future share of salmon

decrease), while player j is rewarded. This property of the model is consistent with what

we observe in the data. In 2001, the Pacific Salmon Treaty reallocated 57,000 sockeye

salmon in Fraser River (about 3.7% of the total allowable catch) from the U.S. to Canada,

because the U.S. catch was excessive in 2000.6

We can simplify the right-hand side of the optimality equation by removing q1 and q2

6See the 17th Annual Report of the Pacific Salmon Commission.
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from the numerator. Since θ satisfies (2.6),

N(θ)(−1− τ, 1) = −(1 + τ) cos(θ) + sin(θ) ≤ 0,

N(θ)(1,−1− τ) = cos(θ)− (1 + τ) sin(θ) ≤ 0.

Therefore, the optimal solutions in the maximization problems maxq1≥0 N(θ)(−1−τ, 1)q1

and maxq2≥0 N(θ)(1,−1 − τ)q2 can be set as q1 = 0 and q2 = 0.7 Then the optimality

equation reduces to

κ(w) = max
x∈[0,1]

2N(θ)((p1(x), p2(x))− w)

r|φ(θ)|2
.

2.2.6 Solving the optimality equation

This subsection characterizes solutions to the optimality equation.

On the boundary, the Pareto frontier must satisfy the smooth pasting conditions:

f ′(w1 = u1) = −(1 + τ)−1,

f ′(w1 = u1) = −(1 + τ).

Smooth pasting conditions are imposed because w1t is a regulated diffusion process that

stays within the domain [u1, u1]: if w1t ∈ (u1, u1), we have argued earlier that side pay-

ments (q1, q2) are not used; if w1t reaches either u1 or u1, side payments are just enough

to keep w1t inside the interval [u1, u1].8 9 Because f ′(w1) = − 1
tan(θ)

, the smooth pasting

7This argument applies only in the interior of the Pareto frontier, i.e., when w1 > u1 and w2 > u2. If
wi = ui, then player i must pay to avoid his participation constraint being violated.

8See chapter 10 in [14] for a detailed discussion of regulated process. We have proven rigorously that
side payments in the optimal contract are just enough to keep w1t inside the interval [u1, u1]. This proof is
available upon request.

9Because w2t = f(w1t) and w1t is regulated to stay in [u1, u1] at all times, our continuation payoff pair
(w1t, w2t) is always on the Pareto frontier, meaning that our contract is renegotiation-proof. In contrast,
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conditions can be expressed in terms of θ:

θ = θ := arctan(1 + τ), if w1 = u1, (2.8)

θ = θ := arctan((1 + τ)−1), if w1 = u1. (2.9)

If l denotes the distance of the Pareto frontier from (u1, u2) to w, then we can refor-

mulate the optimality equation by writing all other variables as functions of l:

dw1(l)

dl
= − sin(θ(l)), (2.10)

dw2(l)

dl
= cos(θ(l)), (2.11)

dθ(l)

dl
= max

x∈[0,1]

2N(θ)((p1(x), p2(x))− w)

r|φ(θ)|2
. (2.12)

In the rest of this section, we shall characterize the solutions to (2.10)-(2.12) under the

smooth pasting conditions.10 Our main result is that the system admits two solutions, and

the outer solution is the true Pareto frontier. This result greatly simplifies the search for

the Pareto frontier.

In particular, the construction of a solution takes the following three steps. First, we

guess a value of u1 and then solve (2.10)-(2.12) using the initial conditions (w1, w2, θ) =

(u1, u2, θ). Second, we show that there exists L such that w1(L) = u1. In other words, the

solution curve will cross the vertical straight line Y := {(u1, w2) : w2 ∈ R} at some point.

Third, we check the smooth pasting condition (2.8) at l = L, i.e., θ(L) = θ. We can show

that there are only two values of u1 starting from which θ(L) = θ.

equilibria in [2] are not necessarily renegotiation-proof because his payoff pair may move to a boundary
point below the Pareto frontier.

10Note that the cost of side payments, τ , affects the boundary conditions of (2.10)-(2.12), although τ does
not enter the system explicitly. We can show that a lower τ moves the Pareto frontier up and to the right, and
hence the set of continuation payoffs expands with better side-payment technology. This is consistent with
findings in [15], [16], and [17] that side payments could make collusion/cooperation easier.
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(u1, u2)

{(p1(x), p2(x)) : x ∈ [0, 1]}

(p1(x), p2(x))

slope=−(1 + τ)

(u1, u2)

Line X

Line Y

Figure 2.1: u1 is an upper bound for u1.

In order to search for u1, we first need to find its range. The following lemma provides

an upper bound for u1. Consider the tangent line of slope−(1+ τ) in Figure 2.1. This line

is tangential to the curve {(p1(x), p2(x)) : x ∈ [0, 1]} at point (p1(x), p2(x)) and intersects

the horizontal straight line X := {(w1, u2) : w1 ∈ R} at (u1 := p1(x) + (p2(x)−u2)/(1 +

τ), u2).11 The following lemma shows that our guess of u1 cannot exceed u1.

Lemma 4. If (W1,W2) is the pair of promised payoffs delivered by some contract and

W2 = u2, then W1 ≤ u1.

By Lemma 4, the appropriate range of u1 is [u1, u1]. When u1 is in this range, the so-

lution to (2.10)-(2.12) starting from (w1, w2, θ) = (u1, u2, θ) exists and is unique, because

the right-hand sides of (2.10)-(2.12) are Lipschitz continuous (Lemma C.1 in Appendix C
11x is given by the condition

p′2(x)

p′1(x)
= −(1 + τ).
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verifies the Lipschitz continuity).

The next lemma shows that the solution to (2.10)-(2.12) always crosses the vertical

straight line Y. This result is not surprising because the Pareto frontier is concave, that is,

the frontier becomes flatter as w1 decreases (see Lemma C.2 in Appendix C for a proof).

Intuitively, if the solution to (2.10)-(2.12) never hits the vertical Y, it must bend upward as

w1 approaches u1.

Lemma 5. The solution curve starting from (w1, w2, θ) = (u1, u2, θ) crosses Y once for

u1 ∈ [u1, u1]. In other words, there exists a unique L ≥ 0 such that w1(L) = u1.

If a curve starts from (w1, w2, θ) = (u1, u2, θ), denote the angle of the curve when

it crosses Y, θ(L), as Θ(u1). Theorem 1 shows that Θ(u1) is first increasing and then

decreasing in u1.

Theorem 1. Θ(u1) is single-peaked. That is, there exists a u∗1 such that Θ is strictly

increasing in [u1, u
∗
1] and strictly decreasing in [u∗1, u1].

The intuition for the single-peakedness in Theorem 1 is as follows. We can express

Θ(u1) as

Θ(u1) = θ(L) = θ +

∫ L

0

θ′(l)dl = θ + Lκ,

where κ is the average curvature of the solution curve. The length of the Pareto frontier,

L, is increasing in u1 while the curvature κ is decreasing in u1: as u1 increases, the Pareto

frontier moves outward and its length L increases, but the larger payoff pair w reduces the

term ((p1(x), p2(x)) − w) in the optimality equation and hence reduces the curvature of

the Pareto frontier (see Figure 2.2). Moreover, if u1 takes the smallest value of u1, then

L = 0 because the starting point of the curve is on Y and the curve is degenerate; if u1
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κ

u1

L

u1 u1

Lκ

Figure 2.2: Lκ is first increasing and then decreasing in u1.

takes the largest value of u1, then the solution curve is a straight line: its curvature is zero

because maxx∈[0,1] N(θ)((p1(x), p2(x))− w) is everywhere zero.

Because L and κ move in opposite directions and Θ(u1) depends on the product of

the two, the slope of Θ depends on whether L or κ moves faster, in percentage terms. If

u1 ≈ u1, then L moves faster in percentage terms than κ because L is close to zero. On

the other hand, κ moves faster when u1 ≈ u1 and κ is close to zero. Therefore, Θ is first

increasing when L dominates and then decreasing when κ dominates.

Theorem 1 immediately implies the following:

Corollary 1. Only two solutions to (2.10)-(2.12) satisfy the smooth pasting conditions

(2.8)-(2.9).

It is useful to relate our result to the repeated-game literature. In discrete-time repeated

games, [3] show that the equilibrium set of continuation payoffs, E , is a fixed point of some

operator that maps the set of future continuation payoffs into the set of current continua-
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tion payoffs. To compute E , they start with a superset of E and iterate on a sequence of

sets until the sequence converges to E . This iteration procedure, however, is time consum-

ing. In a continuous-time setting, [2] shows that the boundary of E solves a second-order

differential equation (i.e., the optimality equation). Sannikov’s continuous-time method

has an advantage over the discrete-time method because solving differential equations is

numerically easier than computing the operator in [3]. The disadvantage, however, is that

finding the initial condition for the optimality equation is difficult. When there are multi-

ple initial conditions (starting from which the solution curve forms the boundary of some

set), it is hard to tell which initial condition is correct.12 Presumably, we need to find the

largest set whose boundary solves the optimality equation, but this process is one of trial

and error.

Our paper moves forward the analysis in [2] in two aspects. First, our initial condition

is given by the smooth pasting conditions, thanks to the technology of side payments in

our model. Second, under the smooth pasting conditions, only two solutions exist for

the optimality equation. The two solutions can be easily distinguished because Θ′(u1) is

positive for the inner solution but negative for the outer solution. The latter represents the

true Pareto frontier because it is the boundary of a bigger set.

2.3 Model with fixed cost

Despite being analytically tractable, the linear-cost model in Section 2.2 has one draw-

back: it predicts that payments are made infinitely many times and each payment is in-

finitesimal.13 This prediction is inconsistent with the data, because the actual payments in

the Pacific Salmon Treaty are both infrequent and large (more details are in Section 2.3.2).

12To make matters worse, the number of initial conditions is typically unknown a priori.
13Payments are made whenever W1t reaches the boundary of [u1, u1]. Since W1t is a diffusion process,

on the one hand it reaches the boundary of [u1, u1] infinitely many times, but on the other hand it stays at the
boundary for zero amount of time. It is merely an artifact of the continuous-time setup that infinitely many
payments can be made in no time.
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To better capture the payment frequency and amount, this section studies a model where

payment incurs a fixed cost C > 0. In particular, if player i makes a payment Q to player

j, then their payoffs are −Q − C
2

and Q − C
2

, respectively. Our assumption that play-

ers equally share the fixed cost is convenient but not essential for the following analysis.

Facing the fixed cost, players pay only occasionally in the optimal contract.

2.3.1 Pareto frontier

Our focus is still on the equilibrium set of payoffs E and its boundary ∂E . Similar to

the linear-cost case, ∂E contains a horizontal portion, a vertical portion, and a downward

sloping portion (see Lemma C.7 in Appendix C for a proof).14 We continue to denote the

Pareto frontier as f : [u1, u1]→ w2. Similar to the linear-cost case, side payments are not

used unless w1 is on the boundary of [u1, u1] (see Lemma C.6 in Appendix C for a proof).

Therefore, the interior of the Pareto frontier still satisfies the ODE in (2.10)-(2.12), which

is the optimality equation with no side payments.

Boundary conditions for the ODE in (2.10)-(2.12) are given by the following value

matching conditions:

u1 + u2 = max
(w1,w2)∈E

w1 + w2 − rC, (2.13)

u1 + u2 = max
(w1,w2)∈E

w1 + w2 − rC. (2.14)

We prove (2.13) in two steps. First, we show u1 + u2 ≥ max(w1,w2)∈E w1 + w2 − rC.

Let (w∗1, w
∗
2) be the solution to max(w1,w2)∈E w1 + w2. Then (w∗1 + w∗2 − rC − u2, u2) ∈

E , because a contract that first lets player 2 pay Q2 = (w∗2 − u2)/r − C/2 to player 1

and then restarts at (w∗1, w
∗
2) delivers payoff w∗2 + r(−Q2 − C/2) = u2 to player 2 and

w∗1 + r(Q2 − C/2) = w∗1 + w∗2 − rC − u2 to player 1. Since u1 is the highest payoff

for player 1 when player 2’s payoff is u2, u1 ≥ w∗1 + w∗2 − rC − u2. Second, we show
14The only exception is that C is so large that E becomes degenerate.
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u1 + u2 ≤ max(w1,w2)∈E w1 + w2 − rC. A contract promising (u1, u2) must ask player 2

to pay player 1, otherwise player 2’s continuation payoff has to follow a diffusion process

and violates his participation constraint with positive probability.15 If (w̃1, w̃2) are the

continuation payoffs after payment, then

u1 + u2 = w̃1 + w̃2 − rC ≤ max
(w1,w2)∈E

w1 + w2 − rC.

The same argument at (u1, u2) yields (2.14).

We can no longer follow the solution procedure in Section 2.2.6 (i.e., conjecture u1

and start the solution curve from (u1, u2, θ)), because we do not know the initial angle θ.16

Below, we propose a procedure that is suitable for the fixed-cost model.

We will need to conjecture two values: (1) the sum of payoffs S := maxw1 w1 +f(w1),

and (2) the optimal w∗1 that satisfies the first-order condition

f ′(w∗1) = −1. (2.15)

The advantage of this procedure is that the angle θ at w∗1 is π
4
, thanks to (2.15). This allows

us to solve the solution curve from (w1, w2, θ) = (w∗1, S − w∗1, π4 ) until it hits one of the

boundaries X, Y.

For each pair (S,w∗1), consider the solution to (2.10)-(2.12) with initial conditions

(w∗1, S − w∗1, π4 ). The solution curve will cross both X and Y,17 and we denote the inter-

section points as (u1, u2(w∗1)) and (u1(w∗1), u2), respectively.

Lemma 6. For each S ∈ (u1 + u2,maxx∈[0,1] p1(x) + p2(x)), there is a unique w∗1 ∈
15Because (u1, u2) is an extreme point of the convex set E , it cannot be delivered by any lottery.
16Alternatively, we can conjecture both u1 and θ and search for a solution curve to satisfy (2.13) and

(2.14). This procedure turns out to be numerically unstable because a solution curve never crosses the
straight line Y (hence we cannot check equation (2.14)) whenever the conjectured u1 is too large or θ is too
small.

17This can be shown by an argument similar to that in Lemma 5.
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Line X
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Y-axis

X -axis

(u1, u2)

(u1, u2)

(S2 ,
S
2 )

Figure 2.3: Change of coordinates.

(u1, S − u2) such that u1 + u2(w∗1) = u1(w∗1) + u2.

The unique w∗1 in Lemma 6, which we denote as w∗1(S), allows us to reduce two value

matching conditions (2.13)-(2.14) into one equation:

u1 + u2(w∗1(S)) = S − rC. (2.16)

How many solutions of S are there in (2.16)? Hinted by the linear-cost case, we

conjecture two solutions. Although we have not been able to prove this result analytically,

all of our numerical examples confirm this conjecture. Below, we offer a proof of this

claim for a special case.

Suppose the two players are symmetric and u1 = u2 = 0. Because the Pareto frontier

is symmetric around the 45-degree line, w∗1 = w∗2 = S − w∗1 = S/2. Given the symmetry,
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it is easier to work with new coordinates (X ,Y)

X :=

√
2

2
(w1 − w2), Y :=

√
2

2
(w1 + w2).

That is, the X -axis and Y-axis under the new coordinates correspond to the negative-45-

degree line and the 45-degree line under the old coordinates (see Figure 2.3). We parame-

terize the Pareto frontier as Y = −A
2
X 2 +

√
2

2
S, where A > 0 and S > 0 are parameters to

be determined below. Two things are worth mentioning. First, the parameterized frontier

is symmetric around the Y-axis (i.e., the old 45-degree line). In particular, the peak of

the frontier, (0,
√

2
2
S), corresponds to (w∗1, S − w∗1) = (S/2, S/2) in the old coordinates.

Second, for a given S, it is impossible for the frontier to satisfy the optimality equation at

all points since there is only one free parameter, A. Therefore, we check the optimality

equation only at X = 0,18

A =
−Y ′′(0)(√

1 + (Y ′(0))2
)3 = κ(π/4) = max

x∈[0,1]

2N(π/4)((p1(x), p2(x))− (S/2, S/2))

r|φ(π/4)|2

=

√
2

r|φ(π/4)|2
(2p(1/2)− S)

=
√

2B(D − S),

where B := 1
r|φ(π/4)|2 and D := 2p(1/2) are introduced to simplify notations. We derive

(2.16) as follows. At (u1 = 0, u2) in Figure 2.3, substituting (X ,Y) = (−
√

2
2
u2,

√
2

2
u2)

into Y = −A
2
X 2 +

√
2

2
S, we have

u2 =
−
√

2
2

+
√

1
2

+ 4A
4

√
2

2
S

A
2

=

√
1 + 2B(D − S)S − 1

B(D − S)
,

18If one insists on solving the optimality equation everywhere, then there is no closed-form solution.
Without a closed-form solution, it is difficult to check the number of solutions to (2.16).
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where the second equality uses A =
√

2B(D−S). Substituting u1 = 0 and the above into

(2.16) yields

√
1 + 2B(D − S)S − 1

B(D − S)
= S − rC. (2.17)

Theorem 2. Equation (2.17) has two solutions of S in (0, D).

Our analysis so far determines the Pareto frontier, but not the initial continuation values

(W10,W20) to start the repeated game. Which point on the Pareto frontier is chosen usually

depends on the players’ bargaining powers. Here, however, we suppose that the game

starts at (w∗1, f(w∗1)), i.e., the continuation values after a payment is made in our model.

We can do this because the U.S. paid Canada in 1999.

2.3.2 Calibration

In this section, we will quantitatively evaluate the optimal contract. We first calibrate

the model parameters to match certain observed features of the Pacific Salmon Treaty.

We then compute the gain of switching to the optimal mechanism. Players 1 and 2 are,

respectively, the U.S. and Canada. Throughout this section, our model period is one year

(so the interest rate r is 0.04 in Subsection 2.3.2.3) and our results such as the welfare

gains are measured in 1999 USD.

2.3.2.1 Estimation of µ, p1(·), p2(·)

According to [18], illegal, unreported, and unregulated fishing may damage the envi-

ronment and keep fisheries locked in low-value states. They estimate the environmental

cost to be almost 9 billion euros when EU member states lose catches worth 10.7 billion

euros. So we choose the value µ = 9
10.7

= 0.84.

Next, we estimate Canada’s payoff function p2(·). Since our annual time series data

are relatively short, we use monthly data to make our regression more accurate. That is,
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we first estimate the monthly payoff functions, and then we convert monthly payoffs into

an annual payoff. This procedure consists of three steps.

1. Construction of monthly x2t and p2t. In the model, x represents the amount of the

resource and p represents a player’s payoff. In the data, we interpret x as the catching

weight (in pounds) and p as the value added (in 1999 USD), which is defined as gross

revenue minus the cost of intermediate goods such as repairs, gear, food, fuel, etc.

The monthly catching weight for Canada is from Canada’s Department of Fisheries

and Oceans (DFO). The monthly value added for Canada is calculated as 22.5% of

the monthly revenue reported by DFO. Appendix B explains how the value-added

ratio is determined.
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Figure 2.4: Approximately linear relationship between ln(p) and ln(x).

2. Estimation of monthly payoff function. The right panel in Figure 2.4 plots ln(p2t)

against ln(x2t). It shows that ln(p2t) is approximately linear in ln(x2t). Therefore,
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we run the following OLS regression19

ln(p2t) = β2 + α2 ln(x2t) + ε2t,

and assume that the monthly payoff function is pm2 (x2t) = eβ2(x2t)
α2 . Our regres-

sion results are in the last row of Table 2.1.

Table 2.1: Summary of OLS regression

Country β̂i α̂i Number of obs

U.S. (i = 1) 0.61 0.90 204
(0.12) (0.01)

Canada (i = 2) 0.05 0.90 175
(0.19) (0.01)

Notes: The U.S. data are provided by National Oceanic and Atmospheric Administration from 1999 to 2015.
Canada’s data are provided by its Department of Fisheries and Oceans from 1999 to 2014. Data with zero
values are removed from regression.

3. Construction of annual payoff function. We define the annual payoff function as

p2(x2) :=
∑12

k=1 p
m
2 (ρkx2), where pm2 (ρkx2) is the payoff in the kth month, and ρk is

the average ratio between the catching weight in the kth month and that in the whole

year.

We follow the same procedure when we estimate p1(·) for the U.S. In doing so, we face

a missing-data problem that Alaska did not report its monthly data after 1998. We solve the

problem as follows. Since the distributions of catching weight and revenue across different

months were stable in Alaska before 1998, we assume that these distributions remain
19We also tried more general functional forms. For example, we added a quadratic term (ln(x2t))

2 as
regressor, but found that the results in the following are barely changed.
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unchanged after 1998. We then impute Alaska’s monthly data after 1998 using Alaska’s

annual data and the unchanged distributions. Then, we construct the U.S. monthly data by

aggregating the monthly data of Alaska and those of other states. Finally, we calculate the

U.S. monthly value added as 40.9% of the monthly revenue, run the same linear regression

for the U.S., and report our results in the first row of Table 2.1. Again, Appendix B explains

how we determine the U.S. value-added ratio. The fact that the U.S. has a higher value-

added ratio suggests that the U.S. production function is more efficient than Canada’s, and

this intuition will help us understand the welfare-gain result in Subsection 2.3.2.3.

2.3.2.2 Calibration of (σ1, σ2, u1, u2, C) and the total amount of resource x̄

This subsection calibrates the other six parameters (σ1, σ2, u1, u2, C, x̄). Here x̄ repre-

sents the total amount of resource; in the discussion so far, this amount has been normal-

ized to 1.

Ideally, we want to build an extensive-form bargaining model to describe the forma-

tion of the Pacific Salmon Treaty (PST). Then we can calibrate the above six parameters

so that this descriptive model replicates certain attributes of the treaty (payment amount,

frequency, etc.). However, such a model is not immediately available because the bargain-

ing process when the PST was signed in 1999 was not revealed to the public. Without

much information about the actual bargaining process, we find it difficult to discipline any

extensive form, and therefore think the following reduced-form model should serve our

purpose equally well.

Suppose the two countries achieve some payoff pair w ∈ E after signing the PST. We

allow w to be below the Pareto frontier because the PST may not be designed optimally

due to contracting inefficiencies that we do not observe. To capture such inefficiencies, we

assume that both countries have discount rate r̃ greater than r.20 Under a higher discount

20The assumption that government is less patient than the market interest rate is also used in [19]. Polit-
ical economy models (e.g., [20]) provide a justification for this assumption: incumbent politicians behave
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Table 2.2: Calibrated parameters

σ1 σ2 u1 u2 C x̄ r̃

42.61 2.54 116.51 5.57 14.93 416.27 0.16

Notes: (σ1, σ2, u1, u2, C) are measured in 1999 million USD. x̄ is in million pounds.

rate, players are less patient and less willing to cooperate. On the other hand, we continue

to assume that countries behave optimally in other aspects (i.e., sign an optimal contract

under r̃). This way of modeling inefficiency is very parsimonious because all inefficiencies

are embedded in one parameter r̃. We can adjust r̃ so that w /∈ ∂E(r) lies on the Pareto

frontier of a model with discount rate r̃, because the Pareto frontier and E(r̃) shrink in r̃.

More specifically, we calibrate six parameters (σ1, σ2, u1, C, x̄, r̃) to match six targets:

(1) payment amount of the U.S.; (2) payment frequency of the U.S.; (3) mean of the U.S.

payoffs; (4) variance of the U.S. payoffs; (5) mean of Canada’s payoffs; (6) variance of

Canada’s payoffs. Note that we do not calibrate u2, because u2 affects mostly Canada’s

payment amount and frequency, but we have not observed any payment by Canada in our

data set. We simply let u2 satisfy u2

mean of Canada’s payoffs =
u1

mean of the U.S. payoffs , i.e., Canada’s

outside option is similar to that of the U.S. (relative to their respective equilibrium payoffs).

The calibration results in Table 2.2 are in line with other related estimates. First,

(σ1, σ2) = (42.61, 2.54) is below the standard deviation of the U.S. payoffs and Canada

payoffs because payoff variation contains both random shocks σidZit and the time varying

pi(xt). That σ1 � σ2 is not surprising because in the data both the standard deviation

and the mean of the U.S. payoffs are much larger than those of Canada.21 Second, the

outside options (u1, u2) = (116.51, 5.57) correspond to the case that countries receive

impatiently because they may not remain in power in the future.
21But the U.S. coefficient of variation is smaller than Canada’s.

26



90% of their average annual income permanently. That is, compared with cooperative

management, taking outside options and being noncooperative reduces countries’ income

by 10%. In the literature, estimates of the loss due to noncooperation range from 3% to

15%.22 Our estimate is well within this range. Third, C is roughly equal to 5.46 years of

operation cost of the Pacific Salmon Commission. Since the majority of the work done

by the commission is to collect data on the salmon species and organize bilateral negotia-

tion meetings, this estimate of C seems reasonable. Fourth, our estimate of x̄ is equal to

95.20% of the two countries’ average catching weight over 1999-2014. The discrepancy

here might be due to the small-sample nature of the latter. Finally, our estimate of r̃ is

significantly higher than r, suggesting that the underlying contracting inefficiencies are far

from negligible.23

2.3.2.3 The optimal contract and its welfare gain

In this subsection, we compute the optimal contract and compare it with the positive

contract in Subsection 2.3.2.2. The two contracts share the same parameter values in Table

2.2 except for the discount rate: r = 0.04 in the optimal contract,24 while r̃ = 0.16 in the

positive one.

First, we compare the U.S. payment amount and frequency in the two contracts. Table

2.3 shows that the U.S. pays more frequently in the positive contract than in the optimal

one. Since each payment incurs C, by paying less frequently the optimal contract incurs

less total fixed cost, making it more efficient than the positive contract. One might wonder

why the positive contract does not do the same (i.e., have a lower payment frequency and

a larger payment amount). This is because under a high discount rate r̃ = 0.16, the present

22See, e.g., [21], [22], [23], and [24].
23If one thinks that our estimate of r̃ is too high to be reasonable, please note that r̃ captures all sources

of inefficiencies. r̃ = 0.16 is chosen to match observables such as the high payment frequency of the U.S.
24We choose r = 0.04 because the implied annual discount factor is 0.96. This discount factor is com-

monly used in macroeconomics research.

27



Table 2.3: The U.S. payment amount and frequency

Positive contract Optimal contract

U.S. payment amount $56.31 million $327.58 million

Average duration between
two U.S. payments 10 years 30.68 years

value of paying $327.58 million every 30.68 years is much lower than paying $56.31

million every 10 years, and thus the former payment scheme cannot compensate Canada

sufficiently.

Second, we compare welfare levels achieved by the two contracts. For the opti-

mal contract, instead of reporting total welfare of the two countries as w1 + w2, Ta-

ble 2.4 reports w1+w2

r
. Since w1 + w2 = E

[∫∞
0
re−rt (p1t + p2t) dt−

∑∞
k=1 re

−rtkC
]
,

where tk is the kth payment time, by removing r in the flows and reporting w1+w2

r
, we

normalize our welfare level to be the standard present value of flows. Furthermore, to

make this comparison meaningful, we calculate welfare in the positive contract using the

same discount rate as in the optimal contract. That is, welfare in the positive contract

is E
[∫∞

0
e−rt (p1t + p2t) dt−

∑∞
k=1 e

−rtkC
]
, although {(p1t, p2t); t ≥ 0} and {tk; k =

1, 2, 3, ...} in the positive contract are derived under the discount rate r̃.

The first row in Table 2.4 shows that switching to the optimal contract improves welfare

by $51.66 million, or about 1.54%. There are two sources of this welfare gain: (1) the

reduction in fixed cost, and (2) the increase in payoff flows. As discussed before, the

optimal contract reduces the total fixed cost by paying less frequently. The second row in

Table 2.4 confirms this: total fixed cost is reduced by $23.79 millon, contributing to 0.71

percentage points in the welfare gain. More importantly, the third row in Table 2.4 shows

that the present value of p1t+p2t is higher by $27.87 millon in the optimal contract, which
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Table 2.4: Change of welfare measured in 1999 million USD

Positive contract Optimal contract Difference

E
[ ∫∞

0
e−rt (p1t + p2t) dt

−
∑∞

k=1 e
−rtkC

] 3351.36 3403.02 51.66

E [
∑∞

k=1 e
−rtkC] 29.58 5.78 -23.79

E
[∫∞

0
e−rt (p1t + p2t) dt

]
3380.94 3408.81 27.87

E
[∫∞

0
e−rtp1tdt

]
3226.06 3385.9 159.84

E
[∫∞

0
e−rtp2tdt

]
154.88 22.91 -131.97

contributes to 0.83 percentage points in the welfare gain. Since the increase in p1t + p2t

explains more than half of the welfare gain, in the following we shall try to understand the

reason for this increase.

The last two rows of Table 2.4 report separately the present values of p1t for the U.S.

and p2t for Canada. The U.S. receives more payoff flows in the optimal contract than

in the positive contract, while Canada does the opposite. This implies that the optimal

contract reallocates salmon resources from Canada to the U.S. In fact, the average U.S.

catching weight has increased by 21.4 million pounds moving from the positive contract

to the optimal contract, while Canada’s weight has decreased by the same amount. Note

that the U.S. gains more in terms of value added than Canada loses, so the total payoff

increases after this reallocation. That the U.S. production function is more efficient than

Canada’s is consistent with the earlier observation that the ratio between value added and

revenue is 40.9% in the U.S. but only 22.5% in Canada.

2.4 Conclusion

In this paper, we study the optimal design of the Pacific Salmon Treaty under two-sided

moral hazard. We extend the theory of continuous-time repeated games to allow for side
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payments. We view our analysis as making two contributions. First, we show that there

are only two solutions to the optimality equation that characterizes the boundary of the set

of equilibrium payoffs. This technical contribution greatly simplifies the calculation of the

equilibrium set. In the literature, the search for the solution to the optimality equation is

done by trial and error. Second, we provide a useful policy recommendation to improve

upon the Pacific Salmon Treaty. Because the U.S. production function is more efficient,

our optimal contract would give a bigger salmon share to the U.S. than the current treaty

does. This policy change will improve the two countries’ welfare by 1.54%.

It is possible to extend our model and add the stock of the salmon population to our

repeated game as a new state variable. Naturally, the optimal sharing rule should depend

on this variable. We conjecture that our main finding (that the U.S. ought to get a bigger

share of the resource due to production efficiency) is robust to this extension.

We can also extend the current contracting framework to include three or more coun-

tries. This extension is useful in practice because many government negotiations are mul-

tilateral; for example, Western Pacific salmon are shared by China, Japan, Russia, and

South Korea. However, the challenge here lies in theory: the optimality equation with

three or more players is a partial differential equation and finding its boundary condition

may not be easy.25 We leave this extension to future research.

25In a multi-agent moral-hazard model, [25] reduces the optimality equation to an ordinary differential
equation by assuming that all agents are symmetric, i.e., they exert the same effort and receive the same
consumption. This assumption, however, is too restrictive for our application: the U.S. salmon industry is
more than 10 times bigger than Canada’s.
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3. BOOM AND BUST IN CHINA’S HOUSING MARKET

3.1 Introduction

China’s housing price has been growing steadily over the past decade. The average

growth rate of housing price is 10% from 2003 to 2013, far exceeding the 1.4% growth

rate of rents. The high price/rental ratio suggests that the current housing price cannot be

fully explained by the discounted sum of future rents, i.e., there is a bubble in the housing

market. Moreover, the rate of return from housing asset is quite different from the return

from capital. While the growth rate of housing price remains steadily at 10%, the return

to capital has been declining, reaching a low level of 5% in 2013. In an equilibrium,

investors holding both housing and capital must be indifferent between the two options.

No-arbitrage condition therefore implies that the high growth rate of housing price is also

coupled with high risk of price crash. This risk of bubble burst has drawn a lot of attention

from policy makers, social media, and academia.

Our paper studies bubble burst. Following [26], we model China’s housing market as

one of rational bubble in an overlapping generation framework. Young entrepreneurs use

their endowment to either purchase housing or invest in firm’s capital. The economy is

initially in a bubbly state where housing price is above the fundamental value. In each

period, a sunspot equilibrium decides whether the bubble continues to grow, or the bubble

bursts and housing price falls back to the fundamental value. In the latter case, less expen-

sive housing allows young entrepreneurs to allocate more resource to capital investment,

dampening the effect that housing bubble crowds out private capital.

Our model features another channel through which housing price may affect the econ-

omy. Data from 2003 to 2013 show that around 45% of China’s infrastructure investment

is funded by the government’s revenue from land auction to the private sector. This moti-
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vates us to model a government who chooses the level of infrastructure investment based

on its revenue from land sale. Clearly, a bubble burst will reduce land price and the govern-

ment’s infrastructure investment. What is less clear is the effect of lowered infrastructure

on China’s GDP. If the infrastructure investment is already excessive, then bubble burst

will improve production efficiency by reducing the excessiveness of infrastructure. On the

other hand, if infrastructure is inadequate, then bubble burst will make the situation even

worse.

To quantify the effects of housing price and infrastructure on the economy, we calibrate

our model to match growth rates of both the real GDP and housing price of China. Two

findings from our calibrated model are worth mentioning. First, we confirm the existence

of bubble in China’s housing market. Since housing price has been growing faster than

rents for a decade, bubble size has gone up from 3% of the housing price in 2003 to

32% in 2013. If this bubble were to crash in 2017, housing price will drop by 40% and

entrepreneurs’ total wealth drop by 16%. Second, we find that China’s infrastructure is

indeed overinvested. While the optimal ratio between infrastructure and private capital is

1:4.5, this ratio in China is 1:3.7 based on our estimates.1

We use the model to answer two important questions: 1) what is the consequence of

a housing market crash? and 2) how does the adoption of property tax affect housing

market? In the first question, we suppose a shock that eliminates the housing bubble

occurs in 2017, and then simulate the equilibrium dynamics afterwards. Unsurprisingly,

market price of all existing homes takes a big hit. Since newly built homes enter GDP,

China’s GDP growth rate decreases from 6% to 2.3% in 2017. This decline, however,

is not long lasting: China’s GDP after the crash of 2017 would overtake what would

have been achieved if the shock had not occurred by 2047. The reason for the quick

1China does not report the stocks of infrastructure or private capital, so a model must be used to estimate
them.
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recovery is that lowered housing price reduces the government’s revenue from land sale,

and consequently overinvestment of infrastructure can be resolved. With more capital

invested in non-housing sectors, higher output from these sectors makes up for the lost

value of new homes. In fact, China’s GDP excluding housing is unaffected by the crash of

2017, and by 2047 is higher than that with no crash by 5%.

To answer the second question, we suppose that Chinese government imposes a 1.5%

property tax on all homes starting from 2017. Even if the bubble does not burst, this policy

will immediately reduce the bubble size in 2017 because the after-tax return of owing a

home is lower. In fact, the rent-to-price ratio goes from 1.3% to 3.2%. More importantly,

we find that output of non-housing sectors increases more than it does under the crash of

housing bubble. The reason is that government’s revenue (and its infrastructure invest-

ment) are affected differently in the two cases. In the case of bubble burst, the reduction

of revenue is so dramatic that infrastructure goes from overinvestment to underinvestment.

In the case of property tax, however, the reduction of government revenue is less dramatic

because the property tax revenue partially offset the loss in land-sale revenue.

Related literature Our paper is closely related to [27]. Both papers treat Chinese

housing as an asset bubble and analyze the movement of housing price in rational bubble

framework. There are, however, three differences between our paper and [27]. First, the

only effect of housing bubble in [27] is to crowd out the investment on productive capital

and slow down capital accumulation. In addition to that effect, our paper also studies the

infrastructure effect that housing bubble increases the government’s land-auction income

and enhances its infrastructure investment. Second, in [27], capital return is constant dur-

ing the first stage of the economy. In our model, capital return can vary overtime, which is

more consistent with the fact that Chinese capital return dropped in the last decade. Third,

our model assumes a nonzero probability of bubble burst in each period. This assumption

helps us match the housing price dynamics documented in [28].
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There is a large literature studying how bubble burst affects the economy, including

[29], [30], [31], and [32]. A common theme of these papers is the focus on firms’ credit

constraints. In these papers, housing assets are used by firms as collateral and a bubble

burst tightens the firms’ credit constraints, forcing them to take inefficiently low invest-

ment. Although credit constraint is important in understanding bubble burst in the 1989

Japanese housing market and the 2007 U.S. housing market, it is less so in China for

two reasons. First, the chance that bubble burst triggers a banking crisis is low because

mortgage loans in China require high down payments ([28]). Second, large state owned

enterprises do not rely on housing to get loans while most private enterprises are excluded

from the financial market (see [33]).

Our paper is also related to a large literature on government’s expenditure and eco-

nomic growth, e.g., [34], [35], [36], [37], [38]. As in the literature, efficiency in our model

requires a good balance between infrastructure investment and private capital investment.

Our model differs from the literature in modelling the government’s budget constraint.

While infrastructure is purely funded by tax revenue in the literature, here it is also funded

by government’s sale of a bubbly asset. We emphasize this channel because almost one

fourth of Chinese government’s income comes from land sale.

Our paper is organized as follows. Section 3.2 describes the basic model, and char-

acterize its equilibrium with housing bubbles. Section 3.3 extends the basic model with

population and technology growth. The extended model is calibrated in Section 3.4, and

used in Section 3.5 to study the consequence of a bubble burst and the adoption of property

tax. Section 3.6 concludes. The Appendix contains proofs of all the results.

3.2 Basic Model

We follow [26] to build an overlapping-generation model. In this basic model, there

are no population growth or technology improvement. Moreover, we assume housing is a
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pure bubble to simplify our analysis. All these assumptions are relaxed in the next section,

where we do calibration.

3.2.1 Environment

There are three types of agents in this model: workers, entrepreneurs and a govern-

ment. Workers and entrepreneurs live for two periods. Each period, a unit measure of new

workers and entrepreneurs enter the model to replace the old. Young workers have one

unit of inelastic labor. After receiving wage income, workers decide their consumptions

and savings. They are out of capital market and housing market. The only way to save is

to purchase risky-free government bond. Their optimization problem is

max log(cw1t) + ρ log(cw2t)

s.t. cw1t + bt = wt,

cw2t = Rfbt,

where cw1t and cw2t are consumptions for workers born in period t, ρ is the discount factor,

wt is wage, bt is the holding of risk-free bond, and Rf is the exogenous interest rate set by

the government.

To understand entrepreneurs’ problem, we first describe the dynamics of housing price

Qt. In this section, housing does not generate rents and therefore is a pure bubble. People

buy it only because they can resell it in the future. The economy is either in a bubbleless

state (Qt = 0), or in a bubbly state (Qt > 0). If Qt = 0, then Qs = 0 for all s ≥ t (i.e., the

bubbleless state is absorbing). If Qt > 0, then the bubble bursts with probability 1 − p in
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period t+ 1:

Qt+1 =

 Qb
t+1 > 0, with prob p;

0, with prob 1− p.

How Qb
t+1 depends on Qt is endogenous and will be studied below.

Entrepreneurs can invest in both capital and housing. They are risk neutral and only

care about their second-period consumption. Each young entrepreneur inherits an initial

wealth of mt from the older generation. His problem is

max E[ce2t]

s.t. kt+1 +Qtht = mt,

ce2t = Rt+1kt+1 +Qt+1(1− δ)ht,

where ht is the amount of house a young entrepreneur purchases, kt+1 is the investment in

his firm, Rt+1 is the capital return rate at time t+1, and δ is the depreciation rate of house.

Each old entrepreneur owns a firm after investment of kt. The firm’s production func-

tion depends on the aggregate infrastructure level, At, as follows

yt = Âθtk
α
t l

1−α
t ,

where kt and lt are each firm’s capital and labor. Ât := At
Kβ
t L

1−β
t

is the aggregate infras-

tructure level adjusted for congestion effect. red We follow [37] to build this production

function. As [37] points out, in many cases, such as highways, utilities, and bridges, pro-

ductivity of infrastructure would decrease when more people or firms use them. Thus we

assume the productivity of infrastructure should be adjusted by the aggregate capital Kt

and aggregate labor Lt.
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As in [37], we assume

Assumption 2. α− βθ > 0 and α + (1− β)θ ≤ 1.

The first inequality guarantees the marginal return of capital is positive. The second

inequality guarantees the return on the whole reproductive part (infrastructure and capital)

is weakly decreasing. After production, old entrepreneurs pay tax to government at rate τ

and a fixed fraction ψ of post-tax production to young entrepreneurs as their initial wealth,

i.e., mt = ψ(1− τ)yt. The remainder is dividend, which old entrepreneurs consume. The

old entrepreneur’s optimization problem is

Dt = max
lt

[(1− τ)(1− ψ)Âθtk
α
t (lt)

1−α − wtlt],

= Rtkt,

where Dt is dividend entrepreneur gets at time t, and Rt is capital return.

Capital in the economy evolves as

kt+1 = (1− φt)mt = (1− φt)(1− τ)ψyt, (3.1)

where φt := Qtht
kt+1+Qtht

denotes the fraction of housing in young entrepreneurs’ portfolio.

A government supplies ∆Ht units of housing to the market exogenously, and also

invests in infrastructure. The government budget constraint is

At+1 = (τ − e)ÂθtKα
t +Qt∆Ht, (3.2)

where e is the ratio of government expenditure on some public good other than infrastruc-

ture. We assume full depreciation of both capital and infrastructure in our basic model for

convenience. All the properties shown will continue to hold when the depreciation rate is
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smaller than 1. The total amount of houses Ht evolves as

Ht+1 = ∆Ht + (1− δ)Ht. (3.3)

To guarantee the steady state and the sustainable bubble exist, we assume

lim
t→∞

gt = 1,

where gt := Ht+1

Ht
.

3.2.2 Equilibrium

This subsection characterizes equilibrium of the economy. We start with its definition.

Definition 1. An equilibrium is a sequence of consumptions {cw1t, cw2t, c2
t}∞t=0, savings {bt, kt, ht}∞t=0,

labor supply/demand {lt}∞t=0, infrastructure {At}∞t=0 and prices {wt, Rt, Qt}∞t=0 such that

1) workers and entrepreneurs maximize life-time utilities, 2) firms maximize profits, 3)

government’s budget constraint is satisfied, and 4) the labor, capital, and housing markets

clear. In particular, we have

• lt = 1,∀t because labor supply is inelastic;

• first-order conditions for firms’ profit maximization problem (after imposing lt = 1):

wt = (1− α)(1− τ)(1− ψ)
Yt
Lt

= (1− α)(1− τ)(1− ψ)ÂθtK
α
t , (3.4)

Rt = α(1− τ)(1− ψ)
Yt
Kt

= α(1− τ)(1− ψ)ÂθtK
α−1
t ; (3.5)

• non-arbitrage condition for young entrepreneurs to invest in both housing and cap-
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ital:

pQb
t+1(1− δ)
Qb
t

= Rt+1. (3.6)

The main characterization result of this section is as follows.

Proposition 1. Consider an economy with initial condition {k0, A0, H0}. If (1−ψ)α
(1−δ)ψ ≥ p,

then no bubbly equilibrium exists, i.e., Qt = 0 for all dates and states in the equilibrium.

Otherwise, if (1−ψ)α
(1−δ)ψ < p, then a continuum of equilibria exist depending on the initial Q0.

There is a Q̂b
0 > 0 such that

1. if 0 < Q0 < Q̂b
0, then a bubbly equilibrium exists in which limt→∞Q

b
t = 0;

2. if Q0 = Q̂b
0, then a bubbly equilibrium exists in which limt→∞Q

b
t > 0;

3. if Q0 > Q̂b
0, then no equilibrium exists.

The intuition for Proposition 1 can be explained in two steps. First, we explain how

the long-run size of the bubble, limt→∞Q
b
t , depends on the initial Qb

0 = Q0. With higher

Qb
0, more private capital K1 is crowded out, and capital return R1 becomes higher. Non-

arbitrage condition (3.6) then implies a higher growth rate Qb1
Qb0

. Using this argument for all

the future dates, we conclude that higher Q0 increases the growth rate Qbt+1

Qbt
for all t. Now,

let Q̂b
0 be the initial bubble size starting from which the bubble stabilizes in the long run,

i.e., 0 < limt→∞Q
b
t < ∞. Then in case (i), lower Q0 and lower growth rates imply the

bubble eventually disappears, while in (iii), higher Q0 and higher growth rates imply the

bubble eventually explodes. Note that in (iii) equilibrium does not exist with exploding

housing price, because young entrepreneurs, whose initial wealth are bounded, eventu-

ally cannot afford to purchase the bubble (thus violating the market-clearing condition in

housing).
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Second, we discuss two senses in which condition (1−ψ)α
(1−δ)ψp < 1 is needed for the exis-

tence of bubbly equilibrium. On the one hand, because the bubble size φ∗ := limt→∞ φt in

a bubbly steady state equals 1− (1−ψ)α
(1−δ)ψp , we need 1− (1−ψ)α

(1−δ)ψp > 0 for bubbly steady state to

exist.2 On the other hand, because (1−ψ)α
ψ

is the long-run real interest rate in the bubbleless

economy,3 the condition (1−ψ)α
(1−δ)ψp < 1 is nothing more than an upper bound imposed on

this real interest rate, which is a standard assumption in the literature for bubbles to exist.

As pointed out by [26], only if the rate of return from capital (in the absence of bubble) is

sufficiently low, bubbly assets may enter the economy as an alternative channel to save.

3.2.3 Two Steady States

There are two steady states in our model: one is bubbleless and the other is bubbly. In

this subsection, we compare output levels of the two steady states.

In both steady states, output Y ∗, infrastructure A∗ and private capital K∗ satisfy

Y ∗ = (A∗)θ(K∗)α−βθ,

A∗ = (τ − e+ δ(1− τ)ψφ∗)Y ∗,

K∗ = ψ(1− τ)(1− φ∗)Y ∗.

Bubble size φ∗ equals some positive value φb > 0 in the bubbly steady state, but is zero

in the bubbleless steady state. Clearly, large bubble size φ∗ enhances A∗ by crowding out

private capital K∗.

2That φ∗ = 1− (1−ψ)α
(1−δ)ψp can be derived from the following conditions:

K∗ = ψ(1− τ)(1− φ∗)Y ∗, (3.7)

R∗ = α(1− τ)(1− ψ)
Y ∗

K∗
, (3.8)

p(1− δ) = R∗, (3.9)

where (3.7), (3.8), and (3.9) are long-run limits of (3.1), (3.5), and (3.6).
3That R∗ = (1−ψ)α

ψ in the bubbleless economy can be derived from (3.7), (3.8), and φ∗ = 0.
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Output in the bubbly steady state is higher than that in the bubbleless steady state if

and only if

(
1 +

δ(1− τ)ψ

τ − e
φb

)θ
(1− φb)α−βθ > 1. (3.10)

In (3.10), δ(1−τ)ψ
τ−e φb captures the (percentage) increase in infrastructure funded by the sale

of bubbly asset, while −φb captures the decrease in capital. To obtain further intuition,

suppose φb is small, say 1%. Then the change of the first term,
(

1 + δ(1−τ)ψ
τ−e φb

)θ
, from

its bubbleless-state value of one is δ(1−τ)ψ
τ−e θ percent, while the change of the second term,

(1− φb)α−βθ, is −(α− βθ) percent. Then (3.10) holds if and only if

δ
ψ(1− τ)

τ − e
θ

α− βθ
> 1.

The intuition for the above is as follows. First, ψ(1−τ)
τ−e is the ratio K∗

A∗
in the bubbleless

steady state, and a higher ratio increases the return of reallocating capital to infrastructure

through bubble, making the bubbly output higher than the bubbleless output. Second, θ
α−βθ

is the ratio between the elasticities of infrastructure and capital. If infrastructure is more

elastic than capital, then again the return of reallocating capital to infrastructure is higher.

Third, the depreciation rate of housing, δ, is the ratio between new housing ∆H and total

housing H in any steady state. If one unit of capital is crowded out by bubble, only δ units

enter the revenue of the government and become infrastructure investment (the rest, 1− δ,

belongs to sellers of old housing units). That is, δ is the rate of transformation between

K∗ and A∗, and a higher δ increases the return of reallocating capital to infrastructure.

The above intuition continues to hold when φb is not small. In fact,

Corollary 2. Inequality (3.10) is more likely to hold with higher ψ(1−τ)
τ−e , θ

α−βθ , and δ.

Figure 3.1 further illustrates the dependence of outputs on the government expenditure

41



0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

18

e

ou
tp

ut

Output in Two Steady States

 

 
Output in Bubbleless Steady State
Output in Bubbly Steady State

Figure 3.1: Output of bubbly steady state and bubbleless steady state.

e. When e is closed to zero, all the fiscal income is used for infrastructure investment

and infrastructure is over-invested. The bubbly output is lower than the bubbleless output

because bubble worsens the over-investment problem. When e is close to τ , however, the

bubbly output is higher than the bubbleless output because the latter is close to zero when

the government cannot provide any infrastructure.

In [26] and [27], bubble only has the effect of crowding out capital, which certainly

lowers the output. In our paper, however, bubble also helps government accumulate in-

frastructure. Thus it is possible that the bubbly output is higher than the bubbleless output.

3.3 Extended Model

We build an extended model to better approach to the reality. There are four main

differences comparing to the basic model. First, in this extended model, we consider an

economy with population growth and technology improvement. The Population of both

workers and entrepreneurs grows at a constant rate 1 + η, and the labor efficiency grows
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at a constant rate 1 + ζ . Second, both workers and entrepreneurs live for T years, and

workers retire at the age J . Third, we consider house delivers real utility flow rt, thus

house has some fundamental value. The rent rt grows at a exogenous growth rate 1 + ξ.

Forth, capital and infrastructure depreciate at 1− δk and 1− δa.

The j-th generation workers’ optimal decision problem can be written as,

maxE[

T+j∑
t=j

ρ(t−j)log(cw(j, t))]

subjected to,

cw(j, j) + bw(j, j) = wj

cw(j, t) + bw(j, t) = wt +Rfsw(j, t− 1),when ∈ [j + 1, j + J ]

cw( j, t) + bw(j, t) = Rfbw(j, t− 1),when t ∈ [j + J + 1, j + T ],

where cw(j, t) stands for j-th generation worker’s consumption at time t and bw(j, t) stands

for j-th generation worker’s saving at the beginning of time t.

The j-th generation entrepreneurs are born with initial endowmentmj , and choose their

portfolio between capital investment and housing investment. The entrepreneurs are risk-

neutral and care about their consumption in last period. Their optimal decision problem

can be written as.

maxE[ce(j, j + T ))]
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subjected to,

Qjh(j, j) + k(j, j + 1) = m(j),

Qth(j, t) + k(j, t+ 1) = Rtk(j, t− 1) + (Qt + rt)h(j, t− 1)(1− δ), t ∈ [j + 1, j + T − 1]

ce(j, j + T )) = Rtk(j, j + T − 1) + (Qt + rt)h(j, j + T − 1)(1− δ).

where ce(j, t) denote j-th generation entrepreneurs’ consumption at time t. h(j, t)

and k(j, t) stand for the quantity of housing and quantity of capital j-th generation en-

trepreneurs own at the beginning of time t.

A non-arbitrage condition in this extended model is

[pQb
t+1 + (1− p)Qf

t+1 + rt](1− δ)
Qb
t

= Rt+1,

whereQf
t is the fundamental price of housing, which is defined asQf

t ≡
∑∞

i=t+1
ri(1−δ)i−t∏i

j=tRj
.

Old entrepreneurs face similar problem in the basic model. The only difference is

that we consider depreciation rate of capital is δk and labor efficiency Et in this extended

model. The optimal problem faced by old entrepreneurs as

max
lt

(1− ψ)ÂθtK
α
t (Etlt)

1−α + (1− δk)Kt.

The government’s budget constraints is

At+1 = (τ − e)ÂθtKα
t + κQt∆Ht + (1− δa)At,

where δa is the depreciation rate of infrastructure capital and κ is the fraction between net

44



revenue of selling land and the total value of newly built house.

3.4 Calibration

3.4.1 Parameters

Our calibrated model focuses on matching Chinese data during 2003-2013. Each pe-

riod in our model stands for one year in reality, and the model starts at 2003. There are

two types of parameters needed to be decided. The first type of parameters are chosen

exogenously and the other type are calibrated in the model.

We firstly introduce parameters chosen exogenously in this and next paragraphs. Sim-

ilar with [33] and [27], agents enter into the economy at age 22 and live for T = 50 years,

which is consistent with the average life expectancy 71.4 years from 2000 Chinese Popula-

tion Census. Workers retires after 30 years working. The population growth rate is 0.005,

which matches the average population growth rate during 2003-2013 from NBSC data set.

Rf = is set as 1.0175, matching the average one-year real deposit rate. ρ is chosen as

0.997 to match the average investment ratio.

On the production side, the capital income share α is chosen as 0.5, which is consistent

with [39]. θ is chosen as 0.1, which is estimated by [40]. Since we find β is no sensitive

in the model, thus we assume the congestion effect to capital and to population are the

same and β is conjectured as 0.5. Following [39], the depreciation rate of capital δk and

the depreciation rate of infrastructure δa are set as 0.1.

The growth rate of rent gr is set as 0.014 to match the average growth rate of rent during

2003-2013. The growth rate of housing gt is decided as following. In the first eleven years

we set gt = 0.07 to match the fact that quantity of house doubled during 2000-2010. After

the first 11 years, we think it seems impossible that such high growth rate of housing can

last for long term since Chinese growth rate of urban population has already decreased for

last decade. We assume the long-run growth rate of housing equals to the growth rate of
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population, and the growth rate of housing follows an exponential attenuation function as

gt = (g0 − η)e−ξ(t−11) + η, where attenuation speed ξ = 0.07 to match the attenuation

speed of the urban population growth during 2003-2013.

After we introduce parameters chosen exogenously, now we show parameters esti-

mated in the model. ψ is chosen as 0.19 to match the capital return before tax 22 percent

in 2003. τ is chosen as 0.21 to match the capital return after tax 15 percent in 2003. e is

chosen as 0.16 to match the proportion of government expenditure (excluding infrastruc-

ture investment) out of GDP. The growth rate of labor efficiency ζ is set as 0.04 to match

10 percent Chinese average GDP growth rate during 2003-2013.

We use the possibility of bubble burst to match the growth rate of housing price. And

we assume the possibility of bubble burst degenerates in long run to guarantee the exis-

tence of bubble. For simplicity, we assume that the probability of bubble burst is a linear

attenuation function with time. The starting probability of bubble burst and ending time

are set as 1 − p = 0.17 and T = 15 to match the average growth rate of housing price

during 2003-2008 and 2009-2013.

The initial labor quantity and housing quantity are normalized as 1. The initial aggre-

gate capital level is set as 1.41 to match the capital-to-output ratio 1.26 in 2003. The initial

infrastructure is set as 0.68 to match the ratio of infrastructure to capital 0.48 in 2003 (see

[41]). Following [33] the initial wealth distribution of entrepreneurs is set as wealth dis-

tribution of workers in steady state. The initial housing rent is set as 0.017 to match the

proportion of newly built house value to GDP 4.5% in 2003.

3.4.2 Calibration Result

Our main calibration result is shown in Figure 3.2. In the left panel, we replicate the

path of capital return. Our simulated path is consistent with capital return data in [42].

Based on [42], capital return in China drops from 15 percent in 2003 to 5 percent in 2013.
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Figure 3.2: Return to capital and housing price in China.

Our simulated capital return drops from 15 percent to 5.8 percent, which reasonably well

matches the rapid decrease on capital return since 2003. Our simulated growth rate of

housing pricing drops from 13 percent in 2003 to 8.7 percent in 2013. The Decrease

on growth rate of housing price is only one half of the decrease on capital return, which

matches the growth rate of housing in [28]. The resilient growth rate of housing price is

the key prediction in our model.

In the Figure 3.3, we show GDP growth rate and infrastructure investment in our model

and in the data. The left panel of Figure 3.3 shows GDP growth rate. Our model can repli-

cate the average GDP growth rate as 10 percent during 2003-2013, and also the path that

the growth rate drops from the highest point over 13 percent to 7.5 percent in 2013. In the

right panel of Figure 3.3, we show the increasing proportion of infrastructure investment

to GDP. Both our model and the data suggest that this proportion increased dramatically:

in the data, it increased from 7 percent to 12.6 percent; in our model, it increased from 8.7

percent in 2003 to 11 percent in 2013. Our model may underestimate the high proportion
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Figure 3.3: GDP growth and infrastructure investment.

of infrastructures investment because after financial crisis Chinese government proposed

a large economic stimulus package (which is well known as “4 trillion project”). Much

fund from this project was invested into infrastructure building. This can explain the un-

derestimation after 2008 in our model.

In the Figure 3.4, our model predicts the proportion of bubble component to total

housing price. Through our simulation, the proportion of bubble component increases

dramatically from 5 percent in 2003 to 32 percent in 2013. This dramatic increase comes

from the fact that the average growth rate of housing price is around 10 percent while

the average growth rate of rent is only 1.4 percent. The growth of bubble proportion is the

main reason why our model can predict resilient growth of housing price: when the bubble

component is small, even if public predict the possibility of bubble burst, the growth rate

of housing price is not affected by this prediction and lower than capital return because

total housing return includes both growing value and rent; when the bubble component is

large, people’s expectation on the possibility of bubble burst becomes dominating power
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Figure 3.4: Bubble proportion.

to push the growth of bubble even higher to compensate for the risk people take.

3.5 Counterfactual Experiment

3.5.1 Crowding-out effect and Infrastructure Effect

To better understand how bubble affects the economy, we conduct a counterfactual

experiment to explore the two effects in our model. We assume an economy which is

almost the same as our calibrated economy except that at the beginning housing price

equals to the fundamental value. We compare this bubbleless economy with the bubbly

economy. In Figure 3.5, we compare the dynamic paths of capital and infrastructure in this

two economies. Relative to the bubbleless economy in 2013, capital in bubbly economy

is lower in 8.5 percent while infrastructure is higher in 6 percent. The crowding-out effect

lowers the output excluding housing in 4 percent while the infrastructure effect highers the

output excluding housing in 0.6 percent. Finally, the output excluding housing in bubbly

economy is 3.3 percent lower than that in bubbleless economy and the output including
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Figure 3.5: Two effects on GDP.

housing is lower in 1 percent.

3.5.2 Bubble Burst

In this subsection, we consider bubble bursts in 2017 and see how bubble burst affects

the economy.

First, Figure 3.6 illustrates how bubble burst affects housing price. After bubble bursts,

the housing price immediately drops in 40 percent to fundamental value, and the growth

rate of housing price changes from 6 percent to -37 percent. Bubble burst does not only

change the temporary price but also lowers the long-term growth rate. In the next 30 years

after bubble burst, the average growth rate of housing price is 1.9 percent, which is lower

than the average growth rate without burst 2.9 percent. This is due to the low rent growth

rate. On the balance growth path, growth of housing price with bubble burst is 2.6 percent,

which is lower than 4 percent the one without bubble burst.

Second, in Figure 3.7, we show how bubble burst affects GDP. After bubble bursts, the
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Figure 3.6: Housing price with and without burst.

GDP drops 3.5 percent comparing the level without bubble burst and the GDP growth rate

in 2013 drops from 6.2 percent to 2.5 percent. This is due to that the value of newly built

house takes in around 10 percent of GDP. When the price drops, newly built house looses

value and causes the GDP to drop. However, after the first year of bubble burst, the growth

rates of GDP with burst are higher than the ones without burst. The average growth rate

with burst in next twenty year is 0.5 percent higher than the average one without burst. Till

2036, twenty years after bubble burst, the GDP with burst is over the GDP without burst

for the first time. In 2047, GDP with burst is 1.3 percent higher than GDP with burst and

the output excluding housing is 5 percent higher than the one without burst.

The reason for that GDP with burst is higher than the GDP without burst in long run

is because infrastructure is over-accumulated in bubbly economy. In 2017, the ratio of

infrastructure stock to capital stock is 1:3.8, which is higher than the ratio of production

elasticity of infrastructure to the elasticity of capital, which is 1:4.5. The ratio between

two elasticities implies the ratio of optimal stocks of infrastructure and capital, when the
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Figure 3.7: GDP with and without burst.

transformation rate from capital to infrastructure is 1:1. In our model, the largest marginal

transformation rate is 1:1, which implies even under a conservative consideration, Chi-

nese infrastructure is over-accumulated. Moreover, we find that in 2047, 30 years after

bubble bursts, the ratio of infrastructure to capital is 1:6.5, which suggests in a bubbleless

economy the infrastructure investment is insufficient. To solve this problem, we suggest a

property tax on housing. We will give more details in next subsection.

Bubble burst also causes a huge wealth effect. In Figure 3.8, we show wealth loss for

all cohorts in 2017 economy. The cohort born in 1946 lose 16 percent of their wealth due

to bubble burst. The younger cohort suffers more due to bubble burst. For the cohort born

in 1994, their total wealth lose in 52 percent. The wealth loss for younger cohort comes

from not only temporal drop in housing price but also the continuous lower capital return

rate. The cohort born in 1995 lose less than the cohort born in 1994, because when bubble

bursts they do not hold any housing, thus their wealth loss only comes from the low capital

return.
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Figure 3.8: Wealth effect of bubble burst.

3.5.3 Property Tax

Chinese government hasn’t taken comprehensive property tax so far. In this subsection,

we test a case in which Chinese government tax housing with a constant proportion of the

total value of housing stock. In our benchmark test, the tax rate is set as 1.5 percent and

the tax starts at 2017.

In Figure 3.9, we illustrate how housing price changes after property tax is imposed.

The price of housing drops in 59 percent immediately comparing with the price without

property tax and the growth rate drops from 6.8 percent to -56 percent. The reason for

the drop of price is because former price is not an equilibrium price anymore. If the price

does not change, since the growth rate of housing price becomes higher now, total value

of housing would eventually be over the size of economy. Because of this, public have to

lower their expectation of housing price, and the price drops. One thing interesting is that

the drop of housing price when property tax is imposed is larger than the drop when bubble
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Figure 3.9: Housing price with and without property tax.

bursts. It is because after imposing property tax, the fundamental value also decreases.

After the price immediately drops, in the following ten years, the average growth rate are

lower in 0.3 percent than that without property tax, however, in the long term, the growth

rate of housing price converges to long-term economy growth rate, same as the one without

property tax.

In Figure 3.10, we show how the property tax changes GDP. Based on our simulation.

after the property tax is imposed, the GDP drops immediately in 5 percent comparing with

the case without property tax.In the growth rate of GDP drops from 6.2 percent to 0.9

percent. However, the long-term output level with property tax is higher than that without

property tax. Till 2032, 14 years after property tax started, the GDP level with property tax

is higher than that without property tax. In 2047, thirty years after property tax started, the

GDP is 2.7 percent higher than that without property tax and the output excluding housing

is 6.2 percent higher than that without property tax. One thing needed to be mentioned

is that the output level with property tax is higher than the output level with bubble burst.
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Figure 3.10: GDP with and without property tax.

It is because property tax helps government get fund to accumulate infrastructure. In

2047, infrastructure with property tax is 17 percent higher than that with bubble burst,

while capital with property tax is lower only in 0.3 percent than that with bubble burst.

Property tax not only lowers the crowding-out effect by lowering the housing price but

also compensates for infrastructural investment with new tax.

3.6 Conclusion

In this paper, we study China’s housing market in a rational bubble model framework.

We view our analysis as making three contributions. First, by allowing a probability of

bubble burst, our model can simultaneously account for the steady growth rate of housing

price from 2003 to 2013, and the declining rate of return of capital. Second, we quantify

the effects of a bubble burst, and find that, although the crash represents a big negative

shock to investors’ wealth, the effect on China’s real GDP is relatively small. The main

intuition is that housing market crash would not spread to the rest of the economy. Third,
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we recommend the adoption of property tax because property tax will 1) reduce housing

price even in the absence of a bubble burst, and 2) make up for the lost land-sale revenue

that the government needs for infrastructure investment.

Our analysis can be extended in two ways. First, we need to study concave utilities

for the entrepreneurs. Under concave utilities, entrepreneurs’ investment and consump-

tion decisions are endogenized, and the model can be used to study the impact of lower

wealth on entrepreneurs’ investment in capital. Opening up this channel may amplify the

negative effects of bubble burst on real GDP. Second, we can study the effects of other pol-

icy reforms on China’s housing market, such as property-purchase limitations and higher

down-payment ratios. These extensions are left for future research.
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4. SUMMERY

In this dissertation, I applies dynamic method studying two important public issues;one

is optimal design of Pacific Salmon Treaty; the other is Chinese housing price bubble.

On the Pacific Salmon Treaty, We extend the theory of continuous-time repeated games

to allow for side payments. We view our analysis as making two contributions. First, we

show that there are only two solutions to the optimality equation that characterizes the

boundary of the set of equilibrium payoffs. This technical contribution greatly simplifies

the calculation of the equilibrium set. In the literature, the search for the solution to the

optimality equation is done by trial and error. Second, we provide a useful policy rec-

ommendation to improve upon the Pacific Salmon Treaty. Because the U.S. production

function is more efficient, our optimal contract would give a bigger salmon share to the

U.S. than the current treaty does. This policy change will improve the two countries’

welfare by 1.54%.

On the Chinese housing price, we study it in a rational bubble model framework. We

view our analysis as making three contributions. First, by allowing a probability of bubble

burst, our model can simultaneously account for the steady growth rate of housing price

from 2003 to 2013, and the declining rate of return of capital. Second, we quantify the

effects of a bubble burst, and find that, although the crash represents a big negative shock

to investors’ wealth, the effect on China’s real GDP is relatively small. The main intuition

is that housing market crash would not spread to the rest of the economy. Third, we

recommend the adoption of property tax because property tax will 1) reduce housing price

even in the absence of a bubble burst, and 2) make up for the lost land-sale revenue that

the government needs for infrastructure investment.

57



REFERENCES

[1] J. Shelton and J. P. Koenings, “Marine factors in the production of salmon: Their

significance to the pacific salmon treaty,” Alaska Fishery Research Bulletin, vol. 2,

pp. 156–163, 1995.

[2] Y. Sannikov, “Games with imperfectly observable actions in continuous time,”

Econometrica, vol. 75(5), pp. 1285–1329, 2007.

[3] D. Abreu, D. Pearce, and E. Staccheti, “Toward a theory of discounted repeated

games with imperfect monitoring,” Econometrica, vol. 58(5), pp. 1041–1063, 1990.

[4] G. Baker, R. Gibbons, and K. J. Murphy, “Relational contracts and the theory of the

firm,” Quarterly Journal of Economics, vol. 117, pp. 39–84, 2002.

[5] J. Levin, “Relational incentive contracts,” American Economic Review, vol. 93,

pp. 835–857, 2003.

[6] L. Rayo, “Relational incentives and moral hazard in teams,” Review of Economic

Studies, vol. 74, no. 3, pp. 937–963, 2007.

[7] S. Goldlucke and S. Kranz, “Infinitely repeated games with public monitoring and

monetary transfers,” Journal of Economic Theory, vol. 147, no. 3, pp. 1191–1221,

2012.

[8] H. S. Gordon, “The economic theory of a common-property resource: The fishery,”

Journal of Political Economy, vol. 62, pp. 124–142, 1954.

[9] K. Lancaster, “The dynamic inefficiency of capitalism,” Journal of Political Econ-

omy, vol. 81, pp. 1092–1109, 1973.

[10] D. Levhari and L. J. Mirman, “The great fish war: An example using a dynamic

cournot-nash solution,” The Bell Journal of Economics, vol. 11, pp. 322–334, 1980.

58



[11] J. F. Reinganum and N. L. Stokey, “Oligopoly extraction of a common property

natural resource: The importance of the period of commitment in dynamic games,”

International Economic Review, vol. 26, pp. 161–173, 1985.

[12] A. Haurie and M. Pohjola, “Efficient equilibria in a differential game of capitalism,”

Journal of Economic Dynamics and Control, vol. 11, no. 1, pp. 65–78, 1987.

[13] J. Benhabib and R. Radner, “Joint exploitation of a productive asset: A game theo-

retic approach,” Working Paper, New York University, C.V. Starr Center Appl. Econ.,

1988.

[14] N. Stokey, The Economics of Inaction: Stochastic Control Models with Fixed Costs.

New Jersey: Princeton University Press, 2008.

[15] S. Athey and K. Bagwell, “Optimal collusion with private information,” RAND Jour-

nal of Economics, vol. 32, no. 3, pp. 428–465, 2001.

[16] J. Harrington and A. Skrzypacz, “Collusion under monitoring of sales,” RAND Jour-

nal of Economics, vol. 38, no. 2, pp. 314–331, 2007.

[17] L. Samuelson and E. Stacchetti, “Even up: Maintaining relationships,” Working Pa-

per, Yale Univerisity, 2016.

[18] R. Tinch, I. Dickie, and B. Lanz, “Costs of iuu fishing in eu fisheries,” Technical

Report, Economics for the Environment Consultancy, 2008.

[19] M. Aguiar, M. Amador, and G. Gopinath, “Investment cycles and sovereign debt

overhang,” Review of Economic Studies, vol. 76, pp. 1–31, 2009.

[20] A. Alesina and G. Tabellini, “A positive theory of fiscal deficits and government debt

in a democracy,” Review of Economic Studies, vol. 57, pp. 403–414, 1990.

59



[21] U. R. Sumaila, “Cooperative and non-cooperative exploitation of the arcto-

norwegian cod stock,” Environmental and Resource Economics, vol. 10, pp. 147–

165, 1997.

[22] S. Villasante and R. Sumaila, “Estimating the economic benefits of cooperative and

non-cooperative management of the illex argentinus fishery in south america,” Work-

ing Paper, Latin American and Caribbean Environmental Economics Program, 2009.

[23] T. Bjorndal and M. Lindroos, “Cooperative and non-cooperative management of the

northeast atlantic cod fishery,” Journal of Bioeconomics, vol. 14, pp. 41–60, 2012.

[24] K. Tokunaga, “Cooperative management of trans-boundary fish stocks: Implications

for tropical tuna management in the pacific island region,” Working Paper, University

of Hawaii, 2015.

[25] A. Thakur, “Continuous-time principal multi-agent problem: Moral hazard in teams

& fiscal federalism,” Working Paper, Princeton Univerisity, 2015.

[26] J. Tirole, “Asset bubbles and overlapping generations,” Econometrica, vol. 53, no. 6,

pp. 1499–1528, 1985.

[27] K. Chen and Y. Wen, “The great housing boom of china,” Working Paper, Federal

Reserve Bank of St. Louis, 2015.

[28] H. Fang, Q. Gu, W. Xiong, and L.-A. Zhou, “Demystifying the chinese housing

boom,” in NBER Macroeconomics Annual 2015, Volume 30, pp. 105–166, National

Bureau of Economic Research, Inc, 2015.

[29] N. Kiyotaki and J. Moore, “Credit cycles,” Journal of Political Economy, vol. 105,

no. 2, pp. 211–48, 1997.

60



[30] J. Miao and P. Wang, “Bubbles and credit constraints,” Boston University - Depart-

ment of Economics - Working Papers Series WP2011-031, Boston University - De-

partment of Economics, 2011.

[31] A. Martin and J. Ventura, “Economic growth with bubbles,” American Economic

Review, vol. 102, no. 6, pp. 3033–58, 2012.

[32] E. Farhi and J. Tirole, “Bubbly liquidity,” Review of Economic Studies, vol. 79, no. 2,

pp. 678–706, 2012.

[33] Z. Song, K. Storesletten, and F. Zilibotti, “Growing like china,” American Economic

Review, vol. 101, no. 1, pp. 196–233, 2011.

[34] R. Barro, “Output effects of government purchases,” Journal of Political Economy,

vol. 89, no. 6, pp. 1086–1121, 1981.

[35] R. Barro, “Government spending in a simple model of endogenous growth,” Journal

of Political Economy, vol. 98, no. 5, pp. S103–26, 1990.

[36] M. Baxter and R. King, “Fiscal policy in general equilibrium,” American Economic

Review, vol. 83, no. 3, pp. 315–34, 1993.

[37] G. Glomm and B. Ravikumar, “Public investment in infrastructure in a simple growth

model,” Journal of Economic Dynamics and Control, vol. 18, pp. 1173–1187, 1994.

[38] M. Bassetto and T. J. Sargent, “Politics and efficiency of separating capital and or-

dinary government budgets,” The Quarterly Journal of Economics, vol. 121, no. 4,

pp. 1167–1210, 2006.

[39] C.-E. Bai, C.-T. Hsieh, and Y. Qian, “The return to capital in china,” Brookings Pa-

pers on Economic Activity, vol. 37, no. 2, pp. 61–102, 2006.

61



[40] P. Bom and J. Ligthart, “What have we learned from three decades of research on

the productivity of public capital?,” Journal of Economic Surveys, vol. 28, no. 5,

pp. 889–916, 2014.

[41] G. Jin, “Infrastructure and non-infrastructure capital stocks in china and their pro-

ductivityïijŽa new estimate,” Economic Research Journal, no. 5, pp. 41–56, 2016.

[42] C.-E. Bai and Z. Qiong, “Return to capital in china and its determinants,” Brookings

Papers on Economic Activity, vol. 48, no. 10, pp. 3–30, 2014.

[43] N. Portley, C. Hendrich, and K. Balliet, “Sfp global sustainability overview of pacific

salmon fisheries,” Technical Report, Sustainable Fisheries Partnership Foundation,

2013.

[44] N. Portley, P. Sousa, B. Lee-Harwood, C. Hendrich, and K. Balliet, “Global sustain-

ability overview of pacific salmon fisheries,” Technical Report, Sustainable Fisheries

Partnership Foundation, 2014.

[45] C. Stroomer and M. Wilson, British Columbia’s Fisheries and Aquaculture Sector.

Victoria, BC, Canada: BC STATS, 2012 ed., 2013.

[46] S. Carlson, “2002 survey of bristol bay salmon drift gillnet fishery permit holders:

Preliminary summary of response,” Technical Report, CFEC, 2002.

[47] K. Schelle, K. Iverson, N. Free-Sloan, and S. Carlson, “Bristol bay salmon drift

gillnet fishery optimum number report,” Technical Report, CFEC, 2004.

[48] D. S. Liao, “Profitability and productivity analysis for the southeastern alaska salmon

fishery,” Marine Fisheries Review, vol. 38, pp. 11–14, 1976.

[49] D. D. Huppert, G. M. Ellis, and B. Noble, “Do permit prices reflect the discounted

value of fishing? evidence from alaska’s commercial salmon fisheries,” Canadian

Journal of Fisheries and Aquatic Sciences, vol. 53, no. 4, pp. 761–768, 1996.

62



[50] P. Hartman, Ordinary Differential Equations. Philadelphia, PA, USA: Society for

Industrial and Applied Mathematics, 2nd ed., 2002.

63



Lemma Corollary Definition Assumption Remark Proposition Theorem

64



APPENDIX A

APPENDIX OF SECTION TWO

Appendix A.1: A brief history of the Pacific Salmon Treaty

The cooperative management of Pacific salmon between the U.S. and Canada can be

traced back to the 1930s. In 1930, the two governments signed the Fraser River Conven-

tion to equally share fish resources in the transboundary Fraser River. During the 1970s,

interception became a major problem undermining the two countries’ cooperation. Fishing

vessels from British Columbia caught many coho and chinook originating in Washington,

while vessels from Alaska harvested a lot of sockeye originating in British Columbia.

Solving this problem required that the two countries seek an agreement along the entire

west coast. In 1985, after 14 years of negotiation, they signed the initial version of the

Pacific Salmon Treaty. Based on this treaty, the two countries formed the Pacific Salmon

Commission to design fishing plans (fishing amount, fishing schedule, etc.) for both coun-

tries. However, after the initial version expired in 1992, they could not reach any new

agreement due to interception disputes. Consequently, there was no cooperative manage-

ment of Pacific salmon from 1992 to 1998. This period, during which numerous conflicts

occurred, is commonly referred to as one of fish war.

The U.S. and Canada signed a new version of the Pacific Salmon Treaty in 1999. The

new treaty has two features. First, its sharing rule is dynamically adjusted. Take sockeye

in the Fraser River for example.1 In 1999, the pre-season fishing plan gave the U.S. 22.4%

of the total allowable catch of sockeye. In 2000, this number was adjusted to 20.4%. The

adjustment was based on the sharing rule in the treaty, which took into account historic

1Sharing rules in several other transboundary rivers (such as the Stikine, Taku, and Alsek rivers) are
dynamically adjusted too.
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catch and other ecological data. Second, the new treaty allows one country to compensate

the other by making side-payments. In 1999, the U.S. made an implicit transfer to Canada

by providing $140 million to establish two restoration and enhancement funds (“Northern

Fund" and “Southern Fund"). The majority of the funds are spent on projects that enhance

Canadian salmon even if Canada did not supply the funds. In 2009, the U.S. transferred

$30 million to Canada to compensate for Canada’s loss from its fishery mitigation project.

The goal of this project is to downsize some Canadian fisheries.

The new Pacific Salmon Treaty has been well enforced. Fishing disputes similar to

those during the 1992-1998 fish war have not occurred since 1999.2 Moreover, data from

the U.S. National Oceanic and Atmospheric Administration (NOAA) show that overfish-

ing is no longer a serious issue in the salmon industry. More specifically, we use NOAA’s

data to compute the fraction of the overfished salmon stock within the total salmon stock,

and find that this fraction is small after 2000 (see Figure A.1).3 This evidence suggests

that the overall stock of salmon has been stabilized.4 Hence, in this paper, we assume for

simplicity that the total stock of salmon is constant over time.

Appendix A.2

A.2.1 The ratio of value added to revenue

For Canada, [45] provide data on the annual revenue and value added of Pacific salmon

from 1990 to 2011. We calculate the ratio of value added to revenue in each year, and then

average the ratios to get 22.5%. Since [45] is a report prepared for Canada’s Department

2The Pacific Salmon Commission, which carries out the Pacific Salmon Treaty, has never had its normal
activity disrupted since 1999. The Commission holds three bilateral meetings annually, and its next sched-
uled meeting is September 25-29, 2017 in Portland, Oregon. See http://www.psc.org/meetings/schedule/.

3NOAA assesses nationwide fish stocks of different species and areas every quarter, and uses informa-
tion such as fisheries landings, scientific surveys, and biological studies to determine whether a stock is
overfished.

4Unfortunately, we could not find complete time-series data about Canada’s Pacific salmon stock. Nev-
ertheless, [43] and [44] find that 96% and 95% of Pacific salmon in British Columbia were well managed in
2013 and 2014, respectively.
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Figure A.1: Fraction of the U.S. Pacific salmon stock in overfished status.

of Fisheries and Oceans, this data source is reliable.

For the U.S., we have not found nationwide data on value added of Pacific salmon.

Below is a list of various estimates based on regional data.

1. [46] contains the revenue and different categories of costs based on a 2002 survey on

Pacific salmon fishing in Bristol Bay. From the data, we calculate the value-added

ratio as 40.9%. Because salmon production in Bristol Bay is around one seventh of

the total U.S. production, we think these data are representative.

2. [47] construct estimators of the cost and revenue of salmon catching in Bristol Bay,

using multiple data sources including the 2002 survey in (i). Based on their estima-

tors, the average value-added ratio was 45.8% from 1999 to 2003.

3. [48] provides the revenue and costs from a 1973 survey in the Southeastern Alaska

Salmon Fishery. From these data, we calculate the value-added ratio as 48.1%.
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4. [49] provide data from a 1979 survey of all salmon fisheries in Alaska. The (incom-

plete) data suggest that the value-added ratio is at least 46%.

All the above estimates of the U.S. value-added ratio are higher than Canada’s 22.5%.

This suggests that allocating more salmon to the U.S. will improve total welfare. In order

to be conservative in estimating the welfare gain, we choose the smallest from the above

list (i.e., 40.9% in (i)) as the ratio for the U.S. in Subsection 3.2.1.

It is not surprising that the U.S. has a higher value-added ratio in salmon than Canada.

For the whole fishery industry, the average value-added ratios during 1999-2012 for the

U.S. and Canada were, respectively, 63.3% and 49.7%, and the ratio for British Columbia

was only 37.0%.5

A.2.2 Robustness check

In this subsection, we check the robustness of our results with respect to certain pa-

rameters. First, we try different values for the parameter of the cost of illegal fishing, µ.

In our benchmark calibration, we set µ = 0.84 using data from the European Union, but

the cost of illegal fishing in North America may be either higher or lower than 0.84. It

turns out that our numerical results are insensitive to µ. In particular, the welfare gains are

1.59% and 1.54%, respectively, under a lower µ = 0.5 ∗ 0.84 and a higher µ = 2 ∗ 0.84,

as opposed to 1.54% under the benchmark µ = 0.84.

Second, we redo the calibration and recalculate the welfare gain using a higher estimate

of the U.S. value-added ratio. We choose the highest estimate of 48.1% from (iii) in

Section B.1. Our results are reported in Table A.1.

The welfare gain of $92.51 million (or 2.37%) is larger than the $51.66 million (or

1.54%) in Table 2.4. This larger welfare gain is mainly because a more efficient U.S.

production function has made it more profitable to reallocate resources. To see this more

5Data sources: Fisheries of the United States (1999-2012) and Statistics Canada.
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Table A.1: Change of welfare measured in 1999 million USD when the U.S. value-added
ratio is 48.1%

Positive contract Optimal contract Difference

E
[ ∫∞

0
e−rt (p1t + p2t) dt

−
∑∞

k=1 e
−rtkC

] 3902.62 3995.13 92.51

E [
∑∞

k=1 e
−rtkC] 46.43 12.35 -34.08

E
[∫∞

0
e−rt (p1t + p2t) dt

]
3949.04 4007.48 58.44

E
[∫∞

0
e−rtp1tdt

]
3794.5 4000.19 205.69

E
[∫∞

0
e−rtp2tdt

]
154.55 7.3 -147.25

clearly, note that the welfare gain of $58.44 million due to the increase in p1t + p2t is

much larger than the $34.08 million due to the reduction of fixed cost, whereas in Table

2.4 the two welfare gains are close. The increase in the present value of p1t + p2t in Table

A.1 is again due to reallocating resources from Canada to the U.S., only on a bigger scale

here. The average catching weight of Canada has decreased to 0.81 million pounds in

the optimal contract in Table A.1, as opposed to 2.91 million pounds in Table 2.4. This

explains why Canada’s present value of p2t is $7.3 million, much lower than the $22.91

million in Table 2.4.

Appendix A.3: Proofs

Proof of Lemma 2: If an IC contract (x, e,Q) with continuation payoff process W satisfies

eit > 0, then we can define an equivalent contract (x̃, ẽ, Q̃) with identical payoff W̃ = W,
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but without stealing. In particular, define

x̃t := xt,

ẽit := 0, ẽjt := ejt,

Q̃it := Qit, dQ̃jt := dQjt + eitdt.

In the new contract, W̃it = Wit because player i is indifferent between stealing eitdt from

his opponent and being paid eitdt by his opponent. To guarantee W̃jt = Wjt, the new

contract may burn (µ − τ)eitdt units of the resource to increase player j’s total payment

expense at time t to (1+µ)eitdt = (1+ τ)eitdt+(µ− τ)eitdt. Then player j is indifferent

between incurring payment expense (1 + µ)eitdt and having (1 + µ)eitdt being stolen by

player i.

To finish the proof, we verify that (x̃, ẽ, Q̃) remains IC. It follows from W̃ = W that

(β̃i1, β̃i2) = (βi1, βi2), i = 1, 2. Therefore the IC constraint 1 + β̃ii − (1 + µ)β̃ij ≤ 0

follows from (2.3).

Proof of Lemma 3:

1. A relaxed problem in which player 2’s incentive constraint is removed is

min
φ1,φ2

σ2
1φ

2
1 + σ2

2φ
2
2

subject to 1 ≤ sin(θ)(φ1 + (1 + µ)φ2).

The optimal solution is

φ1 =
σ2

2

sin(θ)(σ2
2 + (1 + µ)2σ2

1)
, φ2 =

(1 + µ)σ2
1

sin(θ)(σ2
2 + (1 + µ)2σ2

1)
,
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which implies

σ2
1φ

2
1 + σ2

2φ
2
2 =

σ2
1σ

2
2

(σ2
2 + (1 + µ)2σ2

1) sin2(θ)
.

Player 2’s incentive constraint is slack (and player 1’s incentive constraint is binding)

when

1 ≤ cos(θ)((1 + µ)φ1 + φ2) =
cos(θ)

sin(θ)

(σ2
1 + σ2

2)(1 + µ)

(σ2
2 + (1 + µ)2σ2

1)
,

or

sin(θ)

cos(θ)
≤ (σ2

1 + σ2
2)(1 + µ)

σ2
2 + (1 + µ)2σ2

1

.

Similarly, player 1’s incentive constraint is slack (and player 2’s incentive constraint

is binding) if

sin(θ)

cos(θ)
≥ σ2

1 + (1 + µ)2σ2
2

(σ2
1 + σ2

2)(1 + µ)
.

If sin(θ)
cos(θ)

∈
[

(σ2
1+σ2

2)(1+µ)

σ2
2+(1+µ)2σ2

1
,
σ2

1+(1+µ)2σ2
2

(σ2
1+σ2

2)(1+µ)

]
, both constraints bind. The optimal solution

is

φ1 =

1+µ
cos(θ)

− 1
sin(θ)

(1 + µ)2 − 1
, φ2 =

1+µ
sin(θ)

− 1
cos(θ)

(1 + µ)2 − 1
.

This implies

σ2
1φ

2
1 + σ2

2φ
2
2 =

a− b sin(2θ) + c cos(2θ)

sin2(2θ)
,
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where

a :=
2((1 + µ)2 + 1)(σ2

1 + σ2
2)

((1 + µ)2 − 1)2
, (A.1)

b :=
4(1 + µ)(σ2

1 + σ2
2)

((1 + µ)2 − 1)2
, (A.2)

c :=
2(σ2

2 − σ2
1)

(1 + µ)2 − 1
. (A.3)

2. The optimality equation can be rewritten as

κ(w) = max
x∈[0,1]

2N(θ)((p1(x), p2(x))− w)

r|φ(θ)|2

=
maxx∈[0,1] 2(cos(θ)p1(x) + sin(θ)p2(x))− 2N(θ)w

r|φ(θ)|2
.

So the optimal x∗ satisfies the first-order condition

cos(θ)p′1(x∗) + sin(θ)p′2(x∗) = 0. (A.4)

Since both p1(x) and p2(x) are concave functions, the above equation has a unique

solution x∗.

Proof of Lemma 4: First, the definition of x implies that (1 + τ)p1(x) + p2(x) ≥ (1 +

τ)p1(x) + p2(x) for all x ∈ [0, 1]. Second, the definition of continuation payoffs in (2.1)
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implies

(1 + τ)W1 +W2

= E

[∫ ∞
0

re−rt
(
((1 + τ)p1(xt) + p2(xt))dt− r(1 + τ)2dQ1t + rdQ1t

)]
≤ E

[∫ ∞
0

re−rt ((1 + τ)p1(x) + p2(x)) dt

]
= (1 + τ)p1(x) + p2(x).

If (W1,W2 = u2) is the promised payoff of some contract, then (1 + τ)W1 + u2 ≤

(1 + τ)p1(x) + p2(x), which implies W1 ≤ u1.

Lemma A.1. The right-hand sides of (2.10)-(2.12) satisfy the Lipschitz condition in the

open set B defined by

B :=
{

(w1, w2, θ, l) : u1 − ε < w1 < u1 + ε,

u2 − ε < w2 < u2 +
u1 − u1 + 2ε

tan(θ)
,

0 < θ <
π

2
, −∞ < l <∞

}
,

where ε > 0 is a small positive number.

Proof: Equations (2.10) and (2.11) satisfy the Lipschitz condition because their derivatives

with respect to θ are bounded. To show the Lipschitz continuity of (2.12), define

m(θ) :=
1

|φ(θ)|2
,

n(θ, w) :=
2

r
max
x∈[0,1]

N(θ)((p1(x), p2(x))− w) =
2

r
N(θ)((p1(x∗), p2(x∗))− w),

where x∗ is the optimal strategy given in (A.4). So the right-hand side of (2.12) is equal to

m(θ)n(θ, w). The rest of the proof consists of three steps.
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First, both m and n are bounded and continuous. Function n is bounded because N(θ),

p1(x∗), p2(x∗), and w are all bounded in B; it is continuous because x∗ is continuous in θ.

To see that m is bounded and continuous for θ ∈ (0, π
2
), recall from Lemma 3 that

m(θ) =


(σ−2

2 + (1 + µ)2σ−2
1 ) sin2(θ), if θ ∈ (0, θ1];

sin2(2θ)
a−b sin(2θ)+c cos(2θ)

, if θ ∈ [θ1, θ2];

(σ−2
1 + (1 + µ)2σ−2

2 ) cos2(θ), if θ ∈ [θ2,
π
2
),

(A.5)

where a, b, and c are defined in (A.1)-(A.3). Function m is bounded on (0, θ1] ∪ [θ2,
π
2
)

becausem ≤ max(σ−2
2 +(1+µ)2σ−2

1 , σ−2
1 +(1+µ)2σ−2

2 ); it is bounded on [θ1, θ2] because

sin2(2θ)
a−b sin(2θ)+c cos(2θ)

≤ 1
a−
√
b2+c2

.6 Function m is continuous because Lemma 2 shows that

both φ1 and φ2 are continuous in θ.

Second, m(θ)n(θ, w) is Lipschitz continuous in w because the partial derivative of

m(θ)n(θ, w) with respective to w is bounded. In particular,

∂(m(θ)n(θ, w))

∂w1

= −2

r
m(θ) cos(θ),

∂(m(θ)n(θ, w))

∂w2

= −2

r
m(θ) sin(θ),

which are bounded because m is bounded.

Third, m(θ)n(θ, w) is Lipschitz continuous in θ. To show this, it is sufficient to show

that ∂(m(θ)n(θ,w))
∂θ

is bounded. Because (mn)′ = m′n+mn′ and both m and n are bounded,

it is sufficient to show that m′ is bounded and n′ is bounded.

1. m′(θ) is bounded. Differentiating (A.5) yields

m′(θ)=



(σ−2
2 + (1 + µ)2σ−2

1 ) sin(2θ), if θ ∈ (0, θ1];

2 sin(4θ)(a−b sin(2θ)+c cos(2θ))+sin2(2θ)(2b cos(2θ)+2c sin(2θ))
(a−b sin(2θ)+c cos(2θ))2 , if θ ∈ [θ1, θ2];

−(σ−2
2 + (1 + µ)2σ−2

1 ) sin(2θ), if θ ∈ [θ2,
π
2
).

6a−
√
b2 + c2 > 0 because a2 − (b2 + c2) = 16σ2

1σ
2
2/((1 + µ)2 − 1)2 > 0.
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Functionm′ is bounded on (0, θ1]∪[θ2,
π
2
) becausem′ ≤ max(σ−2

2 +(1+µ)2σ−2
1 , σ−2

1 +

(1 + µ)2σ−2
2 ); it is bounded on [θ1, θ2] because

∣∣∣∣2 sin(4θ)(a− b sin(2θ) + c cos(2θ)) + sin2(2θ)(2b cos(2θ) + 2c sin(2θ))

(a− b sin(2θ) + c cos(2θ))2

∣∣∣∣
≤ 2(|a|+ |b|+ |c|) + (2|b|+ 2|c|)

(a−
√
b2 + c2)2

.

Hence m′(θ) is bounded.

2. n′(θ) is bounded. The envelope theorem implies

n′(θ) =
2

r
(− sin(θ)(p1(x∗)− w1) + cos(θ)(p2(x∗)− w2)) ,

where x∗ is the optimal strategy in (A.4). Because w is bounded in B and x∗ ∈ [0, 1],

n′(θ) is also bounded.

Lemma A.2. 1. If a solution to (2.10)-(2.12) starts from (w1, w2, θ) = (u1, u2, θ), then

it is a straight line.

2. If a solution to (2.10)-(2.12) starts from (w1, w2, θ) = (u1, u2, θ), where u1 < u1,

then its curvature is positive (i.e., θ′(l) > 0) and θ(l) < π
2

for all l ≥ 0.

Proof:

1. Define a straight line by (w1(l), w2(l), θ(l)) := (u1 − sin(θ)l, u2 + cos(θ)l, θ). This

straight line solves (2.10)-(2.12) because

max
x∈[0,1]

2N(θ)((p1(x), p2(x))− w)

r|φ(θ)|2
=

2N(θ)((p1(x), p2(x))− w)

r|φ(θ)|2

= 0 = θ′(l).
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A solution to (2.10)-(2.12) must equal the above straight line because the solution is

unique.

2. First, we prove θ′(l) > 0,∀l ≥ 0 by contradiction. If u1 < u1, then the optimal

equation implies that θ′(l = 0) > 0. Suppose θ′(l∗) = 0 at some l∗ > 0. Then the

straight line that passes through w(l∗) and is parallel to T (θ(l∗)) solves (2.10)-(2.12)

from the initial conditions (w(l∗), θ(l∗)).7 It has zero curvature throughout. How-

ever, the original curve (w(l), θ(l)) also solves (2.10)-(2.12), and passes through

w(l∗), but has positive curvature at θ = θ. This contradicts the property that the

solution to (2.10)-(2.12) is unique.

Second, we show θ(l) < π
2
,∀l ≥ 0 by contradiction. Suppose θ(l∗) = π

2
at some

l∗ > 0. For any integer k, define lk by θ(lk) = π
2
− 1

2k
. Since θ increases in l, {lk} is

an increasing sequence. Therefore,

1

2k+1
= θ(lk+1)− θ(lk) =

∫ lk+1

lk

m(θ(l))n(θ(l))dl

= m(θ(l))n(θ(l))(lk+1 − lk)

≤ m(θ(l))N(lk+1 − lk),

where l is a point in [lk, lk+1] and N is an upper bound for the bounded function n.

Because m is shown to be Lipschitz continuous in Lemma A.1, m(θ(l)) ≤ M(π
2
−

7Denote (w1(l∗), w2(l∗), θ(l∗)) as (w∗1 , w
∗
2 , θ
∗). As in step (i), the straight line defined by

(w̃1(l), w̃2(l), θ̃(l)) := (w∗1 − sin(θ∗)(l − l∗), w∗2 + cos(θ∗)(l − l∗), θ∗) satisfies (2.12) because

θ̃′(l) = 0 = max
x∈[0,1]

2N(θ∗)((p1(x), p2(x))− w̃)

r|φ(θ∗)|2
.
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θ(l)) for some M . Therefore,

1

2k+1
≤ m(θ(l))N(lk+1 − lk) ≤ M(

π

2
− θ(l))N(lk+1 − lk)

≤ MN(
π

2
− θ(lk))(lk+1 − lk)

= MN
1

2k
(lk+1 − lk),

which implies lk+1 − lk > 1
2MN

for all k. This contradicts the assumption that

l∗ = limk→∞ lk is finite.

Proof of Lemma 5: Because the ODE system in (2.10)-(2.12) satisfies the Lipschitz con-

dition in B, the extension theorem (e.g., [Theorem 3.1, page 12]Hartman2002) states that,

starting from any initial condition in B, a unique solution exists and extends to the bound-

ary of B. In particular, if u1 ∈ [u1, u1] and the initial condition is (w1, w2, θ) = (u1, u2, θ)

and l = 0, then the solution extends to (w1(l+), w2(l+), θ(l+), l+) ∈ ∂B.

We show that w1(l+) = u1 − ε. The proof consists of several steps.

1. l+ <∞. In fact, l+ ≤ u1−u1+ε

sin(θ)
follows from

u1 − ε ≤ w1(l+) = u1 −
∫ l+

0

sin(θ(l))dl ≤ u1 −
∫ l+

0

sin(θ)dl

= u1 − sin(θ)l+.

2. θ(l+) < π
2
. Because l+ is finite, part (ii) of Lemma A.2 implies θ(l+) < π

2
.

3. w1(l+) < u1 + ε. This follows from w′1(l) = − sin(θ) < 0.

4. u2 − ε < w2(l+). This follows from w′2(l) = cos(θ) > 0.
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5. w2(l+) < u2 + cos(θ)
u1−u1+2ε

sin(θ)
. This follows from

w2(l+) = u2 +

∫ l+

0

cos(θ(l))dl ≤ u2 +

∫ l+

0

cos(θ)dl

≤ u2 + cos(θ)
u1 − u1 + ε

sin(θ)

< u2 + cos(θ)
u1 − u1 + 2ε

sin(θ)
,

where the second inequality follows from step (i), and the third inequality follows

from u1 ≤ u1.

6. w1(l+) = u1 − ε. Otherwise, (w1(l+), w2(l+), θ(l+), l+) /∈ ∂B.

Because w1(l+) = u1 − ε and w1(0) = u1 ≥ u1, the intermediate value theorem

implies the existence of an L such that w1(L) = u1. It follows from w′1(l) < 0 that L is

unique.

The following lemmas A.3-A.5 are used in the proof of Theorem 1.

Lemma A.3. Θ is a continuous function of u1 ∈ [u1, u1].

Proof: Since this proof considers solution curves of various initial conditions u1, we shall

write w1 as a function of both l and u1. Because the optimality equation satisfies the

Lipschitz condition, its solution w1(l, u1) is continuous in (l, u1) (e.g., [Theorem 2.1, page

94] [50]).

First, we show the L defined in Lemma 5 is a continuous function of u1 ∈ [u1, u1].

Because the point (L(u1), u1) satisfies the equation

w1(l, u1) = u1,

and ∂w1

∂l
= − sin(θ(l)) 6= 0, the implicit function theorem states the existence of an open
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set (u1 − ε, u1 + ε) containing u1 and a continuous function L̃(u) defined on the open set

such that

w1(L̃(u), u) = u1, ∀u ∈ (u1 − ε, u1 + ε).

Because the l that satisfies w1(l, u) = u1 is unique, L(u) = L̃(u) for all u in the neighbor-

hood of u1. Therefore, L is continuous at u1.

Second, because L(u1) is continuous in u1 and the composition of continuous func-

tions is still continuous, Θ(u1) := θ(L(u1), u1) is continuous in u1.

To simplify notation in Lemmas A.4-A.5, we expressw1 andw2 as functions of θ. That

is, w1(θ) denotes w1(l(θ)), where l(θ) is the inverse of θ(l).

Lemma A.4. Two curves w and w̃ start from initial conditions (w1(θ∗), w2(θ∗), θ∗) and

(w̃1(θ∗), w̃2(θ∗), θ∗), respectively. Supposew1(θ∗) ≥ w̃1(θ∗),w2(θ∗) ≤ w̃2(θ∗), N(θ∗)w(θ∗) =

N(θ∗)w̃(θ∗), w solves (2.10)-(2.12), and w̃ satisfies (2.10)-(2.11) and

κ̃(θ̃) =
dθ̃

dl
< max

x∈[0,1]

2N(θ̃)((p1(x), p2(x))− w̃)

r|φ(θ̃)|2
. (A.6)

Then κ(θ) > κ̃(θ), w1(θ) > w̃1(θ), and w2(θ) < w̃2(θ) for all θ > θ∗.

Proof: First, N(θ∗)w(θ∗) = N(θ∗)w̃(θ∗) and (A.6) imply κ(θ∗) > κ̃(θ∗). It follows from

continuity that κ(θ) > κ̃(θ) for θ near θ∗.

Second, we show that κ(θ) > κ̃(θ) for all θ > θ∗. Suppose not, let θ∗∗ be the first
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θ > θ∗ such that κ(θ) = κ̃(θ). Then

cos(θ∗∗)w1(θ∗∗) + sin(θ∗∗)w2(θ∗∗)

= cos(θ∗∗)

(
w1(θ∗)−

∫ θ∗∗

θ∗

sin(θ)

κ(θ)
dθ

)
+ sin(θ∗∗)

(
w2(θ∗) +

∫ θ∗∗

θ∗

cos(θ)

κ(θ)
dθ

)
= cos(θ∗∗)w1(θ∗) + sin(θ∗∗)w2(θ∗) +

∫ θ∗∗

θ∗

sin(θ∗∗ − θ)
κ(θ)

dθ

< cos(θ∗∗)w1(θ∗) + sin(θ∗∗)w2(θ∗) +

∫ θ∗∗

θ∗

sin(θ∗∗ − θ)
κ̃(θ)

dθ

≤ cos(θ∗∗)w̃1(θ∗) + sin(θ∗∗)w̃2(θ∗) +

∫ θ∗∗

θ∗

sin(θ∗∗ − θ)
κ̃(θ)

dθ

= cos(θ∗∗)w̃1(θ∗∗) + sin(θ∗∗)w̃2(θ∗∗),

where the first inequality follows from κ(θ) > κ̃(θ),∀θ ∈ (θ∗, θ∗∗), and the second in-

equality follows from

cos(θ∗∗)(w̃1(θ∗)− w1(θ∗)) + sin(θ∗∗)(w̃2(θ∗)− w2(θ∗))

= (cos(θ∗∗)− cos(θ∗))(w̃1(θ∗)− w1(θ∗)) + (sin(θ∗∗)− sin(θ∗))(w̃2(θ∗)− w2(θ∗))

≥ 0,

which further follows from w1(θ∗) ≥ w̃1(θ∗), w2(θ∗) ≤ w̃2(θ∗), cos(θ∗∗) ≤ cos(θ∗), and

sin(θ∗∗) ≥ sin(θ∗). Therefore, (2.12) and (A.6) imply

κ(θ∗∗) = max
x∈[0,1]

2N(θ∗∗)((p1(x), p2(x))− w(θ∗∗))

r|φ(θ∗∗)|2

> max
x∈[0,1]

2N(θ∗∗)((p1(x), p2(x))− w̃(θ∗∗))

r|φ(θ∗∗)|2

> κ̃(θ∗∗),

which contradicts the definition of θ∗∗.
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Third, w1(θ) > w̃1(θ) and w2(θ) < w̃2(θ) because

w1(θ) = w1(θ∗)−
∫ θ

θ∗
sin(x)/κ(x)dx > w̃1(θ∗)−

∫ θ

θ∗
sin(x)/κ̃(x)dx = w̃1(θ),

w2(θ) = w2(θ∗) +

∫ θ

θ∗
cos(x)/κ(x)dx < w̃2(θ∗) +

∫ θ

θ∗
cos(x)/κ̃(x)dx = w̃2(θ).

Recall that if a curve starts from (w1, w2) = (u1, u2), then Θ(u1) denotes the angle of

the curve when it crosses Y. The following lemma shows an important property of Θ.

Lemma A.5. If u < ũ and Θ(u) = Θ(ũ), then Θ(λu + (1 − λ)ũ) > Θ(u) = Θ(ũ) for

λ ∈ (0, 1).

Proof: Let w and w̃ be the solutions to (2.10)-(2.12) that start from (u1 = u, u2) and

(u1 = ũ, u2), respectively. Construct a curve h as the convex combination of w and w̃:

h(θ) = λw(θ) + (1− λ)w̃(θ).

First, curve h satisfies

κh(θ) < max
x∈[0,1]

2N(θ)((p1(x), p2(x))− h(θ))

r|φ(θ)|2
. (A.7)

To prove (A.7), we show the inequality (A.8) below, which is equivalent to (A.7).

max
x∈[0,1]

2N(θ)((p1(x), p2(x))− h(θ))

r|φ(θ)|2

=
2N(θ)((p1(x∗), p2(x∗))− h(θ))

r|φ(θ)|2

= λ
2N(θ)((p1(x∗), p2(x∗))− w(θ))

r|φ(θ)|2
+ (1− λ)

2N(θ)((p1(x∗), p2(x∗))− w̃(θ))

r|φ(θ)|2

= λκ(θ) + (1− λ)κ̃(θ),

81



where x∗ is the optimal solution in (A.7). Because function 1
x

is strictly convex in x,

(
max
x∈[0,1]

2N(θ)((p1(x), p2(x))− h(θ))

r|φ(θ)|2

)−1

=
1

λκ(θ) + (1− λ)κ̃(θ)

< λ
1

κ(θ)
+ (1− λ)

1

κ̃(θ)

=
1

κh(θ)
, (A.8)

where the last equality follows from the fact that h is a convex combination of w and w̃,

and λdw
dθ

+ (1− λ)dw̃
dθ

= dh
dθ

.

Second, let ŵ be the solution curve starting from (u1 = λu + (1 − λ)ũ, u2). Lemma

A.4 shows that ŵ1(θ) > h1(θ) for all θ. In particular,

ŵ1(Θ(u)) > h1(Θ(u)) = λw1(Θ(u)) + (1− λ)w̃1(Θ(u))

= λu1 + (1− λ)u1 = u1.

Because the curve ŵ has not reached Y at angle Θ(u), the angle at which ŵ reaches Y,

Θ(λu+ (1− λ)ũ), is above Θ(u).

Proof of Theorem 1: First, we show that Θ(u1 = u1) = θ and Θ(u1 = u1) = θ. The

former is because L(u1 = u1) = 0 and θ(l = 0) = θ. The latter follows from the fact that

the solution curve starting from (w1, w2, θ) = (u1, u2, θ) is a straight line (see part (i) of

Lemma A.2).

Second, define u∗1 as a maximizer of function Θ on [u1, u1]. Such a maximizer exists

because Θ is shown to be a continuous function in Lemma A.3.

Third, we show that Θ is strictly increasing in [u1, u
∗
1]; the proof that Θ is strictly

decreasing in [u∗1, u1] is similar and hence omitted. By contradiction, suppose Θ(u1) ≥

Θ(u2) for some u1 and u2, where 0 ≤ u1 < u2 ≤ u∗1. Because Θ is continuous in
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[u∗1, u1] and Θ(u1) ∈ [θ,Θ(u∗1)], the intermediate value theorem states the existence of

u3 ∈ [u∗1, u1] such that Θ(u1) = Θ(u3). If u2 < u∗1, then u2 < u3 and u2 ∈ (u1, u3).

Lemma A.5 shows that Θ(u2) > Θ(u1) = Θ(u3), which contradicts Θ(u1) ≥ Θ(u2).

If u2 = u∗1, then Lemma A.5 shows that Θ(u
1+u3

2
) > Θ(u1) ≥ Θ(u2) = Θ(u∗1). That

Θ(u
1+u3

2
) > Θ(u∗1) contradicts the fact that u∗1 is a maximizer.

Lemma A.6. If w1 > u1, w2 > u2, and w = (w1, w2) ∈ ∂E , then there is no payment at

w.

Proof: By contradiction, suppose there is payment at w and (w̃1, w̃2) are the continuation

payoffs after payment; then

w1 + w2 = w̃1 + w̃2 − rC ≤ max
(w1,w2)∈E

w1 + w2 − rC

= u1 + u2

= u1 + u2,

where the last two equalities are (2.13) and (2.14). This implies that w is weakly below

the line segment connecting (u1, u2) and (u1, u2). If w1 +w2 < u1 + u2, then w is strictly

below the line, and hence in the interior of the triangle with vertices (u1, u2), (u1, u2), and

(u1, u2). Since the triangle is a subset of E , w is also in the interior of E , contradicting the

assumption that w ∈ ∂E . If w1 + w2 = u1 + u2, then define ŵ := w + ε(w − w∗), where

ε > 0 is a small number and w∗ is a solution to max(w1,w2)∈E w1 +w2. Because ŵ is strictly

below the line connecting (u1, u2) and (u1, u2), the above argument shows that ŵ is in the

interior of E . Now w = ε
1+ε

w∗+ 1
1+ε

ŵ is a convex combination of w∗ and an interior point

ŵ, and therefore, w is interior too. This again contradicts the assumption that w ∈ ∂E .

Lemma A.7. If u1 + u2 < max(w1,w2)∈E w1 + w2 − rC, then ∂E contains a horizontal

portion, a vertical portion, and a downward sloping portion.
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Proof: We first characterize the horizontal portion and the vertical portion of ∂E . Define ui

as in (2.5). The horizontal portion and vertical portion of ∂E are, respectively, {(w1, u2) :

u1 ≤ w1 ≤ u1} and {(u1, w2) : u2 ≤ w2 ≤ u2}. To see that these boundaries are non-

degenerate, we need to show ui < ui. Equation (2.13) and the assumption u1 + u2 <

max(w1,w2)∈E w1 + w2 − rC imply

u1 < max
(w1,w2)∈E

w1 + w2 − rC − u2 = u1 + u2 − u2 = u1.

Similarly, we can show that u2 < u2.

Then, we study the portion of the boundary from (u1, u2) to (u1, u2). This portion

stays above the straight line connecting the two points because E is convex. As we argue

in the text, the portion satisfies the ODE in (2.10)-(2.12). Recall that part (ii) in Lemma

A.2 shows that θ < π/2 on any solution to the ODE in (2.10)-(2.12). Similar steps can

show that 0 < θ < π/2 on any solution to the ODE. Therefore, the boundary from (u1, u2)

to (u1, u2) is downward sloping.

Proof of Lemma 6: First, we show that u1(w∗1) is strictly increasing in w∗1 and u2(w∗1)

is strictly decreasing in w∗1. We only provide the proof for u2(·) as the proof for u1(·) is

symmetric. For any two payoffs w∗1 > w̃∗1, let w and w̃ be the curves starting at (w∗1, S −

w∗1,
π
4
) and (w̃∗1, S − w̃∗1, π4 ), respectively. The proof of u2(w∗1) < u2(w̃∗1) consists of parts

(i), (ii), and (iii). During the proof, we shall write w2, θ, and κ as functions of w1.
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1. If w1 = w̃∗1, then θ(w1) > π/4 = θ̃(w1). Furthermore, w2(w̃∗1) < w̃2(w̃∗1) because

w2(w̃∗1) = w2(w∗1) +

∫ w̃∗1

w∗1

w′2(w1)dw1

= w2(w∗1) +

∫ w∗1

w̃∗1

cot(θ(w1))dw1

< w2(w∗1) +

∫ w∗1

w̃∗1

1dw1

= S − w̃∗1 = w̃2(w̃∗1).

2. If there is some w1 such that θ(w1) > θ̃(w1) for all w1 ∈ (w1, w̃
∗
1], then w2(w1) <

w̃2(w1). The proof given below is similar to that in part (i).

w2(w1) = w2(w̃∗1) +

∫ w1

w̃∗1

w′2(w1)dw1

= w2(w̃∗1) +

∫ w̃∗1

w1

cot(θ(w1))dw1

< w̃2(w̃∗1) +

∫ w̃∗1

w1

cot(θ̃(w1))dw1

= w̃2(w1),

where the inequality follows from w2(w̃∗1) < w̃2(w̃∗1) in part (i) and the assumption

that θ(w1) > θ̃(w1) for all w1 ∈ (w1, w̃
∗
1].

3. We show θ(w1) > θ̃(w1) for all w1 ∈ [u1, w̃
∗
1] by contradiction. Suppose not, let

w1 be the largest w1 < w̃∗1 such that θ(w1) = θ̃(w1). That is, θ(w1) > θ̃(w1)

for all w1 ∈ (w1, w̃
∗
1] and θ(w1) = θ̃(w1) for w1 = w1. Then part (ii) implies

w2(w1) < w̃2(w1). Therefore, N(θ(w1))(w1, w2(w1)) < N(θ̃(w1))(w1, w̃2(w1))

and κ(w1) > κ̃(w1).

On the other hand, dθ
dw1
≥ dθ̃

dw1
at w1 = w1 because θ(w1) > θ̃(w1) for all w1 ∈
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(w1, w̃
∗
1] and θ(w1) = θ̃(w1) for w1 = w1. Therefore,

κ(w1) =
dθ

dl
=

dθ

dw1

dw1

dl
= − dθ

dw1

sin(θ(w1)) ≤ − dθ̃

dw1

sin(θ̃(w1)) = κ̃(w1),

which contradicts the inequality κ(w1) > κ̃(w1) shown above. Therefore, θ(w1) >

θ̃(w1) for all w1 ∈ [u1, w̃
∗
1] and by part (ii), w2(u1) < w̃2(u1). This finishes the

proof because u2(w∗1) = w2(u1) and u2(w̃∗1) = w̃2(u1).

Second, we show the existence and the uniqueness of w∗1 that satisfies u1 + u2(w∗1) =

u1(w∗1) + u2. It follows from

lim
w∗1↓u1

u2(w∗1) = S − u1, lim
w∗1↑S−u2

u1(w∗1) = S − u2

that

lim
w∗1↓u1

u1(w∗1) + u2 < (S − u2) + u2 = lim
w∗1↓u1

u2(w∗1) + u1,

lim
w∗1↑S−u2

u1(w∗1) + u2 = (S − u2) + u2 > lim
w∗1↑S−u2

u2(w∗1) + u1.

The above inequalities and the intermediate value theorem imply the existence of a w∗1

satisfying u1 + u2(w∗1) = u1(w∗1) + u2. The uniqueness follows from the monotonicity of

u1(w∗1)− u2(w∗1) in w∗1, and the monotonicity is shown in the first step.

Proof of Theorem 2: We can express equation (2.17) equivalently as

1 +B(D − S)S −
√

1 + 2B(D − S)S = rCB(D − S). (A.9)

The rest of this proof consists of five steps.

First, g(S) := 1 +B(D − S)S −
√

1 + 2B(D − S)S is symmetric around D/2. It is
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increasing on [0, D/2] because

g′(S) =

(
1− 1√

1 + 2B(D − S)S

)
B(D − 2S) > 0, ∀S ∈ (0, D/2).

Second, there is a cutoff S∗ ∈ (0, D/2) such that g is convex in (0, S∗) and concave in

(S∗, D/2). The second derivative of g is

g′′(S) = −2B

(
1− 1√

1 + 2B(D − S)S

)
+

1

(
√

1 + 2B(D − S)S)3
B2(D − 2S)2

=
B2(D − 2S)2 − 2B(1 + 2B(D − S)S)(

√
1 + 2B(D − S)S − 1)

(
√

1 + 2B(D − S)S)3
. (A.10)

It is easy to verify that g′′(S = 0) > 0 and g′′(S = D/2) < 0. Moreover, the numerator

in (A.10) is monotonically decreasing in S ∈ (0, D/2). Therefore, there is a cutoff S∗ ∈

(0, D/2) such that

g′′(S)


> 0, if S ∈ (0, S∗);

< 0, if S ∈ (S∗, D − S∗);

> 0, if S ∈ (D − S∗, D).

Third, generically, (A.9) has two or more solutions in (0, D) if it has at least one

solution.8 Suppose S is the largest solution; then there should be another solution below S.

To see this, note that g is below rCB(D−S) when S is close to D, since g′(S = D) = 0.

That means g stays below the straight line rCB(D−S) for all S ∈ (S,D) and stays above

the straight line for S slightly below S. But g(S = 0) = 0 is below the straight line, which

means there is another solution below S.

Fourth, if S ∈ (D − S∗, D) is a solution, then g(S) > rCB(D − S) for all S ∈
8We will ignore the case where (A.9) has no solution. In this case, C is so large that no feasible contract

exists except autarky.
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[D − S∗, S). This follows from the convexity of g on [D − S∗, D] and the fact that D is

also a solution. In particular, g is above the straight line at S = D − S∗.

Fifth, suppose S and S are, respectively, the smallest and the largest solutions in (0, D).

We show that no other solution exists between S and S. There are three possibilities:

1. S ∈ (0, S∗). Then S > D − S∗ because g(S) > g(S). The fourth step and

S ∈ (D− S∗, D) imply that g(S) is above the straight line for all S ∈ (D− S∗, S).

g(S) is above the straight line for all S ∈ (S, S∗] because g is increasing but the

straight line is decreasing. g(S) is above the straight line for all S ∈ [S∗, D − S∗]

because g is concave and both g(S∗) and g(D − S∗) are above the straight line.

2. S ∈ [S∗, D − S∗]. If S ∈ [S∗, D − S∗], then the conclusion follows from the

concavity of g. If S ∈ (D − S∗, D), then the proof is similar to that in part (i).

3. S ∈ (D − S∗, D). Then S ∈ (D − S∗, D). But the fourth step implies g(S) >

rCB(D − S) for all S ∈ [D − S∗, S). This contradicts the assumption that S ∈

(D − S∗, D) is a solution.
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APPENDIX B

APPENDIX OF SECTION THREE

Proof of Proposition 1

In any bubbly equilibrium

Qb
t+1Ht+1

Qb
tHt

=
φt+1Rt+1Kt+1

φtRtKt

,

Rt+1gt
(1− δ)p

=
φt+1Rt+1Kt+1

φt
Kt+1(1−ψ)α

(1−φt)ψ

,

φt+1

φt
=

(1− ψ)αgt
(1− δ)ψ(1− φt)p

=
zgt

(1− φt)
, (B.1)

where z ≡ (1−ψ)α
(1−δ)ψp . And it is trivial that in a bubbly steady state, φ∗ = 1 − z. Equation

(B.1) is important to understand the dynamics of bubble. The left part of this chapter is

how we rely on Equation (B.1) to prove Proposition 1, and it includes the following six

lemmas.

Lemma B.1. In any equilibrium, {φt} converge to either bubbly steady state or bubbleless

steady state.

Proof: First, we argue that the sequence {φt} has a limitation. We prove it by contra-

diction. Assume there is a sequence {φt} which is not convergent. Define two sequences

{gt} ≡ sup({gt+i}i=∞i=0 ) and {g
t
} ≡ inf({gt+i}i=∞i=0 ). At time t, if φt > 1 − zg

t
, then

zg
t

1−φt > 1 while φt+i ≥ [
zg
t

1−φt ]
iφt for any i > 0. The sequence will finally excess 1. And if

φt < 1 − zgt, then zgt
1−φt < 1 while φt+i ≤ [ zgt

1−φt ]
iφt for any i > 0. Finally, the sequence

will converge to zero. Thus φt ∈ [1 − zgt, 1 − zgt]. Since this should be held for any t,

limt→∞[1 − zgt] ≤ limt→∞φt ≤ limt→∞[1 − zg
t
], and limt→∞φt = 1 − z. It is contra-

dicted with the assumption {φt} which is not convergent. By this analysis, we can also
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find {φt} will converge to either bubbly steady state φ̂∗ = 1− z or bubbleless steady state

0.

Lemma B.2. If φt > φ′t, then φt+i > φ′t+i for any i > 0.

Proof: If φt > φ′t, by equation (B.1), we have φt+1 = zgt(
1

1−φt −1) > zgt(
1

1−φ′t
−1) = φ′t.

By induction, we know φt+i > φ′t+i for any i > 0.

Lemma B.3. There is an nonempty, open, convex set Φ0 containing all φ0, from which

there are corresponding asymptotically bubbleless equilibrium.

Proof:To prove this lemma, we have three steps.

First we prove non-emptiness by arguing that when φ0 is sufficient small, there is

always a asymptotically bubbleless equilibrium. If {gt} is an increasing sequence, then

gt < 1. Choose φ0 < 1 − z, then φt+1

φt
< z

1−φ0
< 1. Thus limt→∞ φt = 0. If {gt} is

a decreasing sequence, since {gt} converges to 1, there is a time T such that zgT < 1.

Choose φ0 < min[ 1
2(2zg0)T

, 1−zgT
(2zg0)T )

] satisfying that φt < 1
2

when t ∈ (0, T ] and φT <

1 − zgT . Then φT+i+1

φT+i
< zgT

φT
< 1. Then {φt} converges to zero. And we can construct a

asymptotically bubbleless equilibrium with this {φt}.

Second, we prove the set is open. In step 1, we already show the set is open to the left.

Now, we show the set is open to the right. We argue that if φ0 ∈ Φ0 then φ0 +η ∈ Φ0 when

η is sufficient small. First we consider {gt} is increasing sequence. Since limt→∞ φt = 0,

there is a time T when φT < 1 − z. Choose η = 1−z−φT
2( z

1−φ̄ )T
where φ̄ = max[{φt}T0 ], and

define a new sequence {φ′t} starting at φ0 + η. φ′T < φT + 1−z−φT
2

< 1− z then any φ′T+i

will be smaller then 1 − z, and {φ′t} converges to zero.If {gt} is a decreasing sequence,

since { zgt
1−φt} converges to z, there is a time T after when zgt

1−φt < 1 for all t. Choose
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η = 1−zgT−φT
2(

zg0
1−φ̄ )T

where φ̄ is defined the same as before. Starting from φt + η there is a new

sequence named as {φ′t}. φ′T < φT + 1−zgT−φT
2

< 1− zgT and zgt
1−φ′t

< zgT
1−φ′T

for all t ≥ T .

Then sequence {φ′t} converges to 0.

Third, we prove convexity. Assume φ0 and φ′0 (φ0 > φ′0) are in Φ0, then for any

φ′′0 ∈ (φ′0, φ0) by lemma 2 φt > φ′′t > φ′t. We have 0 = limt→∞ φt ≥ limt→∞ φ
′′
t ≥

limt→∞ φ
′
t = 0. Thus, φ′′0 ∈ Φ0.

Lemma B.4. There is a φ̂0 as the supremum of set Φ0. Starting from φ̂0, there is an

corresponding equilibrium.

Proof: Since set Φ0 is a bounded open set, then there exists a supremum denoted as φ̂0

We claim there exists an equilibrium starting at φ̂0. Define a sequence {φt} starting at

φ̂0 satisfying equation (B.1). If there is no equilibrium starting from φ̂0, then there must

be some time T when φT ≥ 1. Now we claim the sequence {φ′t} starting at φ̂0 − η

also corresponds to no equilibrium when η is sufficient small. If φT > 1, then choose

η = φT−1
2∆T where ∆ ≡ max({ zgt

1−φt}
T−1
0 ). Then φ′T ≥ φT − φT−1

2
> 1. If φT = 1, choose

η = zgT
2(zgT+1)∆T . Then φ′T > 1 − zgT

2(zgT+1)
, which makes φ′T+1 = zgT

φ′T
1−φ′T

≥ 2 + zgT >

1.Since there is no corresponding equilibrium starting from φ̂ − η, then φ̂0 − η /∈ Φ0. At

the same time, φ̂0 − η > φ0 for any φ0 ∈ Φ0 because Φ0 is a convex set. It is contradicted

that φ̂0 is the supremum of set Φ0.

Lemma B.5. There is a unique value of φ0, which corresponds to a bubbly equilibrium.

Proof:Since Lemma B.1, Lemma B.4 and Lemma B.5 imply that φ̂0 corresponds to a

bubbly equilibrium. Here we just prove the uniqueness. Assume that there are two initial

values φ0 and φ′0 starting from which {φt} and {φ′t} converges to the bubbly steady state.

Since limt→∞
zgt

1−φt = 1 and limt→∞(1−φ′t) = z < 1, then there exist a time T after when
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zgt
1−φt > 1− φ′t for any t ≥ T . We have φT+1 − φ′T+1 = zgT

(1−φt)(1−φ′t)
(φT − φ′T ) > φT − φ′T .

By induction, we know that φT+i − φ′T+i > φT − φ′T for any i > 0. Then φT+i and φ′T+i

at least one are not in (φ̂∗ +
|φT−φ′T |

2
, φ̂∗ − |φT−φ

′
T |

2
), which is contradicted with that both

{φt} and {φ′t} converge to φ̂∗.

Lemma B.6. Starting from φ0 > φ̂0, there is no equilibrium.

Proof: By Lemma B.1, in any equilibrium ,starting from φ0 > φ̂0, the sequence {φt} can

only converges to 0 or φ̂∗. By Lemma B.5, starting from φ0 > φ̂0, the sequence {φt}

can not converge to φ̂∗. By Lemma B.2, the limitation of {φt} should be greater than or

equal to φ̂∗, thus {φt} can not converge to zero. So, starting from φ0 > φ̂0, there is no

equilibrium.
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