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ABSTRACT OF THE DISSERTATION

Essay on Macroeconomics and Expectations

by

Giovanni Nicolò

Doctor of Philosophy in Economics

University of California, Los Angeles, 2018

Professor Roger E. A. Farmer, Co-Chair

Professor Aaron Tornell, Co-Chair

My dissertation focuses on the interactions between the conduct of U.S. monetary policy

and the expectations formed by households, firms and public institutions about the state of

economy. The first two chapters develop new methods that I use in the subsequent chapters

to study how expectations formed by economic agents about future economic conditions

affect a given economy. The second chapter considers and extends the work in Farmer

(2012a) to explain U.S. post-war data, and shows that it outperforms conventional economic

theories due to its ability to account for persistent movements in the data. The last chapter

explores how the effectiveness of monetary policy changed in the U.S. post-war period, and

I provide evidence that since the early 1980’s the monetary authority implemented policies

that reduced economic uncertainty deriving from unforeseen changes in the expectations

about future inflation.
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Introduction

Expectations and monetary policy are closely related. While the implementation of monetary

policies crucially affects the expectations formed by the private sector, its effectiveness heavily

depends on the beliefs held by the latter. My dissertation deepens the understanding of these

interactions by providing evidence in four chapters. The first two chapters develop new

methods applied in the subsequent chapters, and that allow to solve and estimate models

in which expectations could play a relevant role. The third chapter considers the paradigm

developed in Farmer (2012a) to show that the high persistence in the inflation rate, the

nominal interest rate and the output gap in the United States is explained by an economy

in which expectations about the future economic conditions have a potentially permanent

effect on current economic outcomes. Finally, in the last chapter , I study the conduct of

U.S. monetary policy during the post-war period, and show that since the early 1980’s the

monetary authority implemented policies which suppressed the possibility for expectations

to generate economic uncertainty.

Chapter I & II: Methods to Deal with Expectations in Macroeconomic Models

Chapter I and II present methodologies implemented in Chapter III and IV. Chapter I draws

from the paper “Solving and Estimating Indeterminate DSGE Models," published in

the Journal of Economic Dynamics and Control, and coauthored with Roger E. A. Farmer

and Vadim Khramov, (Farmer et al., 2015). The second chapter builds on the previous paper

and constitutes new research developed in the joint paper with Francesco Bianchi, “A Gen-

eralized Approach to Indeterminacy in Linear Rational Expectations Models,"

(Bianchi and Nicolò, 2017).

The first chapter proposes a method for solving and estimating linear rational expecta-

tions models that exhibit indeterminacy and we provide step-by-step guidelines for imple-

menting this method in the Matlab-based packages Dynare and Gensys. Our method rede-

fines a subset of expectational errors as new fundamentals. This redefinition allows us to treat

1



indeterminate models as determinate and to apply standard solution algorithms. We prove

that our method is equivalent to the solution method proposed by Lubik and Schorfheide

(2003, 2004), and using the New-Keynesian model described in Lubik and Schorfheide (2004),

we demonstrate how to apply our theoretical results with a practical exercise.

The second chapter then proposes a generalized approach to deal with the problem of

indeterminacy in Linear Rational Expectations models. Our method consists of augmenting

the original model with a set of auxiliary exogenous equations that are used to provide

the adequate number of explosive roots in presence of indeterminacy. Using our approach,

the researcher can estimate the model by using standard packages without restricting the

estimates to a certain area of the parameter space, and she can test more easily whether

the data favor a model specification in which expectations play a fundamental role in the

economy.

Chapter III: Monetary Policy, Expectations and the U.S. Economy in the Long-

Run

The Great Recession revived a familiar debate among academics and policy makers. The

crisis had long-lasting, if not permanent, effects on the U.S. economy, and this fact is con-

sistent with the evidence provided in many econometric studies. U.S. macroeconomic data

are well-described by non-stationary time series: after a given economy suffers a crisis, it

experiences permanent losses in terms of GDP, consumption and investment, while the un-

employment rate, the inflation rate and the interest rate adjust to a new level. Conventional

theories cannot easily account for these facts because they assume that key macroeconomic

variables converge to their long-run trends. There is no possibility of observing permanent

effects of transitory shocks.

The third chapter draws from the paper coauthored with Professor Roger E. A. Farmer, ti-

tled “Keynesian Economics Without the Phillips Curve," (Farmer and Nicolò, 2018).

We extend Farmer’s (2012a) Monetary (FM) model to explain the observed persistence in

2



the inflation rate, the nominal interest rate and the output gap in the United States. The

model is a three-equation NK model in which the Phillips curve is replaced by a belief func-

tion. This is an equation in which expectations about the future growth rate of nominal

GDP are determined by observations of current nominal GDP. In the FM model, structural

shocks have permanent effects on the economy. Central to this result is the idea that the ex-

pectations of households, firms and government are fundamentals that determine the current

state of the economy.

In the conventional NK model, policies that alter aggregate demand have no impact on

real economic activity in the long-run. In the FM model, policies that target aggregate

demand have permanent, long-lasting effects on output and unemployment. Government

interventions that increase aggregate demand are potentially powerful tool to increase em-

ployment not just temporarily, but in the long-run. Using Bayesian techniques, we show that

the FM model fits the U.S. post-war data better the conventional NK theory, and we argue

that the improved empirical performance stems from its ability to account for persistent

movements in the data.

In future works, I plan to incorporate the innovation of the FM model into a medium-

scale model to ask if the cointegrating feature of the FM model can better explain the data

in the post-war period relative to a conventional NK model that displays self-stabilizing

properties around a unique long-run equilibrium.

Chapter IV: Monetary Policy, Expectations and Business Cycles in the U.S.

Post-War Period

In the fourth and last chapter, I study the interactions between monetary policy and expec-

tations in the United States during the post-war period. From the late 1950s through the

1970s, the U.S. economy experienced high volatility, and inflation was high and rising. Since

the early 1980s, the macroeconomy was less volatile, and inflation was low and stable. The

conduct of monetary policy before 1980 is at odds with the objective of the Federal Reserve

3



to achieve a low and stable inflation rate and stabilize unemployment and growth.

I estimate a conventional medium-scale New-Keynesian (NK) model using Bayesian tech-

niques. In line with previous studies based on small-scale models, I find that the change in

the behavior of the data is associated with a change in the conduct of monetary policy.

Prior to 1980, monetary policy in the United States was not aggressive enough to stabilize

inflation, output and employment. Since the early 1980s, the monetary authority acted more

systematically to achieve a low and stable inflation rate.

The main contribution of the paper is to conduct a quantitative analysis of the reasons for

which a monetary policy that fails to stabilize the inflation and output growth rationalizes

the empirical properties of the data before 1980. In response to structural shocks, inflation

expectations are persistently de-anchored from the long-run inflation target of the monetary

authority. This mechanism generates an additional source of persistence that explains the

run-up in inflation since the early 1960s until the late 1970s. In particular, I find that

positive productivity shocks during the 1960s induced persistent inflationary pressures via

the formation of self-fulfilling inflationary expectations. The oil crisis that hit the U.S.

economy in the mid-1970s also triggered mark-up shocks that prompted additional, sudden

inflationary episodes.

Relative to the previous literature, I show that non-fundamental disturbances have no

quantitative role in explaining the high macroeconomic volatility before 1980. When the

monetary authority fails to stabilize inflation and the macroeconomy, unexpected changes

in expectations constitute an additional, non-fundamental source of uncertainty. In my

quantitative analysis, I find that the high volatility of the macroeconomy observed prior to

1980 is explained exclusively by structural disturbances and non-fundamental shocks have

no quantitative relevance.
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Part I

Solving and Estimating Indeterminate

DSGE Models

It is well known that linear rational expectations (LRE) models can have an indeterminate

set of equilibria under realistic parameter choices. Lubik and Schorfheide (2003) provided an

algorithm that computes the complete set of indeterminate equilibrium, but their approach

has not yet been implemented in standard software packages and has not been widely applied

in practice. In this paper, we propose an alternative methodology based on the idea that a

model with an indeterminate set of equilibria is an incomplete model. We propose to close

a model of this kind by treating a subset of the non-fundamental errors as newly defined

fundamentals.

Our method builds on the approach of Sims (2001b) who provided a widely used computer

code, Gensys, implemented in Matlab, to solve for the reduced form of a general class of linear

rational expectations (LRE) models. Sims’s code classifies models into three groups; those

with a unique rational expectations equilibrium, those with an indeterminate set of rational

expectations equilibria, and those for which no bounded rational expectations equilibrium

exists. By moving non-fundamental errors to the set of fundamental shocks, we select a

unique equilibrium, thus allowing the modeler to apply standard solution algorithms. We

provide step-by-step guidelines for implementing our method in the Matlab-based software

programs Dynare (Adjemian et al., 2011) and Gensys (Sims, 2001b).

Our paper is organized as follows. In Section 1, we provide a brief literature survey and

in Section 2 we review solution methods for indeterminate models. In Section 3, we discuss

the choice of which expectational errors to redefine as fundamental and we prove that all

possible alternative selections have the same likelihood. Section 4 compares our method to
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the work of Lubik and Schorfheide (2003) and establishes an equivalence result between the

two approaches. In Section 5, we apply our method to the New-Keynesian model described

in Lubik and Schorfheide (2004) and we show how to apply our method using Gensys to

simulated data. Section 6 provides step-by-step guidelines for implementing our method in

the popular software package, Dynare,1 and Section 7 provides a brief conclusion.

1 Related Literature

Blanchard and Kahn (1980a) showed that a LRE model can be written as a linear combina-

tion of backward-looking and forward-looking solutions. Since then, a number of alternative

approaches for solving linear rational expectations models have emerged (King and Watson,

1998; Klein, 2000; Uhlig, 1999; Sims, 2001b). These methods provide a solution if the equi-

librium is unique, but there is considerable confusion about how to handle the indeterminate

case. Some methods fail in the case of a non-unique solution, for example, Klein (2000),

while others, e.g. Sims (2001b), generate one solution with a warning message.

All of these solution algorithms are based on the idea that, when there is a unique deter-

minate rational expectations equilibrium, the model’s forecast errors are uniquely defined by

the fundamental shocks. These errors must be chosen in a way that eliminates potentially

explosive dynamics of the state variables of the model.

McCallum (1983) has argued that a model with an indeterminate set of equilibria is

incompletely specified and he recommends a procedure, the minimal state variable solution,

for selecting one of the many possible equilibria in the indeterminate case. Farmer (1999)

has argued instead, that we should exploit the properties of indeterminate models to help

understand data. Farmer and Guo (1995) took up that challenge by studying a model

where indeterminacy arises from a technology with increasing returns-to-scale, and Lubik and

Schorfheide (2004), developed methods for distinguishing determinate from indeterminate

1Dynare is a Matlab-based software platform for handling a wide class of economic models, in particular
dynamic stochastic general equilibrium (DSGE). Visit www.dynare.org for details.
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models which they applied to a New-Keynesian monetary model. There is a growing body

of literature, see, for example, Belaygorod and Dueker (2009); Fanelli (2012); Castelnuovo

and Fanelli (2014); Hirose (2011); Zheng and Guo (2013); Bilbiie and Straub (2013), that

directly tackles the econometric challenges posed by indeterminacy. This literature offers the

possibility for the theoretical work, surveyed in Benhabib and Farmer (1999), to be directly

compared with conventional classical and new-Keynesian approaches in which equilibria are

assumed to be locally unique.

The empirical importance of indeterminacy began with the work of Benhabib and Farmer

(1994) who established that a standard one-sector growth model with increasing returns

displays an indeterminate steady state and Farmer and Guo (1994) who exploited that

property to generate business cycle models driven by self-fulfilling beliefs. More recent New-

Keynesian models have been shown to exhibit indeterminacy if the monetary authority does

not increase the nominal interest rate enough in response to higher inflation (see, for example,

Clarida et al. (2000a); Kerr and King (1996)). Our estimation method should be of interest

to researchers in both literatures.

2 Solving Linear Rational Expectations Models

Consider the following k-equation LRE model. We assume that Xt ∈ Rk is a vector of devia-

tions from means of some underlying economic variables. These may include predetermined

state variables, for example, the stock of capital, non-predetermined control variables, for

example, consumption; and expectations at date t of both types of variables.

We assume that zt is an l × 1 vector of exogenous, mean-zero shocks and ηt is a p × 1

vector of endogenous shocks.2 The matrices Γ0 and Γ1 are of dimension k × k, possibly

singular, Ψ and Π are respectively, k × l and k× p known matrices.

2Sims (2001b) allows zt to be autoregressive with non zero conditional expectation. We assume, instead,
that zt always has zero conditional mean. That assumption is unrestrictive since an autoregressive error can
be written in our form by defining a new state variable, z̃t and letting the innovation of the original variable,
zt, be the new fundamental shock.

7



Using the above definitions, we will study the class of linear rational expectations models

described by Equation (2.1),

Γ0Xt = Γ1Xt−1 +Ψzt +Πηt. (2.1)

Sims (2001b) shows that this way of representing a LRE is very general and most LRE

models that are studied in practice by economists can be written in this form. We assume

that

Et−1 (zt) = 0, and Et−1 (ηt) = 0. (2.2)

We define the l × l matrix Ωzz,

Et−1

(
ztz

T

t

)
= Ωzz, (2.3)

which represents the covariance matrix of the exogenous shocks. We refer to these shocks

as predetermined errors, or equivalently, predetermined shocks. The second set of shocks,

ηt, has dimension p. Unlike the zt, these shocks are endogenous and are determined by the

solution algorithm in a way that eliminates the influence of the unstable roots of the system.

In many important examples, the ηi,t have the interpretation of expectational errors and, in

those examples,

ηi,t = Xi,t − Et−1 (Xi,t) . (2.4)
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2.1 The QZ Decomposition

Sims (2001b) shows how to write equation (2.1) in the form

S︷ ︸︸ ︷

S11 S12

0 S22




X̃t︷ ︸︸ ︷

X̃1,t

X̃2,t


 =

T︷ ︸︸ ︷

T11 T12

0 T22




X̃t−1︷ ︸︸ ︷

X̃1,t−1

X̃2,t−1




+

Ψ̃︷ ︸︸ ︷


Ψ̃1

Ψ̃2


 zt +

Π̃︷ ︸︸ ︷


Π̃1

Π̃2


ηt (2.5)

where the matrices S, T , Ψ̃ and Π̃ and the transformed variables X̃t are defined as follows.

Let

Γ0 = QSZT , and Γ1 = QTZT , (2.6)

be the QZ decomposition of {Γ0,Γ1} where Q and Z are k× k orthonormal matrices and S

and T are upper triangular and possibly complex.

The QZ decomposition is not unique. The diagonal elements of S and T are called

the generalized eigenvalues of {Γ0,Γ1} and Sims’s algorithm chooses one specific decompo-

sition that orders the equations so that the absolute values of the ratios of the generalized

eigenvalues are placed in increasing order that is,

|tjj | / |sjj| ≥ |tii| / |sii| for j > i. (2.7)

Sims proceeds by partitioning S, T , Q and Z as

S =



S11 S12

0 S22


 , T =



T11 T12

0 T22


 , (2.8)
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Q =



Q11 Q12

Q21 Q22


 , Z =



Z11 Z12

Z21 Z22


 , (2.9)

where the first block contains all the equations for which |tjj | / |sjj| < 1 and the second

block, all those for which |tjj| / |sjj| ≥ 1. The transformed variables X̃t are defined as

X̃t = ZTXt, (2.10)

and the transformed parameters as

Ψ̃ = QTΨ, and Π̃ = QTΠ. (2.11)

2.2 Using the QZ decomposition to solve the model

The model is said to be determinate if Equation (2.5) has a unique bounded solution. To

establish existence of at least one bounded solution we must eliminate the influence of all of

the unstable roots; by construction, these are contained in the second block,

X̃2,t = S−1
22 T22X̃2,t−1 + S−1

22

(
Ψ̃2zt + Π̃2ηt

)
, (2.12)

since the eigenvalues of S−1
22 T22 are all greater than or equal to one in absolute value. Hence

a bounded solution, if it exists, will set

X̃2,0 = 0, (2.13)

and

Ψ̃2zt + Π̃2ηt = 0. (2.14)

Since the elements of X̃2,t are linear combinations of X2,t, a necessary condition for the

existence of a solution to equation (2.14) is that there are at least as many non-predetermined
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variables as unstable generalized eigenvalues. A sufficient condition is that the columns of

Π̃2 in the matrix, [
Ψ̃2 Π̃2

]
, (2.15)

are linearly independent so that there is at least one solution to Equation (2.14) for the

endogenous shocks, ηt, as a function of the fundamental shocks, zt. In the case that Π̃2 is

square and non-singular, we can write the solution for ηt as

ηt = −Π̃−1
2 Ψ̃2zt. (2.16)

More generally, Sims’ code checks for existence using the singular value decomposition of

(2.15).

To find a solution for X̃1,t we take equation (2.16) and plug it back into the first block

of (2.5) to give the expression,

X̃1,t = S−1
11 T11X̃1,t−1 + S−1

11

(
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

)
zt. (2.17)

Even if there is more than one solution to (2.14) it is possible that they all lead to the same

solution for X̃1,t. Sims provides a second use of the singular value decomposition to check

that the solution is unique. Equations (2.13) and (2.17) determine the evolution of
{
X̃t

}

as functions of the fundamental shocks {zt} and, using the definition of
{
X̃t

}
from (2.10),

we can recover the original sequence {Xt}.

2.3 The Indeterminate Case

There are many examples of sensible economic models where the number of expectational

variables is larger than the number of unstable roots of the system. In that case, Gensys

will find a solution but flag the fact that there are many others. We propose to deal with

that situation by providing a statistical model for one or more of the endogenous errors.
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The rationale for our procedure is based on the notion that agents situated in an en-

vironment with multiple rational expectations equilibria must still choose to act. And to

act rationally, they must form some forecast of the future and, therefore, we can model the

process of expectations formation by specifying how the forecast errors covary with the other

fundamentals.

If a model has n unstable generalized eigenvalues and p non-fundamental errors then,

under some regularity assumptions, there will be m = p − n degrees of indeterminacy. In

that situation we propose to redefine m non-fundamental errors as new fundamental shocks.

This transformation allows us to treat indeterminate models as determinate and to apply

standard solution and estimation methods.

Consider model (2.1) and suppose that there are m degrees of indeterminacy. We propose

to partition the ηt into two pieces, ηf,t and ηn,t and to partition Π conformably so that,

Γ0
k×k

Xt
k×1

= Γ1
k×k

Xt−1
k×1

+ Ψ
k×l

zt
l×1

+

[
Πf
k×m

Πn
k×n

]


ηf,t
m×1

ηn,t
n×1


 . (2.18)

Here, ηf,t is an m × 1 vector that contains the newly defined fundamental errors and ηn,t

contains the remaining n non-fundamental errors.

Next, we re-write the system by moving ηf,t from the vector of expectational shocks to

the vector of fundamental shocks:

Γ0
k×k

Xt
k×1

= Γ1
k×k

Xt−1
k×1

+

[
Ψ
k×l

Πf
k×m

]
z̃t

(l+m)×1
+ Πn

k×n
ηn,t
n×1

, (2.19)

where we treat

z̃t
(l+m)×1

=



zt
l×1

ηf,t
m×1


 , (2.20)

as a new vector of fundamental shocks and ηn,t as a new vector of non-fundamental shocks.
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To complete this specification, we define Ω̃

Ω̃
(l+m)×(l+m)

= Et−1






zt
l×1

ηf,t
m×1






zt
l×1

ηf,t
m×1




T
 ≡




Ωzz
l×l

Ωzf
l×m

Ωfz
m×l

Ωff
m×m


 , (2.21)

to be the new covariance matrix of fundamental shocks. This definition requires us to

specify m (m+ 1 + 2l) /2 new variance parameters, these are the m (m+ 1) /2 elements of

Ωff , and m × l new covariance parameters, these are the elements of Ωzf . By choosing

these new parameters and applying Sims’ solution algorithm, we select a unique bounded

rational expectations equilibrium. The diagonal elements of Ω̃ that correspond to ηf have

the interpretation of a pure ‘sunspot’ component to the shock and the covariance of these

terms with zt represent the response of beliefs to the original set of fundamentals.

Our approach to indeterminacy is equivalent to defining a new model in which the in-

determinacy is resolved by assuming that expectations are formed consistently using the

same forecasting method in every period. For example, expectations may be determined by

a learning mechanism as in Evans and Honkapohja (2001) or using a belief function as in

Farmer (2002). For our approach to be valid, we require that the belief function is time

invariant and that shocks to that function can be described by a stationary probability dis-

tribution. Our newly transformed model can be written in the form of Equation (2.1), but

the fundamental shocks in the transformed model include the original fundamental shocks

zt, as well as the vector of new fundamental shocks, ηf,t.

3 Choice of Expectational Errors

Our approach raises the practical question of which non-fundamentals should we choose to

redefine as fundamental. Here we show that, given a relatively mild regularity condition,

there is an equivalence between all possible ways of redefining the model.
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Definition 1. [Regularity] Let ε be an indeterminate equilibrium of model (2.1) and use

the QZ decomposition to write the following equation connecting fundamental and non-

fundamental errors.

Ψ̃2zt + Π̃2ηt = 0. (3.1)

Let n be the number of generalized eigenvalues that are greater than or equal to 1 and let

p > n be the number of non-fundamental errors. Partition ηt into two mutually exclusive

subsets, ηf,t and ηn,t such that ηf,t ∪ ηn,t = ηt and partition Π̃2 conformably so that

Π̃2
n×p

ηt
p×1

=

[
Π̃2f
n×m

Π̃2n
n×n

]


ηf,t
m×1

ηn,t
n×1


 . (3.2)

The indeterminate equilibrium, ε, is regular if, for all possible mutually exclusive partitions

of ηt, Π̃2n has full rank.

Regularity rules out situations where there is a linear dependence in the non-fundamental

errors and all of the indeterminate LRE models that we are aware of, that have been studied

in the literature, satisfy this condition.

Theorem 1. Let ε be an indeterminate equilibrium of model (2.1) and let P be an ex-

haustive set of mutually exclusive partitions of ηt into two non-intersecting subsets, where{
p ∈ P | p =

(
ηf,t
m×1

, ηn,t
n×1

)T}
. Let p1 and p2 be elements of P and let Ω̃1 be the covariance

matrix of the new set of fundamentals, [zt, ηf,t] associated with partition p1. If ε is regular

then there is a covariance matrix Ω̃2, associated with partition 2 such that the covariance

matrix

Ω = E







zt

ηf,t

ηn,t







zt

ηf,t

ηn,t




T

, (3.3)

is the same for both partitions. p1 and p2, parameterized by Ω̃1 and Ω̃2, are said to be

equivalent partitions.
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Proof. See Appendix A.

Corollary 1. The joint probability distribution over sequences {Xt} is the same for all

equivalent partitions.

Proof. The proof follows immediately from the fact that the joint probability of sequences

{Xt}, is determined by the joint distribution of the shocks.

The question of how to choose a partition pi is irrelevant since all partitions have the same

likelihood. However, the partition will matter, if the researcher imposes zero restrictions on

the variance covariance matrix of fundamentals.

Why does this matter? Suppose that the researcher choose one of two possible partitions,

call this p1, by specifying one of two expectational errors from the original model as a new

fundamental. Under partition p1, the covariance parameters of the second expectational

error with the fundamentals will be complicated functions of all of the parameters of the

model.

Suppose instead, that the researcher chooses the second expectational error to be fun-

damental, call this partition p2. In this case, it is the covariance parameters of the first

expectational error that will depend on model parameters. Because the researcher cannot

know in advance, which of these specifications is the correct one, we recommend that in

practice, the VCV matrix of the augmented shocks, z̃, should be left unrestricted.

Lubik and Schorfheide (2004) refer to ‘belief shocks’ which they think of as independent

causal disturbances that influence all of the endogenous variables at each date. Their belief

shocks are isomorphic to what Cass and Shell (1983) refer to as ‘sunspots’ and what Azariadis

(1981) and Farmer and Woodford (1984, 1997) call ‘self-fulfilling prophecies’.

In Section 4, we prove that Lubik and Schorfheide’s representation of a belief shock can

be represented as a probability distribution over the forecast error of a subset of the variables

of the model. Farmer (2002) shows how a self-fulfilling belief of this kind can be enforced

by a forecasting rule, augmented by a sunspot shock. If agents use this rule in every period,
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and if their current beliefs about future prices are functions of the current sunspot shock,

those beliefs will be validated in a rational expectations equilibrium.

4 Lubik-Schorfheide and Farmer-Khramov-Nicolò Com-

pared

The two papers by Lubik and Schorfheide, (Lubik and Schorfheide, 2003, 2004), are widely

cited in the literature (Belaygorod and Dueker, 2009; Zheng and Guo, 2013; Lubik and

Matthes, 2013) and their approach is the one most closely emulated by researchers who wish

to estimate models that possess an indeterminate equilibrium. This section compares the

Lubik-Schorfheide method to the Farmer-Khramov-Nicolò technique (which we denote by

LS and FKN) and proves an equivalence result.

We show in Theorem 2 that every LS equilibrium can be implemented as a FKN equilib-

rium, and conversely, every FKN equilibrium can be characterized using the LS technique.

Because our method can be implemented using standard algorithms, our method provides

an easy way for applied researchers to simulate and estimate indeterminate models using

widely available computer software. And Theorem 2 shows that the full set of indeterminate

equilibria can be modeled using our approach.

4.1 The Singular Value Decomposition

Determinacy boils down to the following question: Does equation (2.14), which we repeat

below as equation (4.1), have a unique solution for the p× 1 vector of endogenous errors, ηt,

as functions of the ℓ× 1 vector of fundamental errors, zt?

Ψ̃2
n×ℓ

zt
ℓ×1

+ Π̃2
n×p

ηt
p×1

= 0. (4.1)

16



To answer this question, LS apply the singular value decomposition to the matrix Π̃2. The

interesting case is when p > n, for which Π̃2 has n singular values, equal to the positive

square roots of the eigenvalues of Π̃2Π̃
T
2 . The singular values are collected into a diagonal

matrix D11. The matrices U1 and V in the decomposition are orthonormal and m = p− n is

the degree of indeterminacy.

Π̃2
n×p

≡ U1
n×n

[
D11
n×n

0
n×m

]
V T

p×p
. (4.2)

Replacing Π̃2 in (4.1) with this expression and premultiplying by UT
1 leads to the equation

UT
1

n×n

Ψ̃2
n×ℓ

zt
ℓ×1

+

[
D11
n×n

0
n×m

]
V T

p×p
ηt
p×1

= 0. (4.3)

Now partition V

V =

[
V1
p×n

V2
p×m

]
,

and premultiply (4.3) by D−1
11 ,

D−1
11

n×n

UT
1

n×n

Ψ̃2
n×ℓ

zt
ℓ×1

+ V T
1

n×p

ηt
p×1

= 0. (4.4)

Because p > n this system has fewer equations than unknowns. LS suggest that we supple-

ment it with the following new m = p− n equations,

Mz
m×ℓ

zt
ℓ×1

+ Mζ
m×m

ζt
m×1

= V T
2

m×p

ηt
p×1
. (4.5)

The m × 1 vector ζt is a set of sunspot shocks that is assumed to have mean zero and

covariance matrix Ωζζ and to be uncorrelated with the fundamentals, zt.

E [ζt] = 0, E
[
ζtz

T
t

]
= 0, E

[
ζtζ

T
t

]
= Ωζζ . (4.6)
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Correlation of the forecast errors, ηt, with fundamentals, zt, is captured by the matrix Mz.

Because the parameters of Ωζζ cannot separately be identified from the parameters of Mζ ,

LS choose the normalization

Mζ = Im. (4.7)

Appending equation (4.5) as additional rows to equation (4.4), premultiplying by V

and rearranging terms leads to the following representation of the expectational errors as

functions of the fundamentals, zt and the sunspot shocks, ζt,

ηt
p×1

=

(
−V1
p×n

D−1
11

n×n

UT
1

n×n

Ψ̃2
n×ℓ

+ V2
p×m

Mz
m×ℓ

)
zt
ℓ×1

+ V2
p×m

ζt
m×1

. (4.8)

This is equation (25) in Lubik and Schorfheide (2003) using our notation for dimensions and

where our Mz is what LS call M̃ . More compactly

ηt
p×1

= V1
p×n

N
n×ℓ

zt
ℓ×1

+ V2
p×m

Mz
m×ℓ

zt
ℓ×1

+ V2
p×m

ζt
m×1

, (4.9)

where

N
n×ℓ

≡ −D−1
11

n×n

UT
1

n×n

Ψ̃2.
n×ℓ

is a function of the parameters of the model.

4.2 Equivalent characterizations of indeterminate equilibria

To define a unique sunspot equilibrium when the model is indeterminate, our method par-

titions ηt into two subsets; η = {ηf , ηn}. We refer to ηf as new fundamentals. A FKN

equilibrium is characterized by a parameter vector θ ∈ ΘFKN which has two parts. θ1 ∈ Θ1

θ1 ≡ vec (Γ0,Γ1,Ψ,Ωz)
T ,
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is a vector of parameters of the structural equations, including the variance covariance matrix

of the original fundamentals. And θ2 ∈ Θ2

θ2 ≡ vec (Ωzf ,Ωff )
T ,

is a vector of parameters that contains the variance covariance matrix of the new funda-

mentals and the covariances of these new fundamentals, ηf , with the original fundamentals,

z.

A FKN representation of equilibrium is a vector θFKN ∈ ΘFKN where ΘFKN is defined

as,

ΘFKN ≡ {Θ1,Θ2} .

Theorem 1 establishes that there is an equivalence class of models, all with the same

likelihood function, in which the m × 1 vector ηf is selected as a new set of fundamentals

and the VCV matrices Ωff and Ωzf are additional parameters. To complete the model in

this way we must add m (m+ 1) /2 new parameters to define the symmetric matrix Ωff and

m× ℓ new parameters to define the elements of Ωzf .

In contrast a LS equilibrium is characterized by a parameter vector

ΘLS ≡ {Θ1,Θ3} ,

where θ3 ∈ Θ3 is defined as

θ3 ≡ vec (Ωζζ ,Mz)
T . (4.10)

These parameters characterize the additional equation,

Mz
m×ℓ

zt
ℓ×1

+ ζt
m×1

= V T
2

m×p

ηt
p×1
, (4.11)

where equation (4.11) adds the normalization (4.7) to equation (4.5).
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The matrix Ωζζ has m × (m+ 1) /2 new parameters; these are the variance covariances

of the sunspot shocks and the matrix Mz has m × ℓ new parameters, these capture the

covariances of η with z. To establish the connection between the two characterizations of

equilibrium, we establish the following two lemmas.

Proposition 1. Let ε be a regular indeterminate equilibrium, characterized by θFKN =

{θ1, θ2} and let pi =
{
ηif,t, η

i
n,t

}
be an element of the set of partitions, P. Let θLS = {θ1, θ3}

be the parameters of a Lubik-Schorfheide representation of equilibrium. There is an m×m

matrix Gi, and an m × ℓ matrix H i, where the elements of Gi and H i, are functions of θ1

and an m× ℓ matrix Si

Si
m×ℓ

=

(
H i

m×ℓ
+Mz

m×ℓ

)
, (4.12)

such that the sunspots shocks in the LS representation of equilibrium are related to the fun-

damentals zt and the newly defined FKN fundamentals, ηif,t by the equation,

ζt
m×1

= Gi

m×m
ηif,t
m×1

− Si
m×ℓ

zt
ℓ×1
. (4.13)

Proof. See Appendix B.

Lemma 1 connects the LS sunspots to the FKN definition of fundamentals. Lemma 1,

described below, provides a way of mapping between the original fundamental shocks and

the newly defined fundamentals under two alternative partitions pi and pj .

Lemma 1. Let ε be a regular indeterminate equilibrium, characterized by θFKN = {θ1, θ2}

and let pi =
{
ηif,t, η

i
n,t

}
and pj =

{
ηjf,t, η

j
n,t

}
be two elements of the set of partitions, P.

There exists an m×m matrix Gi, an m× ℓ matrix H i, an m×m matrix Gj, and an m× ℓ

matrix Hj, where the elements of Gi, H i, Gj and Hj are functions of θ1. The new FKN

fundamentals under partition pi, η
i
f,t, are related to the fundamentals zt and the new FKN
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fundamentals under partition pj, η
j
f,t by the equation,

ηif,t
m×1

=
(
Gi
)−1

m×m

[
Gj

m×m
ηjf,t
m×1

−

(
Hj

m×ℓ
− H i

m×ℓ

)
zt
ℓ×1

]
. (4.14)

Proof. Follows immediately from Equations (4.12) and (4.13) and the fact that Gi is non-

singular for all i.

Equation (4.14) defines the equivalence between alternative FKN definitions of the fun-

damental shocks, without reference to the LS definition. The following theorem, proved in

Appendix C, uses Lemma 1 to establish an equivalence between the LS and FKN definitions.

Theorem 2. Let θLS and θFKN be two alternative parameterizations of an indeterminate

equilibrium in model (2.1). For every FKN equilibrium, parameterized by θFKN , there is

a unique matrix Mz and a unique VCV matrix Ωζζ such that θ3 = vec (Ωζζ ,Mz)
T and

{θ1, θ3} ∈ ΘLS defines an equivalent LS equilibrium. Conversely, for every LS equilibrium,

parameterized by θLS, and every partition pi ∈ P, there is a unique VCV matrix Ωff and a

unique covariance matrix Ωzf such that θ2 = vec(Ωff ,Ωzf )
T and {θ1, θ2} ∈ ΘFKN defines an

equivalent FKN equilibrium.

Proof. See Appendix C.

Next, we turn to an example that shows how to use our results in practice.

5 Applying Our Method in Practice:

The Lubik-Schorfheide Example

In this Section we generate data from the model described in Lubik and Schorfheide (2004)

and we use our method to recover parameter estimates from the simulated data. By using

simulated data, rather than actual data, we avoid possible complications that might arise

from mis-specification. For the simulated data, we know the true data generation process.

21



Section 5.1 explains how to implement our method for the case of the New-Keynesian

model and in Section 5.2 we establish two results. First, we take Lubik and Schorfheide’s

(2004) parameter estimates for the pre-Volcker period, and we treat these parameter esti-

mates as truth. Using the LS parameters, we simulate data under two alternative partitions

of our model, and we verify that, using the same random seed, the simulated data are identi-

cal for both partitions. Second, we estimate the parameters of the model in Dynare, for the

two alternative specifications, and we verify that the parameter estimates from two different

partitions are the same.

5.1 The LS Model with the FKN Approach

The model of Lubik and Schorfheide (2004) consists of a dynamic IS curve

xt = Et (xt+1)− τ (Rt −Et (πt+1)) + gt, (5.1)

a New Keynesian Phillips curve

πt = βEt (πt+1) + κ (xt − zt) , (5.2)

and a Taylor rule,

Rt = ρRRt−1 + (1− ρR) [ψ1πt + ψ2 (xt − zt)] + εR,t. (5.3)

The variable xt represents log deviations of GDP from a trend path and πt and Rt are log

deviations from the steady state level of inflation and the nominal interest rate.

The shocks gt and zt follow univariate AR(1) processes

gt = ρggt−1 + εg,t, (5.4)
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zt = ρzzt−1 + εz,t, (5.5)

where the standard deviations of the fundamental shocks εg,t, εz,t and εR,t are defined as σg,

σz and σR, respectively. We allow the correlation between shocks, ρgz, ρgR and ρzR, to be

nonzero. The rational expectation forecast errors are defined as

η1,t = xt − Et−1 [xt] , η2,t = πt − Et−1 [πt] . (5.6)

We define the vector of endogenous variables,

Xt = [xt, πt, Rt, Et (xt+1) , Et (πt+1) , gt, zt]
T

the vectors of fundamental shocks and non-fundamental errors,

zt = [εR,t, εg,t, εz,t]
T , ηt = [η1,t, η2,t]

T

and the vector of parameters

θ = [ψ1, ψ2, ρR, β, κ, τ, ρg, ρz, σg, σz, σR, ρgz, ρgR, ρzR]
T .

This leads to the following representation of the model,

Γ0(θ)Xt = Γ1(θ)Xt−1 +Ψ(θ)zt +Π(θ)ηt, (5.7)
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where Γ0 and Γ1 are represented by

Γ0(θ) =




1 0 τ −1 −τ −1 0

κ −1 0 0 β 0 −κ

(1− ρR)ψ2 (1− ρR)ψ1 −1 0 0 0 −(1− ρR)ψ2

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0




,

and,

Γ1(θ) =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −ρR 0 0 0 0

0 0 0 0 0 ρg 0

0 0 0 0 0 0 ρz

0 0 0 1 0 0 0

0 0 0 0 1 0 0




,

and the coefficients of the shock matrices Ψ and Π are given by,

Ψ(θ) =




0 0 0

0 0 0

−1 0 0

0 1 0

0 0 1

0 0 0

0 0 0




Π(θ) =




0 0

0 0

0 0

0 0

0 0

1 0

0 1




.
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The last two rows of this system define the non-fundamental shocks and it is these rows

that we modify when estimating the model with the FKN approach.

5.1.1 The Determinate Case

When the monetary policy is active, |ψ1| > 1, the number of expectational variables,

{Et (xt+1) , Et (πt+1)}, equals the number of unstable roots. The Blanchard-Kahn condition

is satisfied and there is a unique sequence of non-fundamental shocks such that the state

variables are bounded. In this case the model can be solved using Gensys which delivers the

following system of equations

Xt = G1(θ)Xt−1 +G2(θ)zt (5.8)

where G1(θ) represents the coefficients of the policy functions and G2(θ) is the matrix which

expresses the impact of fundamental errors on the variables of interest, Xt.

5.1.2 Indeterminate Models

A necessary condition for indeterminacy is that the monetary policy is passive, which occurs

when

0 < |ψ1| < 1. (5.9)

A sufficient condition is that

0 < ψ1 +
(1− β)

κ
ψ2 < 1. (5.10)

This condition is stronger than (5.9) but the two conditions are close, given our prior, which

sets3

(1− β)

κ
ψ2 = 0.056.

3We thank one of the referees for pointing that the Taylor principle must be modified, when the central
bank responds to the output gap as well as to inflation.
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When (5.10) holds, the number of expectational variables, {Et (xt+1) , Et (πt+1)}, exceeds the

number of unstable roots and there is 1 degree of indeterminacy. Using our approach, one

can specify two equivalent alternative models depending on choice of the partition pi, for

i = 1, 2.

Fundamental Output Expectations: Model 1 In our first specification, we choose η1,t,

the forecast error of output, as a new fundamental. We call this partition p1 and we write

the new vector of fundamental shocks

z̃1,t = [εR,t, εg,t, εz,t, η1,t]
T .

The model is defined as

Γ0(θ)Xt = Γ1(θ)Xt−1 +Ψx(θ)z̃1,t +Πx(θ)η2,t, (5.11)

where

Ψx(θ) =




0 0 0 0

0 0 0 0

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




, and Πx(θ) =




0

0

0

0

0

0

1




.

Notice that the matrices Γ0 and Γ1 are unchanged. We have simply redefined η1,t as a

fundamental shock by moving one of the columns of Π to Ψ. Because the Blanchard-Kahn

condition is satisfied under this redefinition, the model can be solved using Gensys to generate

policy functions as well as the matrix which describes the impact of the re-defined vector of

fundamental shocks on Xt.
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Fundamental Inflation Expectations: Model 2 Following the same logic there is an

alternative partition p2 where the new vector of fundamentals is defined as

z̃2,t = [εR,t, εg,t, εz,t, η2,t]
T .

Here, the state equation is described by

Γ0(θ)Xt = Γ1(θ)Xt−1 +Ψπ(θ)z̃2,t +Ππ(θ)η1,t, (5.12)

where now

Ψπ(θ) =




0 0 0 0

0 0 0 0

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1




, and Ππ(θ) =




0

0

0

0

0

1

0




.

Using Gensys, we can find a unique series of non-fundamental shocks η1,t such that the state

variables are bounded and the state variables Xt are then a function of Xt−1 and the new

vector of fundamental errors z̃2,t.

5.2 Simulation and Estimation using the FKN approach

In this Section, we simulate data from the New-Keynesian model using the parameter esti-

mates of Lubik and Schorfheide (2004) for the case when the model is indeterminate. In light

of Theorem 2 and Lemma 1, data generated from the two partitions is identical, a result

that we verify computationally. In Section 5.2.2, we use our simulated data to estimate the

model parameters under the two representations and we confirm that the posterior modes

from each representation are, in most cases, equal to two decimal places and that all of the
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estimates lie well within the 90% probability bounds of the alternative specification.4 These

results demonstrate how to apply our theoretical results from sections 3 and 4 in practice.

5.2.1 Simulation

In this section, we generate data for the observables, yt = {xobs,t, πobs,t, Robs,t}, in two different

ways. These variables are defined as,

1. xobs,t the percentage deviations of (log) real GDP per capita from an HP-trend;

2. πobs,t the annualized percentage change in the Consumer Price Index for all Urban

Consumers;

3. Robs,t the annualized percentage average Federal Funds Rate.

As described in Lubik and Schorfheide (2004), the measurement equation is given by,

yt =




0

π∗

π∗ + r∗



+




1 0 0 0 0 0 0

0 4 0 0 0 0 0

0 0 4 0 0 0 0



Xt. (5.13)

where π∗ and r∗ are annualized steady-state inflation and real interest rates expressed in

percentages. The parameter values that we use to run the simulation of the New-Keynesian

model in Lubik and Schorfheide (2004) are the posterior estimates that the authors report

for the pre-Volcker period and that we reproduce in Table 2. We feed the model with shocks

using the FKN method for two alternative partitions.

We take the LS estimates of the standard deviation of the sunspots shock, σζ , and the

m× ℓ matrix Mz and we treat these estimates as the truth. By applying Lemma 1 to the LS

4The estimates are not identical because of sampling error that arises from the use of a finite number of
draws when we approximate posterior distributions with the Metropolis-Hastings algorithm. We did not see
an obvious way of setting the same random seed within Dynare and hence we used different draws for each
specification.
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parameters, we obtain corresponding values5 for the standard deviation of the newly defined

fundamental, ηif,t, under the two partitions, pi, i ∈ {1, 2} ,

Ωiff
m×m

=

(
Gi

m×m

)−1
[
σ2
ζ

m×m

+ Si
m×ℓ

Ωzz
ℓ×ℓ

(
Si
)T

ℓ×m

](
(
Gi
)T

m×m

)−1

, (5.14)

and for the covariance of the fundamentals zt with the newly defined fundamental ηif,t,

Ωifz
m×ℓ

=
(
Gi
)−1

m×m

Si
m×ℓ

Ωzz
ℓ×ℓ

. (5.15)

The details on the construction of the matrices Gi, H i and Si are described in Appendix D.

Having defined the new vector of fundamentals z̃i,t = [εR,t, εg,t, εz,t, ηi,t]
T we construct the

following variance-covariance matrix

Ωi
(ℓ+m)×(ℓ+m)

≡ E
(
z̃i,t z̃

T
i,t

)
. (5.16)

Next, we perform the Cholesky decomposition of the matrix Ωi = Li (Li)
T
, where Li is a

lower triangular (ℓ+m)× (ℓ+m) matrix. After defining a (ℓ+m)× 1 vector of shocks ut

such that E(ut) = 0(ℓ+m)×1 and E(utu
T
t ) = I(ℓ+m), we rewrite z̃i,t as z̃i,t = Liut.

The purpose of the Cholesky decomposition is to simplify the estimation procedure in

Dynare6 which we use to estimate the (ℓ+m) × [(ℓ+m)− 1] parameters of the matrix Li

rather than the variance-covariance terms of the matrix Ωi. Equation (5.17) reports the

5We derive both equation (5.14) and (5.15) from the result in Lemma 1 and by recalling that the vector of
sunspot shocks ζt is now a scalar which, as described in Section 4.1, has the following properties, E [ζt] = 0,
E
[
ζtz

T
t

]
= 0 and E

[
ζtζ

T
t

]
= σ2

ζ .

6In particular, the estimation of the (ℓ+m) × [(ℓ+m)− 1] elements of the lower triangular matrix Li

substantially reduces issues related to the convergence of the posterior estimates relative to the case of
performing the estimation exercise by estimating the elements of the variance-covariance matrix Ωi.
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matrix Ωi for i = 1, 2,

Ω1 =




0.05 - - -

0 0.07 - -

0 0.04 1.27 -

-0.03 0.10 0.11 0.17




, Ω2 =




0.05 - - -

0 0.07 - -

0 0.04 1.27 -

-0.01 0.13 -2.37 4.60




, (5.17)

and equation (5.18) is the corresponding Cholesky decomposition Li for i = 1, 2,

L1 =




0.23 0 0 0

0 0.27 0 0

0 0.15 1.11 0

-0.14 0.37 0.04 0.10




, L2 =




0.23 0 0 0

0 0.27 0 0

0 0.15 1.11 0

-0.05 0.04 -2.12 0.26




. (5.18)

Given a draw of ut, we obtain the new vector of fundamentals z̃i,t = Liut for partition

pi and we construct the corresponding draws of the vector z̃j,t = [εR,t, εg,t, εz,t, ηj,t]
T . Using

Lemma 1, Equation (4.14), which we reproduce below as equation (5.19), we derive the

non-fundamental shock which is included as fundamental under partition pj for j 6= i,

ηjf,t
m×1

=
(
Gj
)−1

m×m

[
Gi

m×m
ηif,t
m×1

−

(
H i

m×ℓ
− Hj

m×ℓ

)
zt
ℓ×1

]
. (5.19)

By feeding the two alternative models with the corresponding new vectors of fundamentals

z̃1,t and z̃2,t, using the same random seed, we obtain identical simulated data7.

5.2.2 Estimation Results

Next, we estimate the parameters of the model on the simulated data and we demonstrate

that the posterior estimates of the model parameters are equivalent under two alternative

7The code is available in the online Appendix and the results are obtained simulating the data by using
both Gensys and Dynare.
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model specifications. Table 1 reports the prior distributions of the parameters used in our

estimation. With the exception of priors over the elements of Li, the prior distributions for

the other parameters are the same as in Lubik and Schorfheide (2004)8.

Table 2 compares the posterior estimates of the model parameters. While the first column

reports the parameter values used to simulate the data, columns two and three are the esti-

mates for two alternative partitions p1 and p2. Partition p1 treats η1,t as fundamental and

partition p2 treats η2,t as fundamental. We used a random walk Metropolis-Hastings algo-

rithm to obtain 150,000 draws from the posterior mean and we report 90-percent probability

intervals of the estimated parameters9.

Compare the mean parameter estimates across the three columns. Fifteen of these pa-

rameters are common to all three specifications; these are the parameters ψ1, ψ2, ρR, π
∗, r∗, κ,

τ−1, ρg, ρz, L11, L22, L33, L21, L31and L32. The remaining four parameters reported in columns

2 and 3, Li41, L
i
42, L

i
43, and Li44 represent the elements of the Li matrix that are not compa-

rable across specifications.

8The only difference with respect to Lubik and Schorfheide (2004) is that we use a flatter prior for the
parameter κ. While the authors set a gamma distribution with mean 0.5 and standard deviation 0.2, our
prior sets the standard deviation to 0.35, leaving the mean unchanged. Choosing a flatter prior avoids
facing an issue in the convergence of the parameter which arises with a relatively tight prior as in Lubik and
Schorfheide (2004).
Also, Table 1 reports the mean, the standard deviation and the 90-percent probability interval for each
parameter. Note that we were unable to replicate the probability intervals in Lubik and Schorfheide (2004)
and we report the 5-th and the 95-th percentiles of each distribution. However, the differences with Lubik
and Schorfheide (2004) in the values for the probability intervals are small.

9To run the estimation exercise, we consider a sample of 1,000 observations from the simulated data, run
6 chains of 50,000 draws each and we finally discard half of the draws. The acceptance ratio for all the chains
are between 25% and 33%.
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Table 1: Prior Distribution for DSGE Model Parameters

Name Range Density Mean Std. Dev. 90% interval

ψ1 R
+ Gamma 1.1 0.50 [0.42,2.03]

ψ2 R
+ Gamma 0.25 0.15 [0.06,0.53]

ρR [0, 1) Beta 0.50 0.20 [0.17,0.82]

π∗
R

+ Gamma 4.00 2.00 [1.36,7.75]

r∗ R
+ Gamma 2.00 1.00 [0.68,3.87]

κ R
+ Gamma 0.50 0.35 [0.09,1.17]

τ−1
R

+ Gamma 2.00 0.50 [1.25,2.88]

ρg [0, 1) Beta 0.70 0.10 [0.54,0.85]

ρz [0, 1) Beta 0.70 0.10 [0.54,0.85]

L11 R
+ Inv.Gamma 0.2 0.15 [0.07,0.44]

L22 R
+ Inv.Gamma 0.3 0.2 [0.12,0.64]

L33 R
+ Inv.Gamma 1 0.3 [0.61,1.55]

L21 Normal 0 0.1 [-0.16,0.16]

L31 Normal 0 0.1 [-0.16,0.16]

L32 Normal 0.15 0.1 [-0.01,0.31]

L1
41 Normal 0 0.2 [-0.32,0.32]

L1
42 Normal 0.3 0.2 [-0.02,0.62]

L1
43 Normal 0 0.2 [-0.32,0.32]

L1
44 Normal 0.1 0.2 [-0.22,0.42]

L2
41 Normal 0 0.2 [-0.32,0.32]

L2
42 Normal 0 0.2 [-0.32,0.32]

L2
43 Normal -2 0.5 [-2.82,-1.18]

L2
44 Normal 0.3 0.2 [-0.02,0.62]

32



Table 2: Posterior Means and Probability Intervals

L&S (prior 1) FKN - Model 1 FKN - Model 2

Mean Mean 90% interval Mean 90% interval

ψ1 0.77 0.77 [0.73,0.81] 0.77 [0.73,0.81]

ψ2 0.17 0.21 [0.08,0.33] 0.22 [0.08,0.35]

ρR 0.60 0.61 [0.59,0.63] 0.61 [0.59,0.63]

π∗ 4.28 4.44 [4.17,4.71] 4.43 [4.16,4.70]

r∗ 1.13 1.18 [1.10,1.25] 1.17 [1.10,1.25]

κ 0.77 0.67 [0.47,0.89] 0.71 [0.51,0.91]

τ−1 1.45 1.63 [1.41,1.85] 1.61 [1.39,1.82]

ρg 0.68 0.66 [0.62,0.70] 0.66 [0.62,0.70]

ρz 0.82 0.83 [0.81,0.84] 0.83 [0.81,0.85]

L11 0.23 0.23 [0.22,0.24] 0.23 [0.22,0.24]

L22 0.27 0.25 [0.21,0.29] 0.25 [0.21,0.29]

L33 1.11 1.14 [0.90,1.37] 1.10 [0.87,1.30]

L21 0 -0.01 [-0.03,0.009] -0.01 [-0.03,0.009]

L31 0 0.02 [-0.09,0.14] 0.003 [-0.09,0.09]

L32 0.15 0.14 [0.01,0.27] 0.14 [0.04,0.25]

L1
41 -0.14 -0.15 [-0.18,-0.13] - -

L1
42 0.37 0.36 [0.34,0.37] - -

L1
43 0.04 0.02 [-0.02,0.07] - -

L1
44 0.10 0.10 [-0.20,0.42] - -

L2
41 -0.05 - - -0.07 [-0.25,0.11]

L2
42 0.04 - - 0.03 [-0.17,0.22]

L2
43 -2.12 - - -2.09 [-2.16,-2.01]

L2
44 0.26 - - 0.30 [-0.02,0.62]
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Our results show not only that under both models the posterior point estimates are re-

markably close to the parameter values which we use to simulate the data, but also that both

the posterior point estimates and the probability intervals are statistically indistinguishable

when comparing the two alternative models. This correspondence in parameter estimates

across specifications is a consequence of Theorems 1 and 2 of our paper.

6 Implementing our Procedure in Dynare

This section provides a practical guide to the user who wishes to implement our method in

Dynare. Consider the New-Keynesian model described in Section 5, which we repeat below

for completeness,

xt = Et[xt+1]− τ(Rt − Et[πt+1]) + gt, (6.1)

πt = βEt[πt+1] + κxt + zt, (6.2)

gt = ρggt−1 + εg,t, (6.3)

zt = ρzzt−1 + εz,t, (6.4)

The model is determinate when monetary policy is active, |ψ1| > 1. In this case Dynare

finds the unique series of non-fundamental errors that keeps the state variables bounded and

Table 3 reports the code required to estimate the model in this case.

In the case of the indeterminate models described in Section 5.1.2, running Dynare with

the code from Table 3 produces an error with a message “Blanchard-Kahn conditions are

not satisfied: indeterminacy.” For regions of the parameter space where the code produces

that message, we provide two alternative versions of the model that redefine one of the non-

fundamental shocks as new fundamental. Following the notation in Section 5.1.2, we refer to

these cases as Model 1, where η1,t = xt−Et−1[xt] is a fundamental shock, and Model 2, where

it is η2,t = πt − Et−1[πt] and we present the Dynare code to estimate the two indeterminate

cases.
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Table 3: Determinate Model

Variable Definitions var x,R, pi, g, z;

varexo e_R, e_g, e_z;

Parameter Definitions parameters tau, kappa, rho_R, rho_g, rho_z, psi1

psi2;

Model equations model(linear);

x = x (+1)− tau ∗ (R− pi (+1)) + g;

pi = 0.97 ∗ pi (+1) + kappa ∗ (x− z);

R = rho_R ∗R (−1) + (1− rho_R) ∗

(psi1 ∗ pi+ psi2 ∗ (x− z)) + e_R;

g = rho_g ∗ g(−1) + e_g;

z = rho_z ∗ z(−1) + e_z;

end;

Tables 4 and 5 present the amended code for these cases. In Table 4, we show how

to change the model by redefining η1,t as fundamental and Table 5 presents an equivalent

change to Table 3 in which η2,t becomes the new fundamental. We have represented the new

variables and new equations in that table using bold typeface.

The following steps explain the changes in more detail. First, we define a new variable,

xs ≡ Et [xt+1] and include it as one of the endogenous variables in the model. This leads to

the declaration:

var x, R, pi, xs; (6.5)

which appears in the first line of Table 4. Next, we add an expectational shock, which we call

sunspot, to the set of fundamental shocks, e_R, e_g and e_z. This leads to the Dynare

statement

varexo e_R, e_g, e_z, sunspot; (6.6)
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which appears in row 2. Then we replace x (+1) by xs in the consumption-Euler equation,

which becomes,

x = xs− tau ∗ (R− pi (+1)) + g; (6.7)

and we add a new equation that defines the relationship between xs, x and the new funda-

mental error:

x− xs (−1)= sunspot; (6.8)

Table 4: Indeterminate Model 1: η1,t = xt − Et−1 [xt] is new fundamental

Variable Definitions var x,R, pi, g, z,xs;

varexo e_R, e_g, e_z, sunspot;

Parameter Definitions parameters tau, kappa, rho_R, rho_g, rho_z, psi1

psi2, sigmag, sigmaz, sigmaR;

Model equations model(linear);

x = xs− tau ∗ (R − pi (+1)) + g;

pi = 0.97 ∗ pi (+1) + kappa ∗ (x− z);

R = rho_R ∗R (−1) + (1− rho_R) ∗

(psi1 ∗ pi+ psi2 ∗ (x− z)) + e_R;

g = rho_g ∗ g(−1) + e_g;

z = rho_z ∗ z(−1) + e_z;

x− xs (−1) = sunspot;

end;

Similar steps apply in the case of Model 2, but with η2,t taking the role of η1,t. Note that,

by substituting expectations of forward-looking variables x(+1) in Model 1, and pi(+1) in

Model 2, with xs and pis, respectively, we decrease the number of forward-looking variables

by one. Since these variables are no longer solved forwards, we must add an equation – this

appears as Equation (6.8) – to describe the dynamics of the new fundamental shock.
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Table 5: Indeterminate Model 2: η2,t = πt − Et−1 [πt] is new fundamental

Variable Definitions var x,R, pi, g, z,pis;

varexo e_R, e_g, e_z, sunspot;

Parameter Definitions parameters tau, kappa, rho_R, rho_g, rho_z, psi1

psi2, sigmag, sigmaz, sigmaR;

Model equations model(linear);

x = x(+1)− tau ∗ (R− pi (+1)) + g;

pi = 0.97 ∗ pis+ kappa ∗ (x− z);

R = rho_R ∗R (−1) + (1− rho_R) ∗

(psi1 ∗ pi+ psi2 ∗ (x− z)) + e_R;

g = rho_g ∗ g(−1) + e_g;

z = rho_z ∗ z(−1) + e_z;

pi− pis (−1) = sunspot;

end;

How can a researcher know, in advance, if his model is determinate. The answer pro-

vided by Lubik and Schorfheide (2004), is that determinate and indeterminate models are

alternative representations of data that can be compared either by Likelihood ratio tests or

by Bayesian model comparison.

The Lubik-Schorfheide approach assumes that the researcher can identify, a priori, deter-

minate and indeterminate regions of the parameter space. For models where that is difficult

or impossible, Fanelli (2012) and Castelnuovo and Fanelli (2014) propose an alternative

method that may be used to test the null hypothesis of determinacy.

7 Conclusion

Our paper provides a method to solve and estimate indeterminate linear rational expectations

models using standard software packages. Our method transforms indeterminate models by
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redefining a subset of the non-fundamental shocks and classifying them as new fundamentals.

Our approach to handling indeterminate equilibria is more easily implementable than that

of Lubik and Schorfheide and, one might argue, is also more intuitive. We illustrated our

approach using the familiar New-Keynesian monetary model and we showed that, when

monetary policy is passive, the new-Keynesian model can be closed in one of two equivalent

ways.

Our procedure raises the question of which non-fundamental shocks to reclassify as funda-

mental. Our theoretical results demonstrate that the choice of parameterization is irrelevant

since all parameterizations have the same likelihood function. We demonstrated that result

in practice by estimating a model due to Lubik and Schorfheide (2004) in two different ways

and recovering parameter estimates that are statistically indistinguishable between the two.

We caution that, in practice, it is important to leave the VCV matrix of errors unrestricted

for our results to apply. Our work should be of interest to economists who are interested in

estimating models that do not impose a determinacy prior.
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Part II

A Generalized Approach to

Indeterminacy in Linear Rational

Expectations Models

Sunspot shocks and multiple equilibria have been at the center of economic thinking at least

since the seminal work of Cass and Shell (1983), Farmer and Guo (1994) and Farmer and

Guo (1995). Furthermore, in many of the Linear Rational Expectation (LRE) models used

to study the properties of the macroeconomy the possibility of multiple equilibria arises for

some parameter values, but not for others. This paper proposes a novel approach to solve

LRE models that easily accommodates both the case of determinacy and indeterminacy. As

a result, the proposed methodology can be used to easily estimate a LRE model that could

potentially be characterized by multiplicity of equilibria. Our approach is implementable

even when the analytic conditions for determinacy or the degrees of indeterminacy are un-

known and can be implemented to study indeterminacy in standard software packages, such

as Dynare and Sims’ (2001) code Gensys.

To understand how our approach works, it is useful to recall the conditions for determi-

nacy as stated by Blanchard and Kahn (1980a). Indeterminacy arises when the parameter

values are such that the number of explosive roots is smaller than the number of non-

predetermined variables. The key idea behind our methodology consists of augmenting the

original model by appending additional autoregressive processes that can be used to provide

the missing explosive roots. The innovations of these exogenous processes are assumed to

be linear combinations of a subset of the forecast errors associated with the expectational

variables of the model, and a newly defined vector of sunspot shocks. Whether the autore-
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gressive processes are mean-reverting or explosive is central, and the intuition follows. When

a model is determinate, the roots of the additional autoregressive process are within the unit

circle (i.e., the Blanchard-Kahn condition is satisfied) and the auxiliary process is irrelevant

for the dynamics of the model. The law of motion for the endogenous variables is in this case

equivalent to the solution obtained using standard solution algorithms (King and Watson

(1998), Klein (2000), Sims (2001b)). When the model is indeterminate, the appended au-

toregressive processes are explosive, and the solution we obtain for the endogenous variables

is equivalent to the one obtained with the methodology of Lubik and Schorfheide (2003) or,

equivalently, Farmer et al. (2015).

Our methodology simplifies the common approach used to deal with indeterminacy. First,

the common procedure requires the researcher to solve the model differently depending on

the area of the parameter space that is being studied. Second, the procedure requires to

estimate the same model twice, first under determinacy, then under indeterminacy. This is

the same procedure that would be followed if the researcher were comparing two structurally

different models, while she is in fact estimating the same structural model in alternative

regions of the parameter space. Finally, the estimation under indeterminacy is not generally

implementable in standard estimation packages and requires a significant amount of coding

work on the side of the researcher.

In this respect, our methodology provides three main advantages. First, it accommodates

both the case of determinacy and indeterminacy while considering the same augmented sys-

tem of equations. The model can therefore be solved by using standard solution algorithms.

Instead, existing methods require to rewrite the model based on the existing degree of inde-

terminacy (Farmer et al. (2015)) or to construct the solution under indeterminacy ex-post

following the seminal contribution of Lubik and Schorfheide (2003). Second, given that the

method accommodates both the case of determinacy and indeterminacy, the researcher does

not need to take a stance on which area of the parameter space she is interested in explor-

ing. We show that our methodology ensures that standard estimation algorithms explore
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the entire parameter space, increasing the probability of finding a global maximum over the

parameter space. This is particularly relevant when considering that the posterior mode is

a crucial object used for Bayesian inference.10 Finally, even when the region of determinacy

is unknown, the methodology allows the researcher to estimate the model without imposing

a priori assumptions about the uniqueness of the equilibrium, which can be equivalently

thought of as restrictions on the parameter space over which inference is conducted. Hence,

information contained in the data indicates whether an estimated model is characterized by

a unique solution or by multiplicity of equilibria.

Our work is related to the vast literature that studies the role of indeterminacy in ex-

plaining the evolution of the macroeconomy. Prominent examples in the monetary policy

literature include the work of Clarida et al. (2000b) and Kerr and King (1996), that study

the possibility of multiple equilibria as a result of violations of the Taylor principle in New-

Keynesian (NK) models. Applying the methods developed in Lubik and Schorfheide (2003)

to the canonical NK model, Lubik and Schorfheide (2004) test for indeterminacy in U.S.

monetary policy. Using a calibrated small-scale model, Coibon and Gorodnichenko (2011)

find that the reduction of the target inflation rate in the U.S. also played a key role in ex-

plaining the Great Moderation, and Arias et al. (2017) support this finding in the context of

a medium-scale model à la Christiano et al. (2005). In a similar spirit, Arias (2013) studies

the dynamic properties of medium-sized NK models with trend inflation. More recently,

Aruoba and Schorfheide (2015) study inflation dynamics at the Zero Lower Bound (ZLB)

and during an exit from the ZLB.

The paper closest to our is Farmer et al. (2015). As explained above, the main difference

between the two approaches is that our method accommodates both the case of determinacy

and indeterminacy while considering the same augmented system of equations. Instead, the

10Specifically, using simulated data we show that our methodology leads the estimation algorithm to
converge to the "right" area of the parameter space. Once the algorithm converges to such area, the
probability of leaving it is very low, in line with the results of Lubik and Schorfheide (2004) that show that
the likelihood presents potentially very large jumps/drops between the determinacy/indeterminacy regions.
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method proposed by Farmer et al. (2015) require to rewrite the model based on the existing

degree of indeterminacy. With respect to Lubik and Schorfheide (2003), the main novelty

of our approach is to provide a unified approach to study determinacy and indeterminacy of

different degrees. Ascari et al. (2016) allow for temporarily unstable paths, while we require

all solutions to be stationary, in line with previous contributions in the literature. Finally, we

deliberately use Dynare in all the examples presented in this paper to show that our method

can be combined with standard packages. However, our solution method can be combined

with more sophisticated estimation techniques such as the ones developed in Herbst and

Schorfheide (2015).

The remainder of the paper is organized as follows. Section 1 builds the intuition by

using a univariate example in the spirit of Lubik and Schorfheide (2004). Section 2 describes

the methodology and shows that the augmented representation of the LRE model delivers

solutions which under determinacy are equivalent to those obtained using standard solution

algorithms, and under indeterminacy to those obtained using the methodology provided

by Lubik and Schorfheide (2003, 2004) and Farmer et al. (2015). Section 3 provides an

analytic example of the theoretical result and in Section 4, we apply our theoretical results

to the NK model of Lubik and Schorfheide (2004). In Section 4.1, we first generate series

of simulated data for parameter values which satisfy the condition for determinacy and

indeterminacy, respectively. We then estimate the model by using the proposed augmented

representation for both cases. The model is estimated over the entire parameter space

and the true parameter values are recovered, providing evidence in favor of determinacy or

indeterminacy. Section 4.2 shows that this is true even when we assume that the researcher

does not know the boundaries of the determinacy region. Hence, our methodology can be

used to test for indeterminacy in a wide class of models, including medium- and large-scale

models for which the region of determinacy cannot be derived analytically. We also repeat

the exercise on actual data using the dataset from Lubik and Schorfheide (2004) in Section

4.3. Finally, we provide guidance on how to properly implement our methodology in Section
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5 and our conclusions are presented in Section 6.

1 Building the intuition

Before presenting the theoretical results of the paper, this section builds the intuition behind

our approach by considering a univariate example similar to the one proposed in Lubik and

Schorfheide (2004). While Section 1.1 explains our approach from an analytical perspective,

Section 1.2 addresses questions which could arise at the time of its practical implementation.

1.1 A useful example

Consider a classical monetary model characterized by the Fisher equation

it = Et(πt+1) + rt, (1.1)

and the simple Taylor rule

it = φππt, (1.2)

where it denotes the nominal interest rate. We assume that the real interest rate rt is given

and described by a mean-zero Gaussian i.i.d. shock.11 To properly specify the model, we

also define the one-step ahead forecast error associated with the expectational variable, πt,

as

ηt ≡ πt − Et−1(πt). (1.3)

11In the classical monetary model, the real interest rate results from the equilibrium in labor and goods
market and it depends on the technology shocks. We are considering an exogenous process for the technology
shocks and therefore we take the process for the real interest rate as given.
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Combining (1.1) and (1.2), we obtain the univariate model

Et(πt+1) = φππt − rt. (1.4)

First, we consider the case φπ > 1. Rewriting equation (1.4), it is clear that this case is

associated with the determinate solution,

πt =
1

φπ
Et(πt+1) +

1

φπ
rt (1.5)

=
1

φπ
rt. (1.6)

where the last equality is obtained by solving equation (1.5) forward and recalling the as-

sumptions on rt. The strong response of the monetary authority to changes in inflation

(φπ > 1) guarantees that inflation is pinned down as a function of the exogenous real inter-

est rt. From a technical perspective, the condition φπ > 1 is such that the Blanchard-Kahn

condition is satisfied: the number of explosive roots matches the number of expectational

variables, that in this univariate case is πt.

The second case corresponds to φπ ≤ 1. The solution to (1.4) is obtained by combining

(1.4) with (1.3), and it corresponds to any process that takes the following form

πt = φππt−1 − rt−1 + ηt. (1.7)

When the monetary authority does not respond aggressively enough to changes in in-

flation (φπ ≤ 1), there are multiple solutions for the inflation rate, πt, each indexed by the

expectations that the representative agent holds about future inflation, ηt. Equivalently,

the solution to the univariate model is indeterminate: the Blanchard-Kahn solution is not

satisfied since there is no explosive root to match the number of expectational variables, that

is πt.
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From a methodological and computational perspective, the latter case constitutes a chal-

lenge. Standard software packages such as Dynare do not allow for indeterminacy. Of course,

a researcher could in principle code an estimation algorithm herself, following the methods

outlined in Lubik and Schorfheide (2004). However, this approach requires a substantial

amount of time and technical skills. Hence, the result is that in practice most of the papers

simply rule out the possibility of indeterminacy, even if the model at hand could in principle

allow for such a feature.

From a purely technical point of view, the problem that a researcher faces when solving

a LRE model such as the one presented in (1.4) using standard solution algorithms is the

following. Under determinacy, the model already has a sufficient number of unstable roots

to match the number of expectational variables. However, under indeterminacy, the model

is missing one explosive root since it still has one expectational variable, but no unstable

root. Therefore, our approach proposes to augment the original model by appending an

independent process which could be either stable or unstable. The key insight consists of

choosing this auxiliary process in a way to deliver the correct solution. When the original

model is determinate, the auxiliary process must be stationary so that also the augmented

representation satisfies the Blanchard-Kahn condition. In this case, the auxiliary process

represents a separate block that does not affect the law of motion of the model variables.

When the model is indeterminate, the additional process should however be explosive so

that the Blanchard-Kahn condition is satisfied for the augmented system, even if not for the

original model. In what follows, we apply this intuition to the example considered in this

section and explain how to choose the auxiliary process.

Our methodology proposes to solve an augmented system of equations which can be dealt

with by using standard solution algorithms such as Sims (2001b) under both determinacy
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Blanchard-Kahn condition in the augmented representation

Unstable Roots B-K condition in Solution

augmented model (1.8)

Determinacy φπ > 1
in original model (1.4)

1
α
< 1 1 Satisfied

{
πt =

1
φπ
rt, ωt = αωt−1 − νt + εt

}

1
α
> 1 2 Not satisfied -

Indeterminacy φπ ≤ 1
in original model (1.4)
1
α
< 1 0 Not satisfied -

1
α
> 1 1 Satisfied {πt = φππt−1 − rt−1 + ηt, ωt = 0}

Table 1.1: Regions of the parameter space for which the Blanchard-Kahn condition in the
augmented representation is satisfied, even when the original model is indeterminate.

and indeterminacy. Consider the following augmented system





Et(πt+1) = φππt − rt,

ωt =
(
1
α

)
ωt−1 − νt + ηt,

(1.8)

where ωt is an independent autoregressive process, α ∈ [0, 2] and νt is a newly defined mean-

zero sunspot shock with standard deviation σv. Table 1.1 summarizes the intuition behind

our approach.

When the original LRE model in (1.4) is determinate, φπ > 1, the Blanchard-Kahn

condition for the augmented representation in (1.8) is satisfied when 1/α < 1. Indeed,

for φπ > 1 the original model has the same number of unstable roots as the number of

expectational variables. Our methodology thus suggests to append a stable autoregressive

process. When φπ > 1 and 1/α < 1, the solution method of Sims (2001b) delivers the

same solution for the endogenous variable πt as in equation (1.5). Since the coefficient 1/α

is smaller than 1, the solution also includes the autoregressive process ωt. Importantly, its

dynamics do not impact the endogenous variable yt.

Considering the case of indeterminacy (i.e. φπ ≤ 1), the original model has one ex-
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pectational variable, but no unstable root, thus violating the Blanchard-Kahn condition.

By appending an explosive autoregressive process, the augmented representation that we

propose satisfies the Blanchard-Kahn condition and delivers the same solution as the one

resulting from the methodology of Lubik and Schorfheide (2003) or Farmer et al. (2015)

described by equation (1.7). Moreover, stability imposes conditions such that ωt is always

equal to zero, and the solution for the endogenous variable does not depend on the appended

autoregressive process.

Summarizing, the choice of the coefficient 1
α

should be made as follows. For values of φπ

greater than 1, the Blanchard-Kahn condition for the augmented representation is satisfied

for values of α greater than 1. Conversely, under indeterminacy (i.e. φπ ≤ 1) the condition

is satisfied when α is smaller than 1. The choice of parametrizing the auxiliary process

with 1/α instead of α induces a positive correlation between φπ and α that facilitates the

implementation of our method when estimating a model.

Finally, note that under both determinacy and indeterminacy, the exact value of 1/α

is irrelevant for the law of motion of πt. Under determinacy, the auxiliary process ωt is

stationary, but its evolution does not affect the law of motion of the model variables. Under

indeterminacy, ωt is always equal to zero. This makes clear that introducing the auxiliary

processes does not affect the properties of the solution in the two cases. These processes

only serve the purpose of providing the necessary explosive roots under indeterminacy and

of creating the mapping between the sunspot shocks and the expectation errors. As we will

see in Section 2, this result can be generalized and applies to more complicated models with

potentially multiple degrees of indeterminacy.

1.2 Choosing α

A natural question that arises with the approach we propose is how to choose α. We consider

the following three cases: (1) The researcher knows the analytic condition defining the region

of determinacy; (2) she only has an relatively good idea of the threshold of the determinacy
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region; (3) the region of determinacy is completely unknown to the researcher. We consider

the three cases separately.

We first consider the case in which the researcher is able to analytically derive the con-

dition which defines when the model is determinate or indeterminate. For the example

considered in this section, this case corresponds to knowing that when φπ ≤ 1 the model in

(1.4) is indeterminate. We thus suggest to write the parameter α as a function of the param-

eter φπ so that the augmented representation in (1.8) always satisfies the Blanchard-Kahn

condition. This can be obtained by setting α ≡ φπ. When the original model is determi-

nate (φπ > 1), the appended autoregressive process is stationary since 1/α < 1. Under

indeterminacy (φπ ≤ 1) of the original model, the coefficient 1/α is greater than 1 and the

appended process is therefore explosive. Hence, when the region of determinacy is known,

the researcher should carefully choose α such that the augmented representation always de-

livers a solution under both determinacy and indeterminacy. Using the NK model in Lubik

and Schorfheide (2004), we implement this suggestion in Section 4.1 where we estimate the

model assuming that the researcher knows the region of determinacy.

There are however instances in which the researcher does not know the exact properties of

the determinacy region. Suppose that the researcher does not know the region, but for values

of the parameter φπ slightly above 1 she can solve the original model under determinacy,

while for values just below 1 the model is indeterminate. She thus has a relatively good idea

that the threshold for determinacy is somewhere around 1, even if she is not able to derive

the analytical condition. In this case, she could set a prior distribution for the parameter

α such that there is a higher probability of drawing values above 1 when the parameter

φπ is greater than 1 and vice versa. Similarly, the variance-covariance matrix used by the

Metropolis-Hastings algorithm to propose new draws should be chosen to display a positive

correlation between the values of φπ and α. This practice would increase the likelihood

of obtaining a solution in the augmented representation and therefore the efficiency of the

algorithm.
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Finally, it could be the case that the region of determinacy is completely unknown to

the researcher. For a given draw of the parameter φπ, the researcher would like to make

draws of α smaller or greater than 1 with equal probabilities. In this case, the researcher

could use a uniform distribution over the interval [0, 2] or any symmetric interval around

1 as a prior distribution. Also, note that the prior distribution does not necessarily have

to be continuous. A discrete probability distribution that allows to make draws of α to be

either equal 0.5 or 1.5 could also be specified as a prior. In this context, the efficiency of the

algorithm would also be improved if it were to be designed as follows. If for a given draw

of φπ and α the augmented representation in (1.8) does not have a solution, the algorithm

should be coded as to make a new draw of α′ equal to the inverse of the earlier draw α.

2 Methodology

Given the general class of LRE models described in Sims (2001b), this paper proposes an

augmented representation which embeds the solution for the model under both determinacy

and indeterminacy.12 In particular, the augmented representation of the LRE model delivers

solutions which under determinacy are equivalent to those obtained using standard solution

algorithms, and under indeterminacy to those obtained using the methodology provided by

Lubik and Schorfheide (2003, 2004) or equivalently Farmer et al. (2015). In the following,

we generalize the intuition built in the previous section. Consider the following LRE model

Γ0(θ)Xt = Γ1(θ)Xt−1 +Ψ(θ)εt +Π(θ)ηt, (2.1)

where Xt ∈ Rk is a vector of endogenous variables, εt ∈ Rℓ is a vector of exogenous shocks,

ηt ∈ Rp collects the one-step ahead forecast errors for the expectational variables of the

system and θ ∈ Θ is a vector of parameters. The matrices Γ0 and Γ1 are of dimension k× k,

12In this paper we focus on linear rational expectation models. Schmitt-Grohé and Uribe (2004) and Judd
(1998) use perturbation methods to solve DSGE models using higher order approximations.
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possibly singular, and the matrices Ψ and Π are of dimension k × ℓ and k × p, respectively.

Also, we assume

Et−1(εt) = 0, and Et−1(ηt) = 0. (2.2)

We also define the ℓ× ℓ matrix Ωεε,

Ωεε ≡ Et−1(εtε
T
t ), (2.3)

which represents the covariance matrix of the exogenous shocks.

Consider a model whose maximum degree of indeterminacy is denoted by m.13 The

proposed methodology appends to the original LRE model in (2.1) the following system of

m equations

ωt = Φωt−1 + νt − ηf,t, Φ ≡




1
α1

0

. . .

0 1
αm




(2.4)

where the vector ηf,t is a subset of the endogenous shocks and the vectors {ωt, νt, ηf,t} are of

dimension m× 1. The equations in (2.4) are autoregressive processes whose innovations are

linear combinations of a vector of sunspot shocks, νt, and a subset of forecast errors, ηf,t,

where Et−1(νt) = Et−1(ηf,t) = 0. As we will show below, the choice of which expectational

errors to include in (2.4) does not affect the solution.

The intuition behind the proposed methodology works as in the example considered in

the previous section. Let m∗ (θ) denote the actual degree of indeterminacy associated with

the parameter vector θ. Under indeterminacy the Blanchard-Kahn condition for the original

LRE model in (2.1) is not satisfied. Suppose that the system is characterized by m∗ (θ)

13Denoting by n the minimum number of unstable roots of a LRE model, the maximum degrees of indeter-
minacy are defined as m ≡ p−n. When the minimum number of unstable roots of a model is unknown, then
m coincides with number of expectational variables p. This represents the maximum degree of indeterminacy
in any model with p expectational variables.
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degrees of indeterminacy, then it is necessary to introduce m∗ (θ) explosive roots to solve the

model using standard solution algorithms. In this case, the (absolute value of the) m∗ (θ)

of the diagonal elements of the matrix Φ are assumed to be outside the unit circle, and the

augmented representation is therefore determinate since the Blanchard-Kahn condition is

now satisfied. On the other hand, under determinacy the (absolute value of the) diagonal

elements of the matrix Φ are assumed to be all inside the unit circle, since the number of

explosive roots of the original LRE model in (2.1) already equals the number of expectational

variables in the model (m∗ (θ) = 0). Also, in this case the augmented representation is

determinate due to the stability of the appended auxiliary processes. Importantly, as shown

for the univariate example in Section 1, the block structure of the proposed methodology

guarantees that the autoregressive process, ωt, does not affect the solution for the endogenous

variables, Xt.

Denoting the newly defined vector of endogenous variables X̂t ≡ (Xt, ωt)
T and the newly

defined vector of exogenous shocks ε̂t ≡ (εt, νt)
T , the system in (2.1) and (2.4) can be written

as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (2.5)

where

Γ̂0 ≡



Γ0(θ) 0

0 I


 , Γ̂1 ≡



Γ1(θ) 0

0 Φ


 , Ψ̂ ≡



Ψ(θ) 0

0 I


 , Π̂ ≡



Πn(θ) Πf (θ)

0 −I


 ,

and without loss of generality the matrix Π in (2.1) is partitioned as Π = [Πn Πf ],

where the matrices Πn and Πf are respectively of dimension k × (p−m) and k ×m.

Section 2.1 and 2.2 show that the augmented representation of the LRE model delivers

solutions which under determinacy are equivalent to those obtained using standard solution
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algorithms, and under indeterminacy to those obtained using the methodology provided

by Lubik and Schorfheide (2003, 2004) and Farmer et al. (2015). In order to simplify the

exposition, when analyzing the case of indeterminacy we assume, without loss of generality,

m∗(θ) = m. As it will become clear, the case of m∗(θ) < m is a special case of what we

present below.

2.1 Equivalence under determinacy

This section considers the case in which the original LRE is determinate, and shows the

equivalence of the solution obtained using the proposed augmented representation with the

one from the standard solution algorithm described in Sims (2001b).

2.1.1 Canonical solution

Consider the LRE model in (2.1) and reported below as (2.6)

Γ0
k×k

Xt
k×1

= Γ1
k×k

Xt−1
k×1

+ Ψ
k×
εt
×1

+ Π
k×p

ηt
p×1
. (2.6)

The method described in Sims (2001b) delivers a solution, if it exists, by following four

steps. First, Sims (2001b) shows how to write the model in the form

SZTXt = TZTXt−1 +QΨεt +QΠηt, (2.7)

where Γ0 = QTSZT and Γ1 = QTTZT is the QZ decomposition of {Γ0,Γ1}, and the

k × k matrices Q and Z are orthonormal, upper triangular and possibly complex. Also, the

diagonal elements of S and T contain the generalized eigenvalues of {Γ0,Γ1}.

Second, since the QZ decomposition is not unique, Sims’ algorithm chooses a decompo-

sition that orders the equations so that the absolute values of the ratios of the generalized
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eigenvalues are placed in an increasing order, that is

|tjj| / |sjj| ≥ |tii| / |sii| for j > i.

The algorithm then partitions the matrices S, T , Q and Z as

S =



S11 S12

0 S22


 , T =



T11 T12

0 T22


 , Z ′ =



Z1

Z2


 , Q =



Q1

Q2


 , (2.8)

where the first block corresponds to the system of equations for which |tjj| / |sjj| <

1 and the second block groups the equations which are characterized by explosive roots,

|tjj| / |sjj| > 1 .

The third step imposes conditions on the second, explosive block to guarantee the exis-

tence of at least one bounded solution. Defining the transformed variables

ξt ≡ ZTXt =




ξ1,t
(k−n)×1

ξ2,t
n×1


 , (2.9)

where n is the number of explosive roots, and the transformed parameters

Ψ̃ ≡ QTΨ, and Π̃ ≡ QTΠ, (2.10)

the second block can be written as

ξ2,t = S−1
22 T22ξ2,t−1 + S−1

22 (Ψ̃2εt + Π̃2ηt). (2.11)

Since this system of equations contains the explosive roots of the system, then a bounded
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solution, if it exists, will set

ξ2,0
n×1

= 0 (2.12)

Ψ̃2
n×ℓ

εt
ℓ×1

+ Π̃2
n×p

ηt
p×1

= 0, (2.13)

where n also denotes the number of equations in (2.13).14

A necessary condition for the existence of a solution requires that the number of unstable

roots (n) equals the number of expectational variables (p). In this section, we are considering

the solution under determinacy and this guarantees that there are no degrees of indetermi-

nacy m∗(θ) = 0. The sufficient condition then requires that the columns of the matrix Π̃2

are linearly independent so that there is at least one bounded solution. In that case, the

matrix Π̃2 is a square, non-singular matrix and equation (2.13) imposes linear restrictions

on the forecast errors, ηt, as a function of the fundamental shocks, εt,

ηt = −Π̃−1
2 Ψ̃2εt. (2.14)

The fourth and last step finds the solution for the endogenous variables, Xt, by combining

the restrictions in (2.12) and (2.14) with the system of stable equations in the first block,

ξ1,t = S−1
11 T11ξ1,t−1 + S−1

11 (Ψ̃1εt + Π̃1ηt)

= S−1
11 T11ξ1,t−1 + S−1

11

(
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

)
εt (2.15)

Using the algorithm by Sims (2001b), the solution of the LRE model in (2.6) is described

by equations (2.12), (2.14), and (2.15).

14Note that the eigenvalues of S−1
22 T22 are all greater than one in absolute value.
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2.1.2 Augmented representation

We now consider the methodology proposed in this paper, and we augment the LRE model

in (2.6) with the following system of m equations

ωt = Φωt−1 + νt − ηf,t, Φ ≡




1
α1

0

. . .

0 1
αm




where Φ is a m×m diagonal matrix. Since the original model in (2.6) is determinate, then

we assume that all the diagonal elements αi belong to the interval [1, 2]. Therefore, we are

appending a system of stable equations, and we show that the solution for the endogenous

variables, Xt, is equivalent to the one found in Section 2.1.1. Defining the augmented vector

of endogenous variables, X̂t ≡ (Xt, ωt)
T and the augmented vector of exogenous shocks

ε̂t ≡ (εt, νt)
T , the representation that we propose takes the form

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (2.16)

where

Γ̂0 ≡



Γ0 0

0 I


 , Γ̂1 ≡



Γ1 0

0 Φ


 , Ψ̂ ≡



Ψ 0

0 I


 , Π̂ ≡



Πn Πf

0 −I


 ,

and without loss of generality the matrix Π is partitioned as Π = [Πn Πf ], where the

matrices Πn and Πf are respectively of dimension k × (p−m) and k ×m.

We can find a solution to the augmented representation in (2.16) by using Sims’ algorithm.

Similarly to the previous section, we follow the four steps which describe the algorithm.

First, the solution algorithm performs the QZ decomposition of the matrices {Γ̂0, Γ̂1} and
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the augmented representation takes the form

ŜẐT X̂t = T̂ ẐT X̂t−1 + Q̂Ψ̂ε̂t + Q̂Π̂ηt, (2.17)

where Γ̂0 = Q̂T ŜẐT and Γ̂1 = Q̂T T̂ ẐT is the QZ decomposition of {Γ̂0, Γ̂1}, and

Ŝ =




S11 0 S12

0 I 0

0 0 S22



, T̂ =




T11 0 T12

0 Φ 0

0 0 T22



, ẐT =




Z1 0

0 I

Z2 0



, Q̂ =




Q1 0

0 I

Q2 0



.

Importantly, note that the inner matrices of {Ŝ, T̂ , ẐT , Q̂} are the same as those which define

the matrices {S, T, ZT , Q} in (2.8) found in the previous section.

Second, the algorithm chooses a QZ decomposition which groups the equations in a stable

and an explosive block. Since this section assumes that the original model is determinate

and that the diagonal elements of the matrix Φ are within the unit circle, the explosive block

corresponds to the third system of equations in (2.17) which is characterized by explosive

roots. Recalling the definition of the matrices Ψ̂ and Π̂, the system of equations in the third

block is

ξ2,t = S−1
22 T22ξ2,t−1 + S−1

22 (Ψ̃2εt + Π̃2ηt). (2.18)

The third step imposes conditions to guarantee the existence of a bounded solution.

However, the explosive block in (2.18) is identical to the system of equations found in

(2.11). Therefore, the algorithm imposes the same restrictions to guarantee the existence of

a bounded solution, that is

ξ2,0 = 0 (2.19)

and as found earlier

ηt = −Π̃−1
2 Ψ̃2εt. (2.20)

Finally, the last step combines these restrictions with the system of equations in the stable
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block which corresponds to the first and second systems of equations in (2.17),

ξ1,t = S−1
11 T11ξ1,t−1 + S−1

11

(
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

)
εt, (2.21)

ωt = Φωt−1 + νt − ηf,t. (2.22)

The solution in (2.19)∼(2.22) obtained for the augmented representation of the LRE model

delivers the same solution for the endogenous variables of interest, Xt, found in the previous

section and defined in equations (2.12), (2.14), and (2.15).

Two remarks should be made when comparing the two solutions. First, as shown in (2.20),

the forecast errors are only a function of the exogenous shocks εt, and not of the sunspot

shocks vt. It is therefore clear that the endogenous variables, Xt, of the original LRE model in

(2.6) do not respond to sunspot shocks either, as expected under determinacy. Second, (2.21)

and (2.22) indicate that under determinacy the appended system of equations constitutes

a separate block, which does not affect the dynamics of the endogenous variables, Xt, and

therefore the likelihood function associated with Xt.

2.2 Equivalence under indeterminacy

This section shows the equivalence of the solutions obtained for a LRE model under inde-

terminacy using the proposed augmented representation and the methodology of Lubik and

Schorfheide (2003, 2004).

2.2.1 Lubik and Schorfheide (2003)

As in Section 2.1, we consider the LRE model in (2.6) and reported below as (2.23)

Γ0Xt = Γ1Xt−1 +Ψεt +Πηt. (2.23)

In this section we assume that the model is indeterminate, and we present the method
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used by Lubik and Schorfheide (2003). The authors implement the first two steps of the

algorithm by Sims (2001b) and described in Section 2.1.1.15 They proceed by first applying

the QZ decomposition to the LRE model in (2.23) and then ordering the resulting system

of equations in a stable and an explosive block as defined in (2.7) and (2.8). However, their

approach differs in the third step when the algorithm imposes restrictions to guarantee the

existence of a bounded solution. In particular, the restrictions in (2.12) and (2.13) reported

below as (2.24) and (2.25) require that

ξ2,0
n×1

= 0, (2.24)

Ψ̃2
n×ℓ

εt
ℓ×1

+ Π̃2
n×p

ηt
p×1

= 0. (2.25)

Nevertheless, it is clear that the system of equation in (2.25) is indeterminate since the

number of forecast errors exceeds the number of explosive roots (p > n). Equivalently, there

are less equations (n) than the number of variables to solve for (p). To characterize the full

set of solutions to equation (2.25), Lubik and Schorfheide (2003) decompose the matrix Π̃2

using the following singular value decomposition

Π̃2
n×p

≡ U
n×n

[
D11
n×n

0
n×m

]
V T

p×p
,

wherem represents the degrees of indeterminacy. Given the partition V
p×p

≡

[
V1
p×n

V2
p×m

]
,

equation (2.25) can be written as

D−1
11

n×n

UT

n×n
Ψ̃2
n×ℓ

εt
ℓ×1

+ V T
1

n×p

ηt
p×1

= 0. (2.26)

15It is relevant to mention that in this section the matrices obtained from the QZ decomposition and the
ordering of the equations into a stable and an explosive block differ from those in Section 2.1 both in terms
of the elements constituting them and their dimensions. However, we opted to use the same notation for
simplicity.
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Since the system is indeterminate, Lubik and Schorfheide append additional m equations,

M̃
m×ℓ

εt
ℓ×1

+ Mζ
m×m

ζt
m×1

= V T
2

m×p

ηt
p×1
. (2.27)

The m×1 vector ζt is a set of sunspot shocks that is assumed to have mean zero, covariance

matrix Ωζζ and to be uncorrelated with the fundamental shocks, εt, that is

E [ζt] = 0, E
[
ζtε

T
t

]
= 0, E

[
ζtζ

T
t

]
= Ωζζ .

The matrix M̃ captures the correlation of the forecast errors, ηt, with fundamentals, εt, and

Lubik and Schorfheide (2003) choose the normalization Mζ = Im. Appending the system of

equations in (2.27) to the equations in (2.26), the expectational errors can be written as a

function of the fundamental shocks, εt, and the sunspot shocks, ζt,

ηt
p×1

=

(
−V1
p×n

D−1
11

n×n

UT
1

n×n

Ψ̃2
n×ℓ

+ V2
p×m

M̃
m×ℓ

)
εt
ℓ×1

+ V2
p×m

ζt
m×1

.

More compactly,

ηt
p×1

=

(
V1
p×n

N
n×ℓ

+ V2
p×m

M̃
m×ℓ

)
εt
ℓ×1

+ V2
p×m

ζt
m×1

, (2.28)

where

N
n×ℓ

≡ −D−1
11

n×n

UT
1

n×n

Ψ̃2.
n×ℓ

is a function of the parameters of the model.

Given the earlier restriction in (2.24) and (2.28), the fourth step in the algorithm combines

these equations with the system of stable equations in the first block as in Section 2.1.1,

ξ1,t = S−1
11 T11ξ1,t−1 + S−1

11 (Ψ̃1εt + Π̃1ηt)

= S−1
11 T11ξ1,t−1 + S−1

11

(
Ψ̃1 + Π̃1V1N + Π̃1V2M̃

)
εt + S−1

11

(
Π̃1V2

)
ζt. (2.29)
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Using the method in Lubik and Schorfheide (2003), the solution for the original LRE

model under indeterminacy is described by (2.24), (2.28) and (2.29).

2.2.2 Augmented representation

We now consider the augmented representation as in (2.16) and reported below as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (2.30)

where X̂t ≡ (Xt, ωt)
T , ε̂t ≡ (εt, νt)

T and

Γ̂0 ≡



Γ0 0

0 I


 , Γ̂1 ≡



Γ1 0

0 Φ


 , Ψ̂ ≡



Ψ 0

0 I


 , Π̂ ≡



Πn Πf

0 −I


 . (2.31)

where the matrix Π is partitioned as Π = [Πn Πf ] without loss of generality.

The novelty of our approach is that, given our representation, we can easily obtain the so-

lution by using Sims’ algorithm even when the original LRE is assumed to be indeterminate.

It is enough to assume that the auxiliary processes ωt are characterized by explosive roots,

or equivalently that the diagonal elements of the matrix Φ are outside the unit circle. This

guarantees that the Blanchard-Kahn condition for the augmented representation is satisfied

and, given the analytic form that we propose for the auxiliary processes, we show that the

solution for the endogenous variables of interest, Xt, is equivalent to the method of Lubik

and Schorfheide (2003).

To show this result, we simply apply the four steps of the algorithm described in Sims

(2001b) to the proposed augmented representation. First, the QZ decomposition of (2.30)

takes the form

ŜẐT X̂t = T̂ ẐT X̂t−1 + Q̂Ψ̂ε̂t + Q̂Π̂ηt, (2.32)
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where Γ̂0 = Q̂T ŜẐT and Γ̂1 = Q̂T T̂ ẐT is the QZ decomposition16 of {Γ̂0, Γ̂1} and

Ŝ =




S11 S12 0

0 S22 0

0 0 I



, T̂ =




T11 T12 0

0 T22 0

0 0 Φ



, ẐT =




Z1 0

Z2 0

0 I



, Q̂ =




Q1 0

Q2 0

0 I



.

(2.33)

Second, the QZ decomposition chosen by the algorithm groups the explosive dynamics of

the model in the second and third system of equations in (2.32), which are reported below

as (2.34)



S22 0

0 I






ξ2

ωt


 =



T22 0

0 Φ






ξ2,t−1

ωt−1


+



Q2 0

0 I



(
Ψ̂ε̂t + Π̂ηt

)
, (2.34)

where ξt ≡ ZTXt.

In the third step, the following restrictions are imposed,

ξ2,0
n×1

= 0, (2.35)

ω0
m×1

= 0, (2.36)



Q2 0

0 I



(
Ψ̂ε̂t + Π̂ηt

)
= 0. (2.37)

Recalling the definition of Ψ̂ and Π̂ and that we define Ψ̃ ≡ QTΨ, and Π̃ ≡ QTΠ, then

equation (2.37) can be written as



Ψ̃2 0

0 I




︸ ︷︷ ︸
p×(ℓ+m)

ε̂t
(ℓ+m)×1

+



Π̃n,2 Π̃f,2

0 −I




︸ ︷︷ ︸
p×p

ηt
p×1

= 0. (2.38)

16Note that the inner matrices of {Ŝ, T̂ , ẐT , Q̂} are the same as those which define the matrices
{S, T, ZT , Q} found from the QZ decomposition using the methodology of Lubik and Schorfheide (2003).
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Equation (2.38) shows transparently how the explosive auxiliary process that we append

help to solve the original LRE model under indeterminacy. The system of equations in

(2.38) is determinate as the number of equations defined by the explosive roots of the system

equals the number of expectational errors of the model. This guarantees that the necessary

condition for the existence of a bounded solution for the augmented representation is satisfied.

Assuming that the columns of the matrix associated with the vector of non-fundamental

shocks, ηt, are linearly independent, we can therefore impose linear restrictions on the forecast

errors as a function of the augmented vector of exogenous shocks ε̂t ≡ (εt, νt)
T ,

ηt = −



Π̃−1
n,2Ψ̃2 Π̃−1

n,2Π̃f,2

0 −I


 ε̂t. (2.39)

More compactly,

ηt = C1εt + C2νt, (2.40)

where C1 ≡ −



Π̃−1
n,2Ψ̃2

0


 and C2 ≡ −



Π̃−1
n,2Π̃f,2

−I


 are a function of the structural parameters

of the model.

The last step of Sims’ algorithm combines the restrictions in (2.35), (2.36) and (2.40)

with the stationary block derived from the QZ decomposition in (2.32),

ξ1,t = S−1
11 T11ξ1,t−1 + S−1

11 (Ψ̃1εt + Π̃1ηt)

= S−1
11 T11ξ1,t−1 + S−1

11

(
Ψ̃1 + Π̃1C1

)
εt + S−1

11

(
Π̃1C2

)
vt. (2.41)

2.2.3 Indeterminate equilibria and equivalent characterizations

The indeterminate equilibria found using the methodology of Lubik and Schorfheide (2003)

are parametrized by two sets of parameters. The first set is defined by θ1 ∈ Θ1, where

θ1 ≡ vec(Γ0,Γ1,Ψ,Ωεε)
T is a vector of structural parameters of the model as well as the

covariance matrix of the exogenous shocks. The second set corresponds to θ2 ∈ Θ2, where
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θ2 ≡ vec
(
Ωζζ , M̃

)T
is a parameter vector related to the additional equations introduced in

(2.27) and reported below as (2.42),

M̃
m×ℓ

εt
ℓ×1

+ Mζ
m×m

ζt
m×1

= V T
2

m×p

ηt
p×1
. (2.42)

Given the normalization Mζ = I chosen by Lubik and Schorfheide (2004), equation (2.42)

introduces m× (m+ 1)/2 parameters associated with the covariance matrix of the sunspot

shocks, Ωζζ , and additional m× ℓ parameters of the matrix M̃ that is related to the covari-

ances between ηt and εt. In Appendix A, we show how the normalization chosen in Lubik

and Schorfheide (2004) maps into the methodology we propose.

The characterization of a Lubik-Schorfheide equilibrium is a vector θLS ∈ ΘLS, where

ΘLS is defined as

ΘLS ≡ {Θ1,Θ2} . (2.43)

Similarly, the full characterization of the solutions under indeterminacy using the pro-

posed augmented representation is parametrized by the set of parameters θ1 ∈ Θ1 com-

mon between the two methodologies, and the set of additional parameters θ3 ∈ Θ3 , where

θ3 ≡ vec(Ωνν ,Ωνε)
T . Using our approach, we also introduce m × (m + 1)/2 parameters

associated with the covariance matrix of the sunspot shocks, Ωvv, and m × ℓ parameters of

the covariances, Ωvε, between the sunspot shock vt and the exogenous shocks εt. A Bianchi-

Nicolò equilibrium is characterized by a parameter vector θBN ∈ ΘBN , where ΘBN is defined

as

ΘBN ≡ {Θ1,Θ3} . (2.44)

The following theorem establishes the equivalence between the characterizations of in-

determinate equilibria obtained by using the methodology in Lubik and Schorfheide (2003)

and the proposed augmented representation.

Theorem 3. Let θLS and θBN be two alternative parametrizations of an indeterminate equi-
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librium of the model

Γ0Xt = Γ1Xt−1 +Ψεt +Πηt.

For every BN equilibrium, parametrized by θBN , there is a unique matrix M̃ and a unique

matrix Ωζζ such that θ2 = vec(Ωζζ , M̃)T , and {θ1, θ2} ∈ ΘLS defines an equivalent LS equi-

librium. Conversely, for every LS equilibrium, parametrized by θLS, there is a unique matrix

Ωvv and a unique covariance matrix Ωvε such that θ3 = vec(Ωvv,Ωvε)
T , and {θ1, θ3} ∈ ΘBN

defines an equivalent BN equilibrium.

Proof. See Appendix B.

In the paper Farmer et al. (2015), the authors also show that their characterization

of indeterminate equilibria is equivalent to Lubik and Schorfheide (2003). Therefore, the

following corollary holds.

Corollary 2. Given a parametrization θBN of a Bianchi-Nicolò indeterminate equilibrium,

there exists a unique mapping into the parametrization of an indeterminate equilibrium for

Farmer et al. (2015), and vice-versa.

Moreover, the following two considerations support Corollary 3 below, which describes a

relevant result on the likelihood function of the augmented representation. First, as empha-

sized in this section, the reduced form of the augmented representation has a block structure

which ensures that solution for endogenous variables in Xt is not a function of the autore-

gressive processes, ωt. Second, note that the appended autoregressive processes, ωt, have no

economic interpretation and therefore have no relation with the observable variables used in

a measurement equation. These two considerations imply that the parameters of the matrix

Φ introduced with the augmented representation are not identified (within a certain region).

Corollary 3 then follows.17

17Notice that Corollary 3 holds when the augmented representation has a unique solution. This happens
in two cases. First, values of the structural parameters θ which guarantee determinacy in the original LRE
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Corollary 3. The likelihood function associated with the newly defined vector of endogenous

variables, X̂t, does not depend on the additional parameters included in the augmented rep-

resentation, Φ, and is equivalent to the likelihood function associated with the endogenous

variables, Xt.

While Section 2.1 shows that the augmented representation of the LRE model delivers

solutions which under determinacy are equivalent to those obtained using standard solution

algorithms, Theorem 3 proves that under indeterminacy the solutions of our methodology

are equivalent to those obtained using Lubik and Schorfheide (2003, 2004) and Farmer et al.

(2015). This theoretical result is crucial for the estimation exercises conducted in Section 4.

The augmented representation guarantees that the Metropolis-Hastings algorithm explores

the entire domain of the parameter space.

3 Analytic example

This section considers the canonical NK model to provide an analytic example of the theo-

retical result presented in Section 2. Let

xt = Et(xt+1)− τ(Rt − Et(xt+1)) (3.1)

πt = βEt−1(πt+1) + κxt (3.2)

Rt = ψπt + εR,t (3.3)

η1,t = xt − Et−1(xt) (3.4)

η2,t = πt − Et−1(πt) (3.5)

where equations (3.1)∼(3.3) represent the dynamic IS curve, the NK Phillips curve and

a monetary policy reaction function, respectively. The variable xt represents log deviations

model should be combined with values for αi in the matrix Φ whose absolute value lies within the unit
circle. Second, values of the structural parameters θ for which the original model is indeterminate should be
combined with (absolute) values of αi outside the unit circle.
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of GDP from a trend path and πt and Rt are log deviations from the steady state level of

inflation and the nominal interest rate. The one-step ahead forecast errors for the deviations

of output from its trend and of inflation from its steady state are defined in (3.4) and (3.5).

This model can be expressed in matrix form as

Γ0Xt = Γ1Xt−1 +Ψεt +Πηt, (3.6)

where Xt = (xt, πt, Et(xt+1), Et(πt+1))
T , εt = (εR,t) and ηt = (η1,t, η2,t)

T .

It is well known that the region of determinacy is associated with an active response of the

monetary authority to changes in inflation, a condition satisfied when |ψ| > 1. Alternatively,

the equilibrium is indeterminate when the monetary policy is “passive”, that is 0 < |ψ| ≤ 1.

In the latter case, there is one degree of indeterminacy (m = 1) since there are two forecast

errors while the system is characterized by only one unstable root.18 Given that m = 1, the

proposed methodology consists in appending to the original LRE model in (3.6) the following

equation

ωt =
1

α
ωt−1 + νt − η2,t. (3.7)

To provide the intuition, consider α ≡ |ψ|. When the monetary authority is “passive,”

indeterminacy arises and the Blanchard-Kahn condition for the original LRE model is not

satisfied. Our representation augments the system in (3.6) with the explosive autoregressive

process in (3.7). Note that under indeterminacy 0 < |ψ| ≤ 1, which implies 1/α > 1. The

augmented representation not only mechanically satisfies the Blanchard-Kahn condition, but,

as proven in Theorem 3, it describes all the set of equilibria which would be equivalently

obtained using the methodology of Lubik and Schorfheide (2003, 2004) or Farmer et al.

(2015). Alternatively, when the monetary policy adopts an “active” stance, the original

18As shown in Appendix C, one of the roots of the system is always outside the unit circle. This implies
that the maximum degree of indeterminacy is m = 1, and that we append only one auxiliary autoregressive
process. However, it is not always possible to derive this analytical results. Under those circumstances,
the number of auxiliary processes to append to the original LRE model equals the number of expectational
variable. The latter indeed corresponds to the maximum degree of indeterminacy of the original model.
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system is determinate and the auxiliary autoregressive process is stationary (i.e. 0 < 1/α <

1), thus satisfying the Blanchard-Kahn condition under determinacy. Importantly, as shown

both in this example and more generally in Section 2, the block structure of the augmented

representation ensures that the endogenous variables contained in the vector Xt are not a

function of the process ωt for both regions of the parameter space.

We now show that the equivalence results in Section 2 hold for the NK model described

by (3.1) ∼ (3.5). As described in the previous section, the proposed methodology defines a

new vector of endogenous variables X̂t ≡ (Xt, ωt)
T = (xt, πt, Et(xt+1), Et(πt+1), ωt)

T and a

newly defined vector of exogenous shocks as ε̂t ≡ (εt, νt)
T = (εR,t, νt)

T . The system in (3.6)

and (3.7) can then be written as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt. (3.8)

The representation in (3.8) always delivers a solution of the following form under both

determinacy and indeterminacy,

X̂t = T̂ X̂t−1 + R̂ε̂t. (3.9)

In what follows, we show the equivalence of our solutions under determinacy with the one

from Sims (2001b), and under indeterminacy with the solution proposed by Farmer et al.

(2015).

3.1 Determinacy

This section clarifies the details for the equivalence of the solutions which are obtained in the

determinacy region of the parameter space when using the following two representations:

a) The matrix representation of the model in (3.6) and reported here as equation (3.10)

Γ0Xt = Γ1Xt−1 +Ψεt +Πηt (3.10)
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Equivalence of solutions under determinacy

Sims (2001b) Bianchi-Nicolò

Et(xt+1) = Et(πt+1) = 0 Et(xt+1) = Et(πt+1) = 0

ηt= − τ
1+κτψ

[
1
κ

]
εR,t ηt= − τ

1+κτψ

[
1 0
κ 0

] [
εR,t
νt

]

(
xt
πt

)
= − τ

1+κτψ

[
1
κ

]
εR,t

(
xt
πt

)
= − τ

1+κτψ

[
1 0
κ 0

] [
εR,t
νt

]

- ωt=
(
1
α

)
ωt−1+

[
τκ

1+κτψ
1
] [εR,t

νt

]

Table 3.1: Equivalence of solutions under determinacy. The table compares the solution
obtained by using our methodology with Sims (2001).

b) The proposed augmented representation in (3.8) and reported here as equation (3.11)

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt. (3.11)

Representations a) and b) deliver the equilibrium conditions reported in Table 3.1,

where α ≡ |ψ| > 1.19 Comparing the obtained solutions, it is clear that they are

equivalent. While our augmented representation potentially allows for the sunspot shock

to affect the model dynamics, the coefficients which determine its impact on the endoge-

nous variables equal zero. Moreover, the dynamics of the endogenous variables Xt =

(xt, πt, Et(xt+1), Et(πt+1))
′ are not affected by the autoregressive process ωt since it con-

stitutes a separate block.

19Details on the derivation of the solutions are provided in the Appendix C.
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3.2 Indeterminacy

Under indeterminacy, the Blanchard-Kahn condition is not satisfied and to solve the model

we use the solution method suggested by Farmer et al. (2015).20 The solution obtained using

the method of Farmer et al. (2015) is equivalent to Lubik and Schorfheide (2003,2004). We

use Farmer et al. (2015) solution because easier to compare with our solution. Hence, the

solutions that we compare in this section derive from the following two representations:

c) The matrix representation of the LRE model using the methodology of Farmer et al.

(2015) when the forecast error for the deviations of inflation from its steady state, η2,t,

is included as newly defined fundamental shock. Given the partition of the matrix Π

in (3.6) as Π = [Πn Πf ], then

Γ0Xt = Γ1Xt−1 +Ψf ε̃t +Πnη1,t (3.12)

where ε̃t ≡ (εt, η2,t)
T and Ψf ≡ [Ψ Πf ].

d) The proposed augmented representation, equivalent to the representation b) in Section

3.1

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt.

The equilibrium conditions obtained using representations c) and d) are reported in Table

3.2, where

G
4×1

≡




− a2
2κ

1

−a1a2
4βκ

a1
2β




H
4×2

≡




−2βτ
a3

2κτ(1−βψ)−a2
a3κ

0 1

− τa2
a3

−a2(1+κτψ)
a3κ

2κτ
a3

−2(1+κτψ)
a3




(3.13)

20The derivation of the solutions obtained using the method by Farmer et al. (2015) and the proposed
augmented representation are provided in Appendix D.
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and a1 = (β − φ + κτ + 1), a2 = (a1 − 2), a3 = (a1 + 2φ) and φ = [(1 + β + κτ)2 −

4β(1 + κτψ)]−1/2. To understand the equivalence result, it is useful to compare the linear

restrictions imposed on the vector of forecast errors using the augmented representation. In

particular, note that our methodology imposes the restriction η2,t = νt. Thus, the solution

to the augmented representation sets restrictions on the forecast error, η2,t, (which has

been redefined as fundamental using the methodology of Farmer et al. (2015)) such that

it corresponds to the sunspot shock, νt. Also, to guarantee a bounded solution, restrictions

are imposed such that the autoregressive process ωt equals zero at any time t. Therefore,

the solutions for the two alternative representations are equivalent.

Also, two relevant comments can be made. First, under indeterminacy the endogenous

variables are also affected by the sunspot shock. Second, comparing the form of the matrices

under determinacy in Table 3.1 with those under indeterminacy in Table 3.2, it is evident

that the propagation mechanism differs according to which region of the parameter space is

considered.

4 Applications

While the previous section provides an analytic example clarifying the equivalence results

shown in Section 2, this section highlights the importance of our results for the estimation of

LRE models. We consider the three-equation NK model of Lubik and Schorfheide (2004) and

we conduct the following exercises. Section 4.1 and Section 4.2 deal with simulated data. In

particular, we run two simulations of the model for parameter values which lie in the region

of the parameter space associated with determinacy and indeterminacy. Given the two

simulations, Section 4.1 assumes that the region of determinacy is known. In Section 4.2, we

then assume that the region of determinacy is unknown. In both cases the MCMC algorithm

converges to the correct area of the parameter space. Section 4.3 then provides an example

on how to implement our methodology when using real data. We consider the data of Lubik
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Equivalence of solutions under indeterminacy

Farmer et al. (2015) Bianchi-Nicolò

Et(xt+1) = − a2
2κ
Et(πt+1) Et(xt+1) = − a2

2κ
Et(πt+1)

η1,t=
[
−2βτ

a3

2κτ(1−βψ)−a2
a3κ

] [
εR,t
η2,t

]
ηt=

[
−2βτ

a3

2κτ(1−βψ)−a2
a3κ

0 1

] [
εR,t
νt

]




xt
πt

Et(xt+1)
Et(πt+1)


= G

4×1
Et−1(πt)+H

4×2

[
εR,t
η2,t

]



xt
πt

Et(xt+1)
Et(πt+1)


= G

4×1
Et−1(πt)+H

4×2

[
εR,t
νt

]

- ωt= 0

Table 3.2: Equivalence of solutions under indeterminacy. The table compares the solu-
tion obtained by using our methodology with Farmer et al. (2015). This last method, in
turn, returns the same solution obtained by applying the methods of Lubik and Schorfheide
(2003,2004).

and Schorfheide (2004) for the period prior to the appointment of Chairman Paul Volcker,

and we retain the assumption that the researcher does not know the region of determinacy.

We show that our method enables to successfully recover the same posterior distributions

reported by Lubik and Schorfheide (2004), regardless of the region of the parameter space

in which the estimation is initialized. Finally, we run the estimation several times and verify

that the results presented below hold across all of them.

We consider the NK model estimated by Lubik and Schorfheide (2004). The model is

described by equations (4.1)∼(4.6) and consists of a dynamic IS curve

xt = Et (xt+1)− τ (Rt −Et (πt+1)) + gt, (4.1)

a NK Phillips curve

πt = βEt (πt+1) + κ (xt − zt) , (4.2)
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and a Taylor rule,

Rt = ρRRt−1 + (1− ρR) [ψ1πt + ψ2 (xt − zt)] + εR,t. (4.3)

The demand shock, gt, and the supply shock, zt, follow univariate AR(1) processes

gt = ρggt−1 + εg,t, (4.4)

zt = ρzzt−1 + εz,t, (4.5)

where the standard deviations of the fundamental shocks εg,t, εz,t and εR,t are denoted by

σg, σz and σR, respectively. As in Lubik and Schorfheide (2004), we allow for the correlation

between demand and supply shocks, ρgz, to be nonzero. The rational expectation forecast

errors are defined as

η1,t = xt − Et−1 [xt] , η2,t = πt − Et−1 [πt] . (4.6)

We define the vector of endogenous variables asXt ≡ (xt, πt, Rt, Et (xt+1) , Et (πt+1) , gt, zt)
T ,

the vectors of fundamental shocks and non-fundamental errors,

εt = (εR,t, εg,t, εz,t)
T , ηt = (η1,t, η2,t)

T

and the vector of parameters

θ = (ψ1, ψ2, ρR, β, κ, τ, ρg, ρz, σg, σz, σR, ρgz, ρgR, ρzR)
T .

This leads to the following representation of the model,

Γ0(θ)Xt = Γ1(θ)Xt−1 +Ψ(θ)εt +Π(θ)ηt. (4.7)
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The LRE model in (4.7) is determinate when the following analytic condition is satisfied,

|ψ∗| > 1, where ψ∗ ≡ ψ1+
(1−β)
κ
ψ2. However, when the model is indeterminate, 0 < |ψ∗| ≤ 1,

the system is characterized by one degree of indeterminacy (m = 1) since there are two

expectational variables {Et (xt+1) , Et (πt+1)}T and only one root outside the unit circle. The

methodology we propose consists in augmenting the representation of the model in (4.7)

with the autoregressive process

ωt =

(
1

α

)
ωt−1 + νt − η2,t. (4.8)

Hence, we define a new vector of endogenous variables X̂t ≡ (Xt, ωt)
T and a newly defined

vector of exogenous shocks as ε̂t ≡ (εt, νt)
T = (εR,t, εg,t, εz,t, νt)

T . The system in (4.7) and

(4.8) can then be written as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt. (4.9)

As in Lubik and Schorfheide (2004), the vector of observables, yt = {xobs,t, πobs,t, Robs,t},

consists of

1. xobs,t the percentage deviations of (log) real GDP per capita from an HP-trend;

2. πobs,t the annualized percentage change in the Consumer Price Index for all Urban

Consumers;

3. Robs,t the annualized percentage average Federal Funds Rate.

The measurement equations are described by

yt =




0

π∗

π∗ + r∗



+




1 0 0 0 0 0 0

0 4 0 0 0 0 0

0 0 4 0 0 0 0



Xt. (4.10)
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Parameter values for simulations

Parameter Determinacy Indeterminacy

ψ1 2.1 0.73

ψ2 0.16 0.16

ρR 0.67 0.67

π∗ 4.03 4.03

r∗ 1.22 1.22

κ 0.86 0.86

τ−1 1.61 1.61

ρg 0.77 0.77

ρz 0.78 0.78

σR 0.22 0.22

σg 0.24 0.24

σz 1.10 1.10

ρgz 0.46 0.46

σν - 0.24

ρRν - -0.19

ρgν - 0.15

ρzν - -0.21

Table 4.1: Parameter values used for the simulations.

where π∗ and r∗ are annualized steady-state inflation and real interest rates expressed in

percentages. The discount factor, β is a function of the annualized real interest rate in

steady-state r∗ (i.e. β = (1+ r∗)−1/4). We then simulate the model under both determinacy

and indeterminacy and Table 4.1 reports the parameter values used for the simulations.21

While under determinacy we set ψ1 = 2.1 (thus guaranteeing |ψ∗| > 1), for the simulation

under indeterminacy we impose ψ1 = 0.7 for which 0 < |ψ∗| < 1. Also, under indeterminacy

we use the values for the standard deviation of the sunspot shock and its correlation with

the fundamental shocks reported in Farmer et al. (2015). Finally, Table 4.2 reports the prior

distributions used for the estimation exercises in the following sections.

21The parameter values are those that we estimate in the following section using the data of Lubik and
Schorfheide (2004) for the Pre-Volcker period. These estimates are in line with those that the authors report.
Also, for the purpose of this paper changing the values assigned to the parameters which are not directly
related to the analytic condition defining the region of determinacy is irrelevant.
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Prior distribution for model parameters

Name Range Density Mean Std. Dev. 90% interval

ψ1 R+ Gamma 1.1 0.50 [0.43,2.03]

ψ2 R+ Gamma 0.25 0.15 [0.06,0.54]

ρR [0, 1) Beta 0.50 0.20 [0.17,0.83]

π∗ R+ Gamma 4.00 2.00 [1.35,7.75]

r∗ R+ Gamma 2.00 1.00 [0.69,3.86]

κ R+ Gamma 0.50 0.20 [0.22,0.87]

τ−1 R+ Gamma 2.00 0.50 [1.25,2.88]

ρg [0, 1) Beta 0.70 0.10 [0.52,0.85]

ρz [0, 1) Beta 0.70 0.10 [0.52,0.85]

σR R+ Inverse Gamma 0.31 0.16 [0.14,0.60]

σg R+ Inverse Gamma 0.38 0.20 [0.17,0.74]

σz R+ Inverse Gamma 1.00 0.52 [0.47,1.95]

ρgz [-1,1] Uniform 0.00 0.58 [-0.90,0.90]

σν R+ Uniform 0.5 0.29 [0.05,0.95]

ρRν [-1,1] Uniform 0.00 0.58 [-0.90,0.90]

ρgν [-1,1] Uniform 0.00 0.58 [-0.90,0.90]

ρzν [-1,1] Uniform 0.00 0.58 [-0.90,0.90]

Table 4.2: Prior distributions for the model parameters.

4.1 Known region of determinacy

In this section, we assume that the region of determinacy is known. We show that our aug-

mented representation accommodates with a single framework both the case of determinacy

and indeterminacy. This feature of our solution method makes it possible for the optimiza-

tion algorithm to search over the entire parameter space, therefore increasing the probability

of finding the posterior mode. As explained in An and Schorfheide (2007), the posterior

mode is a crucial object for Bayesian inference. First, the posterior mode is often used as

a point estimate for the parameters of the model. Second, it is often used as a starting

point for the Metropolis-Hastings algorithm. Finally, a scaled version of the inverse of the

Hessian matrix evaluated at the posterior mode is often used as the covariance matrix for

the proposal distribution in the Metropolis-Hastings algorithm.

Since we assume that the region of determinacy |ψ∗| > 1 is known, we set α ≡ |ψ∗|. This

assumption implies that when the model is determinate, the autoregressive process is stable
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Posterior function and posterior mode for parameter ψ1 (determinacy)

Figure 4.1: Posterior function and posterior mode for the parameter ψ1 for the augmented
representation (panel (a)), the representation under determinacy (panel (b)) and under in-
determinacy (panel (c)).

and the solution is equivalent to the solution of the original model (4.7). On the other hand,

when the model is indeterminate (i.e. 0 < |ψ∗| ≤ 1), the autoregressive process is unstable,

satisfying the Blanchard-Kahn condition. The assumption α ≡ |ψ∗| enables to search for the

posterior mode over the entire parameter space.

First, we consider the simulation of the model under determinacy, and we compute the

posterior mode of the model parameters using three different representations of the Lubik

and Schorfheide (2004) model. We consider the augmented representation proposed in this

paper, the representation of the model under determinacy using Sims’ (2001) algorithm,

and the representation of the model under indeterminacy using the methodology of Farmer

et al. (2015).22 Figure 4.1 reports the posterior mode (vertical line) and how the posterior

varies to changes in the parameter ψ1, while keeping the other structural parameters at their

posterior mode estimates. While panel (a) considers the augmented representation, panel (b)

and (c) report the plots for the representations under model determinacy and indeterminacy,

respectively.

The red dots on the horizontal axis in panel b) and c) indicate parameter values for which,

given the chosen model representation, the model could not be solved due to a violation of

the Blanchard-Kahn condition. While in panel b) the model violates these conditions for

values of the parameter ψ1 smaller than 1, panel c) shows that the representation of Farmer

22As in Section 3.2, we apply the methodology of Farmer et al. (2015) by redefining the forecast error for
inflation, η2,t, as fundamental shock, that is Γ0Xt = Γ1Xt−1 + Ψf ε̃t + Πnη1,t, where ε̃t = (εR,t, η2,t)

′ and
Π = [Πn Πf ].
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et al. (2015) does not allow to solve the model for values of ψ1 greater than 1.23 Figure 4.1

highlights that the augmented representation guarantees that the optimization algorithm

explores the entire domain of the parameter space. Note that as pointed out by Lubik and

Schorfheide (2004) the posterior presents a discrete jump between the two parameter regions.

This makes it unlikely that once the correct region of the parameter space is reached, the

estimation algorithm will leave such region. We will further elaborate on this point in Section

6.

Similarly, when using the Metropolis-Hastings algorithm, candidate parameter values

can be drawn from both the determinacy and the indeterminacy region. However, once the

algorithm converges to the “correct” area of the parameter space, it is unlikely to leave it.

This is reflected in Table 4.3, that reports the mean and the 90% probability interval of the

posterior distributions.24 The posterior estimates indicate that the true parameter values are

recovered under the augmented representation. All the parameter values used to simulate

the model fall within the 90% probability intervals of the posterior distributions.

We perform the same estimation exercise using the simulation of the model under inde-

terminacy. Figure 4.2 plots how the posterior varies with ψ1 while the other parameters are

constant at their posterior mode estimates. As before, the vertical line reports the corre-

sponding posterior mode. Figure 4.2 provides similar evidence as in Figure 4.1. Panel (a),

panel (b) and panel (c) refer to the augmented representation and the representation under

determinacy and under indeterminacy, respectively.

Contrary to the alternative representations, the proposed augmented representation en-

sures to run the optimization routine to compute the posterior mode over the entire param-

eter space. Reasonably, the shape of the maximized functions in panel (a) of Figure 4.2

23The violation of the Blanchard-Kahn conditions for values of ψ1 close to 1 results from the values

chosen for the simulation. Indeed, the term (1−β)
κ

ψ2 ≈ 0, thus implying that the region of determinacy is
approximated by the following condition ψ∗ ≈ ψ1 > 1.

24Since the posterior estimates satisfy the analytic condition for determinacy, the endogenous variables,
Xt, are not a function of the sunspot shock and we therefore do not report the estimates of the standard
error of the sunspot shock and its correlation with the fundamental shocks.

77



Posterior estimates, simulation under determinacy

True values Posterior estimates
Mean 90% probability interval

ψ1 2.1 1.90 [1.59,2.22]

ψ2 0.16 0.34 [0.03,0.62]

ρR 0.67 0.67 [0.64,0.70]

π∗ 4.03 4.17 [3.95,4.40]

r∗ 1.22 1.39 [1.13,1.65]

κ 0.86 0.71 [0.44,0.98]

τ−1 1.61 1.66 [1.22,2.10]

ρg 0.77 0.75 [0.70,0.79]

ρz 0.78 0.77 [0.73,0.82]

σR 0.22 0.21 [0.20,0.22]

σg 0.24 0.26 [0.22,0.30]

σz 1.10 1.07 [0.98,1.15]

ρgz 0.46 0.35 [0.15,0.58]

Table 4.3: Posterior distributions obtained by estimating the model using the simulation
under determinacy.

Posterior function and posterior mode for parameter ψ1 (indeterminacy)

Figure 4.2: Posterior function and posterior mode for the parameter ψ1 for the augmented
representation (panel (a)), the representation under determinacy (panel (b)) and under in-
determinacy (panel (c)).

mirrors the plot of panel (a) in Figure 4.1, with the difference that now the peak for the

posterior occurs in the indeterminacy region. Table 4.4 reports the mean and 90% probabil-

ity of the posterior distribution. Also in this case, we recover the true parameter values by

using the proposed augmented representation. Since the posterior estimates indicate that

the model is characterized by indeterminacy, we report the standard error of the sunspot

shock, σν , and its covariance with the fundamental shocks (i.e. ρνR, ρνg, ρνz).
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Posterior estimates, simulation under indeterminacy

True values Posterior estimates
Mean 90% probability interval

ψ1 0.73 0.76 [0.71,0.81]

ψ2 0.16 0.14 [0.02,0.26]

ρR 0.67 0.69 [0.65,0.75]

π∗ 4.03 3.28 [2.02,4.56]

r∗ 1.22 1.42 [1.13,1.72]

κ 0.86 0.77 [0.49,1.04]

τ−1 1.61 1.89 [1.32,2.50]

ρg 0.77 0.76 [0.70,0.82]

ρz 0.78 0.77 [0.72,0.81]

σR 0.22 0.21 [0.20,0.22]

σg 0.24 0.23 [0.17,0.29]

σz 1.10 1.06 [0.98,1.14]

ρgz 0.46 0.49 [0.20,0.79]

σν 0.24 0.25 [0.17,0.32]

ρRν -0.19 -0.22 [-0.37,-0.07]

ρgν 0.15 0.22 [-0.25,0.72]

ρzν -0.21 -0.19 [-0.38,0.02]

Table 4.4: Posterior distributions obtained by estimating the model using the simulation
under indeterminacy.

4.2 Unknown region of determinacy

In this section, we assume that the region of determinacy, |ψ∗| > 1, is unknown. By consid-

ering this case, we show that our methodology can be used to study LRE models for which it

is non-trivial to derive an analytic condition describing the region of determinacy. Thus, the

approach allows a researcher to estimate medium- and large-scale LRE models that could

potentially be characterized by indeterminacy. Our methodology allows the researcher to

conduct Bayesian inference on the model parameters over the entire parameter space and to

compute their posterior estimates which could potentially lie in both regions of determinacy

and indeterminacy.

The assumption that the region of determinacy is unknown implies that it is no longer

possible to impose α ≡ |ψ∗|. To ensure that the Metropolis-Hastings algorithm explores the

entire parameter space, we assume a uniform distribution over the interval [0, 2] as a prior
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distribution for the parameter α.25 Equivalently, we assume that there is an equal probability

of making draws of α from the interval [0, 1) as well as from the interval [1, 2]. Draws of α

from [1, 2] combined with draws of the other parameters θ which satisfy the condition |ψ∗| > 1

ensure to solve the augmented representation under determinacy. Similarly, draws of α from

[0, 1) combined with draws of the other parameters of interest θ such that 0 < |ψ∗| ≤ 1

ensure to solve the proposed representation under indeterminacy.26

Importantly, the same intuition described in Section 4.1 still holds. The Metropolis-

Hastings algorithm makes draws of α and θ which could solve the augmented representation

under determinacy and indeterminacy, and it compares the posterior obtained for draws in

both regions. Having specified the prior for α, we estimate the augmented representation

using the same two simulations of the data as in Section 4.1. We first estimate the augmented

representation of the model using the data simulated under determinacy and the same prior

distributions reported in Table 4.2.

The posterior distribution for the parameter α is plotted in Figure 4.2. Two remarks

should be made. First, the posterior distribution is distributed over the interval [1, 2], thus

providing evidence that the Metropolis-Hastings algorithm explores the entire parameter

space and successfully recovers the information contained in the simulated data about model

determinacy. Second, the posterior distribution approximates a uniform distribution over

the same interval. This result is in line with the non-identifiability of the parameter α

stated in Corollary 3. Finally, the posterior mean and 90% probability intervals of the

parameters are the same as those reported in Table 4.3 when we assume that the region

of determinacy is known. As in Section 4.1, the estimation procedure conducted on our

25The choice of the interval [0, 2] is arbitrary. For any value 0 < a ≤ 1, it is sufficient to specify an interval
[−a+ 1, a+ 1] as the domain of the uniform distribution.

26The virtue of using a continuous distribution for α and treating it as any other parameter of the model
is that the algorithm can be easily implemented in Dynare. However, the efficiency of the algorithm could
be improved by using a discrete distribution for α given that the only thing that matters is if this parameter
is inside or outside the unit circle. Furthermore, the MCMC algorithm could be modified to allow for the
possibility that whenever the augmented model does not have a solution, the value of α is flipped.
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Posterior distribution of parameter α (determinacy)

Figure 4.3: Posterior distribution of the parameter α under determinacy.
The grey line represents the prior distribution for the parameter α. The black line is the posterior
distribution.

augmented representation recovers the true parameter values. Also in this case, the results

are independent of the initial parametrization used to start the algorithm. Regardless of

whether the starting parametrization is in the ’correct’ region, the estimation algorithm

successfully recovers the true parameter values used for the simulations. However, the speed

of the convergence for the parameter estimates might be affected.

The estimation of the augmented representation using simulated data under indetermi-

nacy delivers a mirrored posterior distribution for the parameter α (Figure 4.2). In this case,

the posterior distribution of the parameter α is distributed over the interval [0, 1) and it

closely resembles a uniform distribution over the same interval due to its non-identifiability.

As for the simulation under determinacy, we obtain the same posterior mean and the 90%

probability interval as for the case of a known region of determinacy reported in Table 4.4.

Hence, also when we assume that the region is unknown to the researcher, we recover the

true parameter values by estimating the augmented representation.

4.3 Indeterminacy in the 1970s

This section provides an example on how to implement our methodology when using real

data. We retain the assumption that the researcher does not know the region of determinacy,

and we show that our method enables the algorithm to jump across the regions of determinacy

and indeterminacy, thus facilitating the search for the global maximum in the marginal data
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Posterior distribution of parameter α (indeterminacy)

Figure 4.4: Posterior distribution of the parameter α under indeterminacy.
The grey line represents the prior distribution for the parameter α. The black line is the posterior
distribution.

density.

We consider both the model and the data that Lubik and Schorfheide (2004) use to test

for indeterminacy in U.S. monetary policy. The model is described by equations (4.1)∼(4.6)

at the beginning of Section 4 and, as previously explained, we append the process in (4.8)

to obtain the augmented representation that we propose. Finally, equation (4.10) presents

the measurement equations that link the endogenous variables of the model to the data.

In the following, we focus on the data for the pre-Volcker period (1960Q1 - 1979Q2) since

Lubik and Schorfheide (2004) show that during this period the monetary authority did

not respond aggressively enough to changes in inflation, thus not suppressing self-fulfilling

inflation expectations.

We proceed by starting the algorithm from initial conditions in both regions of the pa-

rameter space and by allowing for a large number of draws.27 We verified that this approach

guarantees the proper convergence of the posterior distributions for any initial parametriza-

tion by repeating this estimation exercise 100 times and successfully recovering the same

posterior estimates in each case. Figure 4.3 reports the posterior distribution for both ψ1

and α which clearly favor the indeterminate model regardless of the initial values for the

parameters.28

27In particular, we run two chains of 1,000,000 each and discard the first half of the draws.

28The prior that we used for the parameter ψ1 is the same as in Table 5 and is defined on both regions
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Posterior distribution of parameter ψ1 and α

Figure 4.5: Posterior distribution of parameter ψ1 and α. Initial parametrization ψ1 = 0.9.
The grey line represents the prior distribution for the parameter α. The black line is the posterior
distribution.

Table 4.3 reports the corresponding posterior mean and 90% probability interval of the

model parameters. As expected, the estimates obtained using our procedure are in line with

the empirical results in Lubik and Schorfheide (2004) that we report in the first column.29

5 Tips for implementation

In this section, we present some suggestions for the practical implementation of our method.

Convergence. We repeat the estimation of the model of Lubik and Schorfheide (2004)

by using parameters in the “wrong” region of the parameter space and considering only a

few (200,000) draws to show the importance of checking convergence before interpreting the

estimation results. Figure 5 reports the posterior distribution for the parameter ψ1 and α

obtained for an initial parametrization close to the Taylor Principle (i.e. we set ψ1 = 1.1).

At first glance, the posterior distribution of the parameter ψ1 would appear to be bimodal.

This is consistent with the fact that the proposed augmented representation allows the

of determinacy and indeterminacy. This is important for the possibility of the posterior estimates to lie in
either region since having a prior distribution which assigns zero probability to either one would also imply
that the posterior would have no mass in the same region.

29The minor difference in the point estimate of the posterior mean for the correlation between demand
and supply shocks, ρgz, derives from the prior distribution that we assume for this parameter. While Lubik
and Schorfheide (2004) assume a normal prior centered at 0 and with standard deviation 0.4, we assume a
flat, uniform distribution over the interval (−1, 1). Nevertheless, both in Lubik and Schorfheide (2004) and
in this paper, the estimate of ρgz is not statistically significant.
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Posterior estimates

LS estimates Posterior estimates
Mean 90% probability interval

α - 0.95 [0.90,0.99]

ψ1 0.77 0.73 [0.56,0.90]

ψ2 0.17 0.16 [0.01,0.30]

ρR 0.60 0.67 [0.48,0.86]

π∗ 4.28 4.03 [1.87,6.06]

r∗ 1.13 1.22 [0.64,1.78]

κ 0.77 0.86 [0.45,1.26]

τ−1 1.45 1.61 [0.93,2.27]

ρg 0.68 0.77 [0.66,0.88]

ρz 0.82 0.78 [0.68,0.88]

σR 0.23 0.22 [0.19,0.25]

σg 0.27 0.25 [0.16,0.32]

σz 1.13 1.10 [0.93,1.27]

ρgz 0.14 0.47 [-0.04,0.95]

σν - 0.24 [0.16,0.33]

ρRν - -0.19 [-0.65,0.27]

ρgν - 0.15 [-0.40,0.71]

ρzν - -0.21 [-0.55,0.14]

Table 4.5: Posterior distributions obtained by estimating the model using the data from
Lubik and Schorfheide (2004).
The terms "-" indicate that the estimates are not directly comparable.

Metropolis-Hastings algorithm to visit both regions of the parameter space. At the same

time, the posterior distribution for the parameter α is very similar to the prior distribution,

which is specified as a uniform distribution over the interval [0, 2]. Such a result is just

the other side of coin of the posterior for ψ1 since the algorithm explores both regions by

considering draws of α which are within as well as outside the unit circle.

A researcher should then verify the occurrence of either of the following two circum-

stances. This bimodal distribution could arise because the log-likelihood is highly discontin-

uous between the two regions. In this case, the algorithm could have jumped towards the

region where the peak of the posterior lies, without having spent a significant time there. In

other words, convergence has not occurred yet. Alternatively, if the log-likelihood function

varies smoothly between the two regions of the parameter space, the posterior distribution
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Posterior distribution of parameter ψ1 and α

Figure 5.1: Posterior distribution of parameter ψ1 and α. Initial parametrization ψ1 = 1.1.
The grey line represents the prior distribution for the parameter α. The black line is the posterior
distribution.

plotted in Figure 5 could be the result of the algorithm traveling across the two regions

multiple times.

We therefore recommend the researcher to analyze the draws of the parameter α which

have been accepted during the MCMC algorithm. By inspecting the behavior of the auxiliary

parameter α, a researcher can detect if the algorithm reached convergence or not. We report

the draws that we obtained during our exercise in Figure 5.2. After approximately 40,000

draws of α in the region of determinacy (i.e. outside the unit circle), the algorithm jumps

to the indeterminate region and never visits the determinacy region again.

Draws of the parameter α

Figure 5.2: Sequence of draws for α given an initial parametrization ψ1 = 1.1.

85



Figure 5 and 5.2 suggest that we are in the first case, for which the log-likelihood function

is highly discontinuous at the boundary between the two regions. Therefore, the researcher

should repeat the estimation exercise, increase the number of draws, and make sure that the

parameter α stabilizes on one region of the parameter space. Under different circumstances,

the researcher could face the second scenario, for which the log-likelihood function transitions

smoothly between the two regions. In this case, the parameter α would repeatedly transition

between the two areas of the parameter space and could be used to infer the probability

attached to determinacy.

Only (in)determinacy. In some cases, a researcher might want to estimate the model

exclusively under determinacy or exclusively under indeterminacy. Our approach easily ac-

commodates this need. If the researcher is only interested in the solution under determinacy,

the parameter vector of alpha should be chosen in a way to guarantee stationarity of the

auxiliary process (for example, fixing all values of the alphas to 2). Furthermore, all pa-

rameters that are relevant only under indeterminacy could be fixed to zero or any other

constant, given that they do not affect the fit of the model under determinacy. If instead the

researcher is only interested in estimating the model under indeterminacy, the parameters

of the auxiliary process can be chosen in a way to guarantee that the correct number of

explosive roots are provided. In this case, the parameters describing the properties of the

sunspot disturbances should also be estimated.

Model comparison. A researcher might also be interested in comparing the fit of the

model under determinacy and under indeterminacy. Model comparison can be conducted

by using standard techniques, such as the harmonic mean estimator proposed by Geweke

(1999a). If the researcher is interested in comparing the same model under determinacy and

under indeterminacy, we recommend the following procedure that adapts the approach used

by Lubik and Schorfheide (2004):

1. Estimate the model under determinacy by fixing the parameter(s) alpha to a value

larger than one in a way that the model is solved only under determinacy. Note that
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in this case all parameters that pertain to the solution under indeterminacy, such as the

volatility of the sunspot shocks, should be restricted to zero (or any other constant).

This restriction avoids penalizing the model for extra parameters that do not affect its

fit under determinacy.

2. Estimate the model under indeterminacy by fixing the parameter(s) alpha to a value

smaller than one in a way that the model is solved only under indeterminacy. Note

that in this case all parameters that pertain to the solution under indeterminacy, such

as the volatility of the sunspot shocks, should be estimated.

3. Use standard methods to compare the fit of the model under determinacy with the fit

of the same model under indeterminacy.

6 Conclusions

In this paper, we propose a generalized approach to solve and estimate LRE models over

the entire parameter space. Our approach accommodates both cases of determinacy and

indeterminacy and it does not require the researcher to know the analytic condition describing

the region of determinacy or the degrees of indeterminacy.

When a LRE model is characterized by m degrees of indeterminacy, our approach aug-

ments it by appending m autoregressive processes whose innovations are linear combinations

of a subset of endogenous shocks and a vector of newly defined sunspot shocks. The resulting

augmented representation embeds both the solution which is obtained under determinacy

using standard solution methods and that delivered by solving the model under indetermi-

nacy using the approach of Lubik and Schorfheide (2003) and equivalently Farmer et al.

(2015). We provide an analytical example for the theoretical result using a canonical NK

model.

We finally apply our methodology to the NK model in Lubik and Schorfheide (2004). We

simulate two series of data under the assumption of model determinacy and indeterminacy
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and we then estimate our augmented representation for both cases in which the region of

determinacy is known or unknown to the researcher. In both case, the parameters used to

generate the data are correctly recovered independently of the initial parametrization. This

shows that our method is suitable for the estimation of medium- and large-size DSGE model

for which the determinacy region is generally unknown. This feature of the solution method

is used by Nicolò (2017) to study the possibility of multiple solutions in Smets and Wouters

(2007).
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Part III

Keynesian Economics Without the

Phillips Curve

United States macroeconomic data are well described by co-integrated non-stationary time

series (Nelson and Plosser, 1982). This is true, not just of data that are growing such as

GDP, consumption and investment. It is also true of data that are predicted by economic

theory to be stationary such as the unemployment rate, the output gap, the inflation rate

and the money interest rate, (King et al., 1991; Beyer and Farmer, 2007b).30

The dominant New Keynesian paradigm is a three-equation model that explains persis-

tent high unemployment by positing that wages and prices are ‘sticky’ (Galí, 2008; Woodford,

2003). Sticky-price models have difficulty generating enough persistence to understand the

near unit root in unemployment data, as do models of the monetary transmission mecha-

nism that assume sticky information (Mankiw and Reis, 2007) or rational inattention, (Sims,

2001a).31

Farmer (2012a) provides an alternative explanation of persistent high unemployment that

we refer to as the Farmer Monetary (FM) model.32 The FM model differs from the three-

equation NK model by replacing the Phillips curve with the belief function (Farmer, 1993),

a new fundamental that has the same methodological status as preferences and technology.

30A bounded random variable, such as the unemployment rate, cannot be a random walk over its entire
domain. We view the I(1) assumption to be an approximation that is valid for finite periods of time.

31We prefer to avoid the assumption of menu costs (Mankiw, 1985) or price rigidity (Christiano et al., 2005;
Smets and Wouters, 2007), because our reading of the evidence as surveyed by Klenow and Malin (2010), is
that prices at the micro level are not sticky enough to explain the properties of monetary shocks in aggregate
data. The approach we follow here generates permanent equilibrium movements in the unemployment rate
that are consistent with a unit root, or near unit root, in U.S. unemployment data.

32Farmer and Konstantin Platonov (Farmer and Platonov, 2016) build on this idea to explain the relation-
ship between the FM model and alternative interpretations of the textbook IS-LM model (Mankiw, 2010)
on which modern New-Keynesian models are based.
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In the FM model, search frictions lead to the existence of multiple steady state equilibria,

and the steady-state unemployment rate is determined by aggregate demand.

The FM model displays both static and dynamic indeterminacy. Static indeterminacy

means there are many possible equilibrium steady-state unemployment rates. Dynamic

indeterminacy means there are many dynamic equilibrium paths, all of which converge to a

given steady state. We resolve both forms of indeterminacy with a belief function that pins

down a unique rational expectations equilibrium.

The structural properties of the FM model translate into a critical property of its reduced

form. Appealing to the Engle-Granger Representation Theorem (Engle and Granger, 1987),

we show that the FM model’s reduced form is a co-integrated Vector Error Correction Model

(VECM). The inflation rate, the output gap, and the federal funds rate, are non-stationary

but display a common stochastic trend. The fact that our model is described by a VECM,

rather than a VAR, implies that it displays hysteresis. In the absence of stochastic shocks,

the model’s steady-state depends on initial conditions.

The FM model was introduced by Farmer (2012a) in a paper in which he discussed the

limitations of the NK model and proposed the FM model as an alternative. Our paper

extends his work in three directions.33

First, we study the role of monetary feedback rules in stabilizing inflation, the output

gap and the unemployment rate in the FM model.34 It is well known that the NK model

has a unique determinate steady state when the central bank reacts aggressively to stabilize

inflation, a concept that Michael Woodford (2003) refers to as the Taylor principle. We

develop the FM analog of the Taylor principle and we show that it does not hold in the U.S.

33Related papers to our current work are those of Farmer (2012b,a), Plotnikov (2012, 2013) and Farmer
and Platonov (2016). Farmer (2012a) develops the basic three-equation model that we work with here and he
discusses the philosophy that distinguishes his approach from the NK model. Farmer (2012b) developed the
labor market theory that accounts for persistent unemployment and Plotnikov (2013, 2012) adds investment
and capital accumulation. Farmer and Platonov (2016) extend the theoretical model of Farmer (2012b) by
adding money.

34Because there is a one-to-one mapping between the output gap and the difference of unemployment from
its natural rate, we will move freely in our discussion between these two concepts.
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data either before or after 1980.

Second, we use the fact that our analog of the Taylor Principle fails to hold in the

U.S. data to explain the observation that monetary shocks have real effects. Unlike the

NK model, which assumes that prices are exogenously sticky, we explain the real effects of

nominal shocks as an endogenous equilibrium response to nominal shocks which is enforced

by the properties of the belief function.

Third, we exploit the property of static indeterminacy to explain why the unemployment

rate has a (near) unit root in U.S. data. Our model resolves both dynamic indeterminacy and

static indeterminacy by introducing beliefs about future nominal income growth as a new

fundamental. We assume that individuals form expectations about future nominal income

growth and we model these expectations as a martingale as in Farmer (2012a).

1 Relationship with Previous Literature

Our paper is connected with an empirical literature that studies the medium term persistence

of business cycles. This includes the work of Robert King, Charles Plosser, James Stock and

Mark Watson (1991), Diego Comin and Mark Gertler (2006), King and Watson (1994), and

Andreas Beyer and Farmer (2007b).

Importantly, this literature finds that the unemployment rate is highly persistent and

one cannot reject the hypothesis that the unemployment rate is a random walk. Viewed

through the lens of neoclassical or New Keynesian theoretical models, the persistence of

the unemployment rate is a supply side phenomenon. Something must be changing in either

technology or preferences to cause permanent changes in the natural rate of unemployment.35

The supply-side approach is not the only way to interpret the fact that unemployment is

35This is the interpretation of Robert Gordon (Gordon, 2013), who argues that unemployment is non-
stationary because the natural rate of unemployment is a random walk. Because the natural rate of un-
employment is associated with the solution to a social planning optimum, if persistent unemployment were
caused by a permanent increase in the natural rate of unemployment, high persistent unemployment would,
at least to a first approximation, be socially optimal. That is possible, but in our view, implausible.
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persistent. As Christopher Sims demonstrated in his seminal paper on Vector Autoregres-

sions (Sims, 1980), rational expectations models are typically under-identified.36 That fact

leads to an important question: Is the persistent slow-moving component of the unemploy-

ment rate caused by aggregate supply shocks, or is it caused by aggregate demand shocks?

This paper is part of a growing literature that provides theory and evidence in favor of the

demand-side explanation for the persistence of high unemployment following a recession.37

2 The Structural Forms of the NK and FM Models

In Section 2 we write down the two structural models that form the basis for our empirical

estimates in Section 7. These models have two equations in common. One of these is a

generalization of the NK IS curve that arises from the Euler equation of a representative

agent. The other is a policy rule that describes how the Fed sets the fed funds rate. The

two common equations of our study are described below.38

2.1 Two Equations that the NK and FM Models Share in Common

We assume the log of potential real GDP grows at a constant rate and we estimate this

series by regressing the log of real GDP on a constant and a time trend. The residual series

is our empirical analog of the output gap. The FM model implies that the output gap is

36Building on that idea, Beyer and Farmer (2004) provided an algorithm to construct families of models,
all of which have the same likelihood in a given data set. Some of the models generated by their method
lead to a unique determinate equilibrium; others lead to an indeterminate equilibrium driven by self-fulfilling
beliefs. Both classes of theoretical models have the same likelihood.

37Lawrence Summers (Summers, 2014) has recently resurrected a term secular stagnation coined by Alvin
Hansen (Hansen, 1939) to refer to the fact that the economy may be stuck in a period of permanent under-
employment equilibrium and Gauti Eggertsson and Neil Mehrotra (Eggertsson and Mehrotra, 2014) have
formalized Hansen’s mechanism in an overlapping generations framework. My own previous work provides
a complete internally consistent explanation of secular stagnation that is consistent with the fact that the
stock market and the unemployment rate are cointegrated random walks (Farmer, 2012b, 2013; Farmer
and Platonov, 2016). Olivier Blanchard and Summers (Blanchard and Summers, 1986, 1987) provided an
alternative explanation.

38Our discussion in sections 2 and 3 closely follows Farmer (2012a).
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non-stationary and cointegrated with the CPI inflation rate and the federal funds rate. The

NK model implies that the output gap is stationary.

In Equations (2.1) and (2.2), yt is our constructed output gap measure, Rt is the federal

funds rate and πt is the CPI inflation rate. The term zd,t is a demand shock, zR,t is a policy

shock and zs,t is a random variable that represents the Fed’s estimate of potential GDP.39

ayt − aEt(yt+1) + [Rt − Et(πt+1)]

= η (ayt−1 − ayt + [Rt−1 − πt]) + (1− η)ρ+ zd,t. (2.1)

Rt = (1− ρR)r̄ + ρRRt−1 + (1− ρR) [λπt + µ (yt − zs,t)] + zR,t. (2.2)

Equation (2.1) is a generalization of the dynamic IS curve that appears in standard

representations of the NK model. In the special case when η = 0 this equation can be

derived from the Euler equation of a representative agent.40 An equation of this form for the

general case when η 6= 0 can be derived from a heterogeneous agent model (Farmer, 2016)

where the lagged real interest rate captures the dynamics of borrowing and lending between

patient and impatient groups of people. In the case when η = 0, the parameter a is the

inverse of the intertemporal elasticity of substitution and ρ is the time preference rate.

Equation (2.2) is a Taylor Rule (Taylor, 1999) that represents the response of the mon-

etary authority to the lagged nominal interest rate, the inflation rate and the output gap.

The monetary policy shock, zR,t, denotes innovations to the nominal interest rate caused by

unpredictable actions of the monetary authority. The parameters ρR, λ and µ are policy

elasticities of the fed funds rate with respect to the lagged fed funds rate, the inflation rate

and the output gap.

39More precisely, zs,t is the Fed’s estimate of the deviation of the log of potential GDP from a linear trend.

40See for example Galí (2008), or Woodford (2003).
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2.2 Two Equations that Differentiate the Two Models

The third equation of the NK model is given by

πt = βEt[πt+1] + φ (yt − zs,t) . (3.a)

Here, β is the discount rate of the representative person and φ is a compound parameter

that depends on the frequency of price adjustment.41 Since β is expected to be close to one,

we will impose the restriction β = 1 when discussing the theoretical properties of the model.

This restriction implies that the long-run Phillips curve is vertical. If instead, β < 1, the

NK model has an upward sloping long-run Phillips curve in inflation-output gap space. An

extensive literature derives the NK Phillips curve from first principles, see for example Galí

(2008), based on the assumption that frictions of one kind or another prevent firms from

quickly changing prices in response to changes in demand or supply shocks.

In contrast to the NK Phillips curve, the FM model is closed by a belief function (Farmer,

1993). The functional form for the belief function that we use in this study is described by

Equation (3.b),

Et [xt+1] = xt, (3.b)

where xt ≡ πt + (yt − yt−1) is the growth rate of nominal GDP.

The belief function is a mapping from current and past observable variables to probability

distributions over future economic variables. In the functional form we use here, it asserts

that agents’ forecast about future nominal GDP growth will equal current nominal GDP

growth; that is, nominal GDP growth is a martingale. Farmer (2012a) has shown that this

specification of beliefs is a special case of adaptive expectations in which the weight on

41In the NK model, the discount parameter β that appears in the Phillips curve is related to the parameter
ρ that appears in the IS curve by the identity β ≡ 1

1+ρ
. We did not impose that restriction in our estimates

and we thank the the editor of this issue for asking for clarification on this point. If we had imposed it, our
results in favor of the FM model would have been even stronger since the restriction does not hold exactly
in the estimates reported in Tables 3 and 4.
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current observations of GDP growth is equal to 1.42

In the FM model, the monetary authority chooses whether changes in the current growth

rate of nominal GDP will cause changes in the expected inflation rate or in the output

gap. Importantly, these changes will be permanent. The belief function, interacting with

the policy rule, selects how demand and supply shocks are distributed between permanent

changes to the output gap, and permanent changes to the expected inflation rate.

3 The Steady-State Properties of the Two Models

In this section we compare the theoretical properties of the non-stochastic steady-state equi-

libria of the NK and FM models. The NK model has a unique steady-state equilibrium. The

FM model, in contrast, has a continuum of non-stochastic steady-state equilibria. Which

of these equilibria the economy converges to depends on the initial condition of a system of

dynamic equations. This property is known as hysteresis.43

Rather than treat the multiplicity of steady state equilibria as a deficiency, as is often

the case in economics, we follow Farmer (1993) by defining a new fundamental, the belief

function. When the model is closed in this way, equilibrium uniqueness is restored and every

sequence of shocks is associated with a unique sequence of values for the three endogenous

variables.

We begin by shutting down shocks and describing the theoretical properties of the steady-

state of the NK model. The values of the steady-state inflation rate, interest rate and output

gap in the NK model are given by the following equations

π̄ =
φ(r̄ − ρ)

φ(1− λ)− µ(1− β)
, R̄ = ρ+ π̄, ȳ = π̄

(1− β)

φ
. (3.1)

42Farmer (2012a) allowed for a more general specification of adaptive expectations and he found that the
data favor the special case we use here.

43This analysis reproduces the discussion from Farmer (2012a) and we include it here for completeness.
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When β < 1, the long-run Phillips curve, in output gap-inflation space, is upward sloping. As

β approaches 1, the slope of the long-run Phillips curve becomes vertical and these equations

simplify as follows,

π̄ =
(r̄ − ρ)

(1− λ)
, R̄ = ρ+ π̄, ȳ = 0. (3.2)

For this important special case, the steady state of the NK model is defined by Equations

(3.2).

Contrast this with the steady state of FM model, which has only two steady state equa-

tions to solve for three steady state variables. These are given by the steady state version

of the IS curve, Equation (2.1), and the steady state version of the Taylor Rule, Equation

(2.2).

The FM model is closed, not by a Phillips Curve, but by the belief function. In the

specific implementation of the belief function in this paper we assume that beliefs about

future nominal income growth follow a martingale. This equation does not provide any

additional information about the non-stochastic steady state of the model because the same

variable, steady-state nominal income growth, appears on both sides of the equation.

Solving the steady-state versions of equations (2.1) and (2.2) for π̄ and R̄ as a function

of ȳ delivers two equations to determine the three variables, π̄, R̄ and ȳ.

π̄ =
(r̄ − ρ)

(1− λ)
+

µ

(1− λ)
ȳ, R̄ = ρ+ π̄. (3.3)

The fact that there are only two equations to determine three variables implies that the

steady-state of the FM model is under determined. We refer to this property as static

indeterminacy. Static indeterminacy is a source of endogenous persistence that enables the

FM model to match the high persistence of the unemployment rate in data.

In standard economic models, the approximate system that describes how the variables

evolve through time is a linear difference equation with a point attractor. In the absence

of stochastic shocks, the model economy converges asymptotically to this point. In the FM
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model the approximate system that describes how the variables evolve through time is a

linear difference equation with a one dimensional line as its attractor. In the absence of

stochastic shocks, the model economy converges asymptotically to a point on this line, but

which point it converges to depends on the initial condition. The reduced form representation

of the FM model is a VECM, as opposed to a VAR.

An implication of the static indeterminacy of the model is that policies that affect ag-

gregate demand have permanent long-run effects on the output gap and the unemployment

rate. In contrast, the NK model incorporates the Natural Rate Hypothesis, a feature which

implies that demand management policy cannot affect real economic activity in the long-run.

4 The FM Analog of the Taylor Principle: A Simple Case

In this section we discuss the NK Taylor Principle and we derive an analog of this principle

for the FM model. For both the NK and FM models we study the special case of ρR = 0, and

η = 0. The first of these restrictions sets the response of the Fed to the lagged interest rate

to zero. The second restricts the IS curve to the representative agent case. These restrictions

allow us to generate, and compare, analytical expressions for the Taylor Principle in both

models.

The special cases of Equations (2.1) and (2.2) are given by

ayt = aEt(yt+1)− (Rt − Et(πt+1)) + ρ+ zd,t, (1′)

and

Rt = r̄ + λπt + µ (yt − zs,t) + zR,t. (2′)

The Taylor Principle directs the central bank to increase the federal funds rate by more

than one-for-one in response to an increase in the inflation rate. When the Taylor Principle

is satisfied, the dynamic equilibrium of the NK model is locally unique. When that property
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holds, we say that the unique steady state is locally determinate (Clarida et al., 1999).

When the central bank responds only to the inflation rate, the Taylor principle is sufficient

to guarantee local determinacy. When the central bank responds to the output gap as well

as to the inflation rate, a sufficient condition for the NK model to be locally determinate is

that ∣∣∣∣λ+
1− β

φ
µ

∣∣∣∣ > 1. (4.1)

For the important special case of β = 1 this reduces to the familiar form of the Taylor

principle (Woodford, 2003).

In Appendix A we derive this result analytically and we compare it with the dynamic

properties of the FM model. There we establish that for the special case of logarithmic

preferences, that is when a = 1, a sufficient condition for local determinacy in the FM model

is, ∣∣∣∣
λ

λ− µ

∣∣∣∣ > 1. (4.2)

This is our FM analog of the Taylor principle. In the usual case when λ and µ are

positive, it requires the interest-rate response of the central bank to changes in inflation to

be greater than the output-gap response. When this condition holds, each element of the set

of steady state equilibria of the model is dynamically determinate.

5 The FM Analog of the Taylor Principle: The General

Case

When the representative agent has CRA preferences with a 6= 1, the FM version of the

Taylor principle is more complicated and we are unable to find an analytic expression except
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in the case when λ = µ.44 In this special case, the Taylor Principle fails whenever

a < 1 +
λ

2
. (5.1)

Although the parameter restriction, λ = µ, is unlikely to hold in practice, it does give us

an indication of whether or not the FM Taylor principle is likely to hold outside of the case

of logarithmic preferences. The answer to that question is no. Consider, as an example, the

special case when λ = µ = 0.7. For this parametrization, the determinacy condition fails

when a is larger than 1.35. Since estimates of a in data are typically larger than 2, it seems

likely that failure of the Taylor Principle will be the normal case. Indeed, that conjecture is

verified by our empirical estimates. When we allow λ and µ to differ and we estimate them

using Bayesian techniques, our estimated model displays dynamic indeterminacy for positive

values of a that are greater than, but much closer to, one.

In Figure 5.1 we set three key parameters to their estimated values of η = 0.89, ρ = 0.021,

and ρR = 0.98 and we plot the roots of the system as functions of the risk-aversion parameter

a. This matrix always has a unit root and a root of zero.45 The determinacy condition

requires that the remaining two roots must both be greater than one in absolute value. The

figure shows that for our estimated parameter values, one root falls below unity in absolute

value for values of a greater than 1.004.

We conclude from our analysis of the roots that for plausible parametrizations, the FM

model displays dynamic as well as static indeterminacy and this conclusion is confirmed by

our empirical estimates, described in Section 7, in which we freely estimate a to be equal to

3.8.

The conjunction of static and dynamic indeterminacy provides two sources of endogenous

persistence. Static indeterminacy implies that the output gap contains an I(1) component.

44We provide a derivation of the analytic result in Appendix B.

45Since the unit root and the root of zero do not depend on the parameter values, we do not display them
in Figure 5.1.
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Figure 5.1: Characteristic roots as a function of a: λ = 0.76, µ = 0.75

Instead of converging to a point in interest-rate-inflation-output gap space, the data converge

to a one-dimensional linear manifold. Dynamic indeterminacy implies that the fed funds

rate, the inflation rate and the unemployment rate display persistent deviations from this

manifold.

The fact that the model displays dynamic indeterminacy allows us to explain why prices

appear to move slowly in data. In response to an increase in the Fed Funds Rate it is the

output gap, not the inflation rate, that bears the burden of adjustment.

In a model with fully flexible prices and a locally unique equilibrium, the current and

expected future price respond on impact to maintain a constant real interest rate. In the

FM model, there is no artificial barrier to price adjustment, but people believe, rationally,

that it is quantities and not prices that will respond to an interest rate surprise. Prices are

posted one period in advance and an unexpected increase in the Fed Funds Rate leads to a

self-fulfilling increase in the real interest rate that dies out asymptotically as future prices

respond to the interest rate shock.

In the FM model, prices are not sticky in the sense that there is a cost or barrier to

price adjustment. They are sticky because people believe, correctly, that future prices will
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validate their decision to demand fewer goods and services in response to an increase in the

money interest rate.

6 Solving the NK and FM Models

6.1 Finding the Reduced forms of the Two Models

Sims (2001b) showed how to write a structural DSGE model in the form

Γ0Xt = C + Γ1Xt−1 +Ψεt +Πνt (6.1)

where Xt ∈ R
n is a vector of variables that may or may not be observable. Using the

following definitions, the NK and FM models can both be expressed in this way,46

Xt ≡




yt

πt

Rt

Et(yt+1)

Et(πt+1)

zd,t

zs,t




, εt ≡




zR,t

εd,t

εs,t



, νt =



ν1,t

ν2,t


 ≡



yt − Et−1(yt)

πt − Et−1(πt)


 . (6.2)

The shocks εt are called fundamental and the shocks νt are non-fundamental. These shocks

are equal to the one-step ahead forecast errors of yt and πt and, in models with a unique

determinate steady-state, they are determined endogenously as functions of the fundamental

shocks, εt. By exploiting a property of the generalized Schur decomposition (Gantmacher,

2000) Sims provided an algorithm, GENSYS, that determines if there exists a VAR of the

46We assume, in our estimation, that zd,t and zs,t may be auto-correlated but we restrict zR,t to be i.i.d.
For this reason, the innovations to zd,t and zs,t appear in εt along with the realized value of zR,t.
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form

Xt = Ĉ +G0Xt−1 +G1εt, (6.3)

such that all stochastic sequences {Xt}∞t=1 generated by this equation also satisfy the struc-

tural model, Equation (6.1).47 To guarantee that solutions remain bounded, all of the eigen-

values of G0 must lie inside the unit circle. When a solution of this kind exists, we refer to

it as a reduced form of (6.1).

GENSYS reports on whether a reduced form exists and, if it exists, whether it is unique.

The algorithm eliminates unstable generalized eigenvalues of the matrices {Γ0,Γ1} by finding

expressions for the non-fundamental shocks, νt, as functions of the fundamental shocks, εt.

When there are too few unstable generalized eigenvalues, there are many candidate reduced

forms.

For the case of multiple candidate reduced forms, Farmer et al. (2015) show how to

redefine a subset of the non-fundamental shocks as new fundamental shocks. For example, if

the model has one degree of indeterminacy, one may define a vector of expanded fundamental

shocks, ε̂t,

ε̂t ≡



εt

ν2,t


 . (6.4)

The parameters of the variance-covariance matrix of expanded fundamental shocks are funda-

mentals of the model that may be calibrated or estimated in the same way as the parameters

of the utility function or the production function.

We assume that prices are subject to an independent sunspot shock that is uncorrelated

with the innovations to the other three fundamental shocks. This assumption forces shocks

to the policy rule to be transmitted contemporaneously to the output gap and it enables

the FM model to explain a monetary transmission mechanism in which nominal shocks are

transmitted to prices slowly over time.

47The generalized Schur decomposition exploits the properties of the generalized eigenvalues of the matrices
{Γ0,Γ1}.
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To solve and estimate both the NK and FM models, we use an implementation of GEN-

SYS, (Sims, 2001b) programmed in DYNARE (Adjemian et al., 2011), to find the reduced

form associated with any given point in the parameter space. We use the Kalman filter to

generate the likelihood function and a Markov Chain Monte Carlo algorithm to explore the

posterior.

6.2 An Important Implication of the Engle-Granger Representation

Theorem

The reduced form of both the NK and FM models is a Vector Autoregression with the form

of Equation (6.3). We reproduce that equation below.

Xt = Ĉ +G0Xt−1 +G1εt. (6.3′)

Robert Engle and Clive Granger (1987) showed how to rewrite a Vector-Autoregression in

the equivalent form

∆Xt = Ĉ + Π̂Xt−1 +G1εt, (6.5)

where Xt ∈ R
n. If the matrix Π̂ has rank n, this system of equations has a well defined

non-stochastic steady state, X̄, defined by shutting down the shocks and setting Xt = X̄ for

all t. X̄ is defined by the expression,

X̄ = −Π̂−1Ĉ. (6.6)

When Π̂ has rank r < n, it can be written as the product of an n × r matrix α and an

r × n matrix β⊤,

Π̂ = αβ⊤. (6.7)

The rows of α are referred to as loading factors, and the columns of β are called co-integrating
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vectors.48

When Π̂ has reduced rank there is no steady state and in the absence of stochastic shocks

the sequence Xt will converge to a point on an n− r dimensional linear subspace of Rn that

depends on the initial condition X0.

The NK model has a unique steady state and its Engle-Granger representation leads to

a matrix Π̂ with full rank. In contrast, the FM model has multiple steady states and its

Engle-Granger representation leads to a matrix Π̂ with reduced rank. It follows that the

reduced form of the FM model is a VECM as opposed to a VAR.

7 Estimating the Parameters of the NK and FM Models

In this section we estimate the NK and FM models. Both models share equations (2.1) and

(2.2) in common. We reproduce these equations below for completeness.

ayt − aEt(yt+1) + [Rt − Et(πt+1)]

= η (ayt−1 − ayt + [Rt−1 − πt]) + (1− η)ρ+ zd,t. (1)

Rt = (1− ρR)r̄ + ρRRt−1 + (1− ρR) [λπt + µ (yt − zs,t)] + zR,t. (2)

For the NK model these equations are supplemented by the Phillips curve, Equation (3.a),

πt = βEt[πt+1] + φ (yt − zs,t) , (3.a)

and for the FM model they are supplemented by the belief function, Equation (3.b),

Et [xt+1] = xt. (3.b)

48The co-integrating vectors are not uniquely defined; they are linear combinations of the steady state
equations of the non-stochastic model.
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We assume in both models that the demand and supply shocks follow autoregressive

processes that we model with equations (7.1) and (7.2),

zd,t = ρdzd,t−1 + εd,t, (7.1)

zs,t = ρszs,t−1 + εs,t. (7.2)

Figure 7.1: U.S. data

Source: FRED, Federal Reserve Bank of St. Louis.

Figure 7.1 plots the data that we use to compare the models. We use three time series

for the U.S. over the period from 1954Q3 to 2007Q4: the effective Federal Funds Rate, the

CPI inflation rate and the percentage deviation of real GDP from a linear trend.

To estimate the models, we used a Markov-Chain Monte-Carlo algorithm, implemented

in DYNARE (Adjemian et al., 2011). Formal tests reject the null of parameter constancy

over the entire period. Beyer and Farmer (2007b) find evidence of a break in 1980 and we

know from the Federal Reserve Bank’s own website (of San Francisco, 2003) that the Fed

pursued a monetary targeting strategy from 1979Q3 through 1982Q3. For this reason, and

in line with previous studies (Clarida et al., 2000a; Lubik and Schorfheide, 2004; Primiceri,

2005), we estimated both models over two separate sub-periods.

Our first sub-period runs from 1954Q3 through 1979Q2. The beginning date is one year
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after the end of the Korean war; the ending date coincides with the appointment of Paul

Volcker as Chairman of the Federal Reserve Board. We excluded the period from 1979Q3

through 1982Q4 because, over that period, the Fed was explicitly targeting the growth rate

of the money supply. In 1983Q1, it reverted to an interest rate rule.

Our second sub-period runs from 1983Q1 to 2007Q4. We ended the sample with the

Great Recession to avoid potential issues arising from the fact that the federal funds rate hit

a lower bound in the beginning of 2009 and our linear approximation is unlikely to fare well

for that period.

Table 1.A: Prior distribution, common model parameters

Name Range Density Mean Std. Dev. 90% interval

a R+ Gamma 3.5 0.50 [2.67,4.32]

ρ R+ Gamma 0.02 0.005 [0.012,0.028]

η [0, 1) Beta 0.85 0.10 [0.65,0.97]

r̄ R+ Uniform 0.05 0.029 [0.005,0.095]

ρR [0, 1) Beta 0.85 0.10 [0.65,0.97]

µ R+ Gamma 0.70 0.20 [0.41,1.06]

ρd [0, 1) Beta 0.80 0.05 [0.71,0.87]

ρs [0, 1) Beta 0.90 0.05 [0.81,0.97]

σR R+ Inverse Gamma 0.01 0.003 [0.005,0.015]

σd R+ Inverse Gamma 0.01 0.003 [0.005,0.015]

ση2 R+ Inverse Gamma 0.005 0.003 [0.002,0.010]

ρds [-1,1] Uniform 0 0.58 [-0.9,0.9]

ρdR [-1,1] Uniform 0 0.58 [-0.9,0.9]

ρsR [-1,1] Uniform 0 0.58 [-0.9,0.9]

β [0, 1) Beta 0.97 0.01 [0.95,0.98]

φ R+ Gamma 0.50 0.20 [0.22,0.87]
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Table 1.B: Prior distribution for each sample period

Name Range Density Mean Std. Dev. 90% interval

Pre-Volcker

λ R+ Gamma 0.9 0.50 [0.26,1.85]

σs R+ Inverse Gamma 0.1 0.03 [0.06,0.15]

Post-Volcker

λ R+ Gamma 1.1 0.50 [0.42,2.02]

σs R+ Inverse Gamma 0.01 0.005 [0.005,0.019]

Table 1.A summarizes the prior parameter distributions that we used in this procedure

for those parameters that were the same in both sub-samples. The table reports the prior

shape, mean, standard deviation and 90% probability interval. Table 1.B presents the prior

distributions for parameters that were different in the two subsamples. These were λ, the

policy coefficient for the interest rate response to the inflation rate, and σs, the standard

deviation of the supply shock.

We set λ = 0.9 in the first sub-period and λ = 1.1 in the second. We chose these values

because Lubik and Schorfheide (2004) found that policy was indeterminate in the first period

and determinate in the second. These choices ensure that our priors are consistent with these

differences in regimes.

We set the standard deviation of σs to 0.1 in the pre-Volcker sample and 0.01 in the

post-Volcker sample. We made this choice because earlier studies (Primiceri, 2005; Sims

and Zha, 2006) found that the variance of shocks was higher in the post-Volcker sample,

consistent with the fact that there were two major oil-price shocks in this period.

We restricted the parameters of the policy rule to lie in the indeterminacy region for the

pre-Volcker period and the determinacy region for the post-Volcker. Those restrictions are

consistent with Lubik and Schorfheide (2004) who estimated a NK model, pre- and post-

Volcker, and found that the NK model was best described by an indeterminate equilibrium
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in the first sub-period. Our priors for a, λ and µ place the FM model in the indeterminacy

region of the parameter space for both sub-samples.

To identify the NK model in the pre-Volcker period, and for the FM model in both

sub-periods, we chose a pre-determined price equilibrium. We selected that equilibrium by

choosing the forecast error

ν2,t ≡ πt − Et−1[πt]

as a new fundamental shock and we identified the variance covariance matrix of shocks by

setting the covariance of ν2,t with the other fundamental shocks, to zero.49

The results of our estimates are reported in Tables 2, 3 and 4. Table 2 reports the

logarithm of the marginal data densities and the corresponding posterior model probabilities

under the assumption that each model has equal prior probability. These were computed

using the modified harmonic mean estimator proposed by Geweke (1999b). In Tables 3

and 4 we present parameter estimates for the pre-Volcker period (1954Q3-1979Q2) and the

post-Volcker period, (1983Q1-2007).

Table 2: Model comparison

FM model NK model

Pre-Volcker (54Q3-79Q2) Log data density 1023.24 1017.26

Posterior Model Prob (%) 100 0

Post-Volcker (83Q1-07Q4) Log data density 1136.22 1121.42

Posterior Model Prob (%) 100 0

We find that, in both subsamples, the posterior model probability is 100% in favor of the

FM model. In words, the data strongly favor the VECM representation over the VAR.

49We denote the corresponding standard deviation by σν2 .
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Table 3: Posterior estimates, Pre-Volcker (54Q3-79Q2)

FM model NK model

Mean 90% probability interval Mean 90% probability interval

a 3.80 [3.11,4.46] 3.70 [2.91,4.49]

ρ 0.020 [0.012,0.027] 0.017 [0.010,0.023]

η 0.87 [0.83,0.92] 0.76 [0.63,0.89]

r̄ 0.051 [0.014,0.093] 0.043 [0.002,0.079]

ρR 0.94 [0.91,0.97] 0.98 [0.97,0.99]

λ 0.80 [0.22,1.34] 0.45 [0.17,0.73]

µ 0.74 [0.44,1.03] 0.56 [0.28,0.84]

ρd 0.76 [0.69,0.83] 0.80 [0.72,0.88]

ρs 0.95 [0.92,0.98] 0.78 [0.71,0.86]

σR 0.007 [0.006,0.008] 0.008 [0.007,0.009]

σd 0.011 [0.009,0.013] 0.011 [0.007,0.014]

σs 0.097 [0.059,0.133] 0.059 [0.043,0.073]

ση2 0.003 [0.003,0.004] 0.003 [0.002,0.004]

ρRd 0.79 [0.64,0.95] -0.06 [-0.30,0.17]

ρRs -0.53 [-0.80,-0.26] 0.59 [0.43,0.76]

ρds -0.79 [-0.94,-0.65] 0.11 [-0.22,0.47]

β n/a n/a 0.98 [0.97,0.99]

φ n/a n/a 0.07 [0.04,0.09]

The dynamic properties of the FM model depend on the value of the parameter a. We

tried restricting this parameter to be less than 1, a restriction that places the FM model in

the determinacy region of the parameter space. We found that the posterior for a model

that imposes this restriction was clearly dominated by allowing a to lie in the indeterminacy

region.
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Table 4: Posterior estimates, Post-Volcker (83Q1-07Q4)

FM model NK model

Mean 90% probability interval Mean 90% probability interval

a 4.23 [3.46,4.99] 3.62 [2.87,4.35]

ρ 0.020 [0.012,0.028] 0.023 [0.016,0.029]

η 0.93 [0.88,0.99] 0.93 [0.89,0.98]

r̄ 0.045 [0.024,0.064] 0.008 [0.001,0.016]

ρR 0.75 [0.63,0.88] 0.93 [0.89,0.97]

λ 0.50 [0.17,0.80] 1.39 [1.04,1.70]

µ 0.85 [0.52,1.18] 0.64 [0.34,0.92]

ρd 0.78 [0.71,0.85] 0.63 [0.55,0.71]

ρs 0.90 [0.84,0.97] 0.94 [0.91,0.98]

σR 0.004 [0.004,0.005] 0.006 [0.005,0.006]

σd 0.008 [0.006,0.009] 0.007 [0.005,0.009]

σs 0.022 [0.008,0.038] 0.011 [0.008,0.014]

ση2 0.005 [0.004,0.006] n/a n/a

ρRd -0.47 [-0.67,-0.27] 0.27 [0.10,0.45]

ρRs 0.88 [0.77,0.99] 0.20 [0.01,0.40]

ρds -0.62 [-0.89,-0.34] 0.70 [0.56,0.85]

β n/a n/a 0.97 [0.95,0.99]

φ n/a n/a 0.26 [0.11,0.41]

Until recently, standard software packages such as DYNARE (Adjemian et al., 2011) or

GENSYS (Sims, 2001b) would either crash or return an error flag in response to a parameter

vector for which the model is indeterminate. In our empirical work, we avoid this problem

by drawing on the work of Farmer et al. (2015) who show how to deal with indeterminate

models by redefining a subset of the non-fundamental errors as fundamentals.
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Table 3 reports the estimated parameters of both the FM and NK models. For both

of these models, the parameter estimates place the model in the indeterminacy region and,

in both cases, we resolved the indeterminacy by selecting an equilibrium in which the co-

variance parameters of shocks to the inflation surprise with the other fundamentals shocks

was set to zero.

Table 4 reports the posterior estimates for the post-Volcker period (1983Q1-2007Q4).

For this sample period, the FM estimates place the model in the region of dynamic indeter-

minacy and, once again, we resolved the indeterminacy by selecting a pre-determined price

equilibrium. In contrast, the posterior means of the NK model satisfy the Taylor Principle,

thus guaranteeing that the equilibrium of NK model is locally unique.

We find differences in the policy parameters r̄, and µ and large significant differences in

λ, and ρR. In line with previous studies (Primiceri, 2005; Sims and Zha, 2006), we find that

the estimated volatility of the shocks dropped significantly after the Volcker disinflation.

In Section 8 we provide further insights on the role that these changes played in affecting

the relationship between inflation rate, output gap and nominal interest rate.

8 What Changed in 1980?

There is a large literature that asks: Why do the data look different after the Volcker

disinflation? At least two answers have been given to that question. One answer, favored

by Sims and Zha (2006), is that the primary reason for a change in the behavior of the data

before and after the Volcker disinflation is that the variance of the driving shocks was larger

in the pre-Volcker period. Primiceri (2005) finds some evidence that policy also changed but

his structural VAR is unable to disentangle changes in the policy rule from changes in the

private sector equations.

Previous work by Canova and Gambetti (2009) explains the reduction in volatility after

1980 as a consequence of better monetary policy. But when Lubik and Schorfheide (2004)
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estimate a NK model over two separate sub-periods they find significant difference across

regimes, not only in the policy parameters, but also in their estimates of the private sector

parameters. That leads to the following question. Can the FM model explain the change

in the behavior of the data before and after 1980 in terms of a change only in the policy

parameters? To answer that question, we estimated five alternative models. The results are

reported in Table 5.

In Model 1, Fully unrestricted, we estimated all the parameters of the FM model sep-

arately for the two sub-periods. In Model 2, Policy and shocks, we allowed the variances

of the shocks and the parameters of the policy rule to change across sub-periods, but we

constrained the parameters of the IS curve to be the same. In Models 3, Shocks only, we

allowed only the variances of the shocks to change and in Model 4, we allowed only the

Policy Rule parameters to change. Finally, in Model 5, we restricted all of the parameters

to be the same in both sub-periods.

The results in Table 5 indicate that the specification in which policy parameters and

shocks are allowed to differ explains the data almost as well as the fully unrestricted model

specification. But as soon as we restrict either the policy parameters or the shocks to be the

same, the explanatory power of the FM model drops substantially. With the exception of

Model 2, Policy and shocks, all of the restrictions are clearly rejected.

Table 5: Model specifications

Log data density Posterior model prob

Fully unrestricted 2159.48 -

Policy and shocks 2159.39 47.7%

Shocks only 2141.56 0%

Policy only 2121.42 0%

Fully restricted 2113.25 0%

Why was the post-Volcker regime relatively benign? In line with previous studies, we find
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that both good policy and good luck had a part to play. The post-Volcker period, leading up

to the Great Recession, was associated with fewer large shocks and with no large negative

supply shocks of the same order of magnitude as the oil price shocks of 1973 and 1978. It

was also associated with a change in the policy rule followed by the Fed. What we add to

previous studies is a model in which our estimates of the structural private sector parameters

remain invariant across both regimes. The Fed changed its behavior; households did not.

9 Conclusions

The FM model gives a very different explanation of the relationship between inflation, the

output gap and the federal funds rate from the conventional NK approach. It is a model

where demand and supply shocks may have permanent effects on employment and inflation

and our empirical findings demonstrate that this model fits the data better than the NK

alternative. The improved empirical performance of the FM model stems from its ability to

account for persistent movements in the data.

In the FM model, beliefs about nominal income growth are fundamentals of the economy.

Beliefs select the equilibrium that prevails in the long-run and monetary policy chooses to

allocate shocks to permanent changes in inflation expectations or permanent deviations of

output from its trend growth path.

Our findings have implications for the theory and practice of monetary policy. Central

bankers use the concept of a time-varying natural rate of unemployment before deciding

when and if to raise the nominal interest rate. The difficulty of estimating the natural rate

arises, in practice, because the economy displays no tendency to return to its natural rate.

That fact has led to much recent skepticism about the usefulness of the Phillips curve in

policy analysis. Although we are sympathetic to the Keynesian idea that aggregate demand

determines employment, we have shown in this paper that it is possible to construct a

‘Keynesian economics’ without the Phillips curve.

113



Part IV

Monetary Policy, Expectations and

Business Cycles in the U.S. Post-War

Period

This paper examines the interactions between monetary policy and the formation of expec-

tations to explain U.S. business cycle fluctuations in the post-war period. Previous studies

mainly use medium-scale New-Keynesian (NK) models and assume that the central bank

implemented an ‘active’ monetary policy that systematically stabilizes inflation and output

growth during the entire post-war period.

This assumption does not reconcile with the data. From the late 1950s through the 1970s,

the U.S. economy experienced high volatility, and inflation was high and rising. Assuming

an ‘active’ monetary policy does not allow to account for propagation mechanisms based on

the de-anchoring of inflationary expectations in response to structural shocks. However, it

simplifies the construction of the solution in such models.

I estimate the conventional medium-scale NK model by Smets and Wouters (2007) (hence-

forth SW), in which I relax the key assumption that the central bank pursued an ‘active’

monetary policy both before and after 1979. If monetary policy is passive, the model is

indeterminate and characterized by multiple equilibrium paths. Two features of the model

become relevant to explain the persistence and volatility of the data. First, the propagation

of structural shocks depends on self-fulfilling expectations that generate an additional source

of persistence. Second, unexpected changes in expectations constitute non-fundamental

‘sunspot’ disturbances that generate an additional source of uncertainty.

I find four main results. First, the conduct of U.S. monetary policy changed in the post-
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war period. Monetary policy was passive between 1955 and 1979, while it pursued an active

inflation targeting since 1984. Compared to previous studies that use medium-scale models,

this result rejects the imposed assumption that monetary policy was active before 1979.

Second, the evidence of a passive monetary policy from 1955 to 1979 substantially af-

fects the explanation of U.S. business cycles over this period. According to the estimated

model, fundamental productivity and cost shocks were the primary drivers of the run-up

in the inflation rate from the early 1960s to 1979. Positive technology shocks in the 1960s

de-anchored inflation expectations from the central bank’s long-run target and generated

persistent inflationary pressures via self-fulfilling expectations.50 Mark-up shocks account

for the sudden inflationary episodes related to the oil crisis during the 1970s, while they are

not significant drivers of the rise in inflation during the 1960s.

Third, the high volatility of inflation and output growth before 1979 was caused by fun-

damental disturbances and not by sunspot shocks. In a passive monetary policy regime,

non-fundamental shocks potentially lead to additional macroeconomic instability. By con-

trast, the estimation of the SW model shows that non-fundamental sunspot shocks were not

significant drivers of volatility between 1955 and 1979.

Finally, I revisit the question on the sources of the reduction in U.S. macroeconomic

volatility from the 1980s to 2007. I investigate whether the observed decrease in volatility

is explained by a more active monetary policy since the early 1980s, as opposed to smaller

structural shocks. Based on the SW model, I find that the reduction in macroeconomic

uncertainty was a combination of both a change in monetary policy to a more active stance

and a lower volatility of the shocks.

To solve the medium-scale model of SW with a passive monetary policy, I use the method-

ology developed in Bianchi and Nicolò (2017), which simplifies technical complexities that

hamper the implementation of existing solution methods to medium-scale models (Lubik

50This result is supported by the empirical evidence documented by Fernald (2014a) and Gordon (2000)
among others, who argue that the U.S. economy experienced a period of exceptional growth in productivity
since World War II until the early 1970s.
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and Schorfheide, 2003, Farmer et al., 2015).

To the best of my knowledge, this paper is the first study that quantitatively investigates

the role of self-fulfilling expectations and non-fundamental disturbances for U.S. macroeco-

nomic instability prior to 1979 in the context of a medium-scale model. Previous studies

that allow for indeterminacy of U.S. monetary policy mainly adopt small-scale NK models

and rationalize the empirical properties of the data before 1979 with a passive monetary

policy (Clarida et al., 2000b, Lubik and Schorfheide, 2004).

The adoption of a medium-scale model provides two advantages. First, a richer dynamic

and stochastic structure could explain the macroeconomic volatility and inflation persistence

before 1979, even when monetary policy is active. This explanation could overturn the results

in previous studies that adopted small-scale models (Beyer and Farmer, 2007a). Second, the

richer structure constitutes a suitable framework to study the quantitative implications for

business cycle fluctuations.

The rest of the paper is organized as follows. Section 1 highlights the contributions of the

paper to the related literature. Section 2 motivates the adoption of medium-scale models

to properly assess the role of U.S. monetary policy to explain business cycles. Section 3

describes the main features of the SW model and the data used to conduct the estimation

of the model using Bayesian techniques. Section 4 explains the methodology developed in

Bianchi and Nicolò (2017) and its implementation to construct and estimate the SW model

allowing for indeterminacy. Section 5 presents the findings. Section 6 concludes.

1 Related Literature

The paper contributes to five strands of the literature. First, it provides an interpretation

of U.S. business cycle fluctuations in the United States based on the role of self-fulfilling

expectations. Previous studies mainly abstract from the possibility of observing policies that

lead to indeterminate outcomes (Bianchi, 2013, Fernandez-Villaverde et al., 2010, Del Negro
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and Eusepi, 2011, Bianchi and Ilut, 2017). The contribution of this paper is to quantify the

implications of a passive monetary policy for U.S. business cycle fluctuations in the post-war

period. Under such regime, the propagation of structural shocks is more persistent due to the

formation of self-fulfilling expectations. This mechanism identifies different determinants of

business cycles. The upward trend in the inflation rate observed since the early 1960s is due

to persistent technology shocks that generated strong economic activity and self-fulfilling

inflationary expectations. Moreover, I show that sunspot shocks play no quantitative role in

explaining the volatility observed before 1979.

Second, a vast literature rationalizes the role of monetary policy for the behavior of the

data in the post-war period using univariate or small-scale Linear Rational Expectations

(LRE) models (Clarida et al., 2000b, Lubik and Schorfheide, 2004, Coibon and Gorod-

nichenko, 2011, Boivin and Giannoni, 2006, Yasuo Hirose and Zandweghe, 2017, Bhattarai

et al., 2016). Their findings align and support the evidence that the monetary authority

failed to implement an active inflationary targeting before 1979.51 However, a richer dy-

namic and stochastic structure could suffice to explain the macroeconomic volatility and

inflation persistence before 1979, even when monetary policy is active (Beyer and Farmer,

2007a).52 This paper addresses this concern using a canonical medium-scale NK model and

shows that earlier findings carry over to the SW model.

Third, the adoption of a medium-scale LRE model raises two technical complexities.

First, the partition of the parameter space into a determinate and indeterminate region is

unknown for richer models. Second, the construction of the indeterminate solution requires

a substantial amount of coding using the existing solution methods (Lubik and Schorfheide,

51Alternative explanations for the run-up of U.S. inflation since the early 1960s relate to the possibility
that policymakers overestimated potential output (Orphanides, 2002) and the persistence of inflation in the
Phillips curve (Primiceri, 2006). In this paper, I focus on understanding the mechanisms through which the
de-anchoring of inflation expectations due to structural shocks could have played a relevant role to explain
the macroeconomic instability in the period prior to 1979.

52A closely related literature also discusses the concerns due to model misspecification for the empirical
performance of Dynamic Stochastic General Equilibrium models and provides policy analysis approaches to
deal with it (Del Negro et al., 2007, Del Negro and Schorfheide, 2009).
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2003, Farmer et al., 2015). Given the technical complexities, a researcher commonly es-

timates a medium-scale model by restricting a priori the parameter space to the unique,

determinate region (Smets and Wouters, 2007, Arias et al., 2017). In this paper, I imple-

ment the methodology we developed in Bianchi and Nicolò (2017) to relax this assumption

and estimate the medium-scale model by SW over the entire parameter space. I find that

the assumption imposed in SW is rejected for the period before 1979. Importantly, I show

that the assumption has quantitative implications for the identification of the main drivers

of U.S. business cycles.

Fourth, the paper contributes to the literature that studies the sources of the reduction

in U.S. macroeconomic volatility from the 1980s to 2007. I investigate the validity of two

prominent theories that have been advocated to explain this empirical phenomenon. First,

several studies show that the behavior of the data changed due to a decrease in the variance

of the shocks driving the economy in the period subsequent the Volcker disinflation (Sims

and Zha, 2006, Primiceri, 2005, Justiniano and Primiceri, 2008, Alejandro Justiniano and

Tambalotti, 2010, Alejandro Justiniano and Tambalotti, 2011). This strand of the literature

considers that the reduction in volatility is not related to monetary policy and it can therefore

be considered as “good luck”. Second, the work of Clarida et al. (2000b) and Lubik and

Schorfheide (2004) among others indicates that monetary policy acted more systematically

since the 1980s, therefore suggesting a view related to the “good policy”. In this paper, I

find that the data supports both theories. Both a change in the conduct of monetary policy

to a more active stance and a significant drop in the volatility of structural shocks account

for the decrease in U.S. macroeconomic uncertainty.

Finally, the paper contributes to the literature that studies the empirical implications

of dynamic indeterminacy.53 The contributions of Farmer and Guo (1994) and Farmer and

Guo (1995) focus on relevance of sunspot shocks to explain business cycle fluctuations. More

53A second generation of models in the literature about indeterminacy relates to the possibility of observing
multiple steady states for a given model. In this paper, I will refer to indeterminacy only as the dynamic
properties of the model in the neighborhood of the unique steady state of a model.
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recently, Lubik and Schorfheide (2004) empirically evaluate the possibility that monetary

policy could lead to indeterminate outcomes and Bhattarai et al. (2016) enrich this analysis

by accounting for a non-trivial interaction between monetary and fiscal policy. This paper

considers the richer dynamic and stochastic structure of the SW model to empirically study

the implications of dynamic indeterminacy for U.S. business cycles in the post-war period.

2 Reasons for the Adoption of Medium-scale Models

Several studies focus on the conduct of U.S.monetary policy in the post-war period by

adopting univariate and small-scale models. Clarida et al. (2000b) estimate a monetary pol-

icy reaction function and therefore address the question using a univariate structural model.

Lubik and Schorfheide (2004) (henceforth LS) test for indeterminacy in U.S. monetary policy

during the post-war period by considering a conventional three-equation NK model.

However, two advantages arise with the adoption of richer models. Section 2.1 discusses

an identification problem that could potentially undermine and overturn the results obtained

with parsimonious models. Section 2.2 provides insights on how the conduct of a passive

monetary policy affects the propagation of fundamental shocks via the formation of self-

fulfilling expectations and allows for non-fundamental sunspot shocks to affect the economy.

In this paper, the adoption of the medium-scale model in SW allows to verify whether the

results in earlier studies are susceptible to the modeling choice and to assess the quantitative

implications of a passive monetary policy for U.S. business cycles.

2.1 Identification Problem

Previous studies that allow for indeterminacy in U.S. monetary policy mainly adopt small-

scale NK models and rationalize the empirical properties of the data before 1979 with a

passive monetary policy (Clarida et al., 2000b, Lubik and Schorfheide, 2004). If monetary

policy is ‘passive’, two features of the model become relevant to explain the persistence in
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inflation dynamics and the high volatility of U.S. macroeconomic data over this period. First,

the propagation of structural shocks depends on self-fulfilling expectations that generate an

additional source of persistence. Second, unexpected changes in expectations constitute

non-fundamental ‘sunspot’ disturbances that generate an additional source of uncertainty.

However, findings in earlier studies are potentially susceptible to the choice of parsimo-

nious models (Beyer and Farmer, 2007a). Small-scale models impose restrictions on the

structure of the underlying economy. By excluding richer models, the restrictions favor the

result of a passive monetary policy since missing propagation mechanisms are misinterpreted

as evidence of this conclusion. The identification problem relates to the possibility that a

model with a richer dynamic and stochastic structure could explain the macroeconomic

volatility and inflation persistence before 1979, even when monetary policy is active. Adopt-

ing the medium-scale NK model of SW allows to verify whether previous findings carry over

to a richer structure.54

In the spirit of Beyer and Farmer (2007a), the following analytic example provides an

intuition of the identification problem that an econometrician faces when testing for inde-

terminacy. Suppose that a researcher studies the dynamics of the inflation rate using two

alternative univariate LRE models. One model explains current inflation only as a function

of expected inflation as described by equation (2.1)

πt = aEt(πt+1). (2.1)

Since the endogenous variable is expectational, the model is well-specified when the

54LS acknowledge that their results are sensitive to model misspecification since missing propagation
mechanisms would favor the result of model indeterminacy. Their robustness check consists in comparing
the fit of a small-scale NK model for the Pre-Volcker period with a richer model to account for missing
propagation mechanisms. However, the comparison is between two structurally different models and the
robustness check could therefore be sensitive to the choice of which propagation mechanism are included in
the richer model. In this paper, I am instead considering the SW model for both the determinate and the
indeterminate regions, while aiming at reducing the identification problem that is inherent to the question
by considering a medium-scale model.

120



associated one-step ahead forecast error is also defined

ηt ≡ πt − Et−1(πt). (2.2)

Considering the case of |a| > 1, the model is indeterminate, and any process for inflation

and its expectation that takes the following form solves the univariate model in (2.1) and

(2.2) 



πt = λπt−1 + ηt,

Et (πt+1) = λ2πt−1 + ληt,

(2.3)

where λ ≡ a−1 < 1. According to this model, the dynamics are explained by lagged

inflation rate, and the only source of volatility is the non-fundamental shock, ηt.

The alternative univariate LRE model considered by the econometrician describes current

inflation as a function not only of expected inflation but also of lagged inflation and a

fundamental shock, εt,

πt = aEt(πt+1) + bπt−1 + εt. (2.4)

Given the definition of the forecast error ηt ≡ πt − Et−1(πt), the dynamics of the model

depend on the two roots of the model denoted by θ and λ.55 When only one root is unstable,

the model has a unique, determinate solution. By assuming without loss of generality that

|θ| > 1 and |λ| < 1, the solution of the determinate model is





πt = λπt−1 +
(λ+θ)
θ
εt,

Et (πt+1) = λ2πt−1 + λ (λ+θ)
θ
εt.

(2.5)

The identification problem arises due to the observational equivalence of the two alter-

55It can be shown that the roots of the model are related to the structural parameters of the model as
follows: a = 1/(λ+ θ) and b = λθ/(λ+ θ).
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native models. Without further information about the true variance of the shocks ηt and εt,

the indeterminate model in (2.3) and the determinate model in (2.5) are characterized by

the same likelihood function.

However, the choice of a parsimonious structure affects the inference of the econometri-

cian by erroneously favoring the indeterminate model in (2.3). Suppose that the true data

generating process for the inflation rate is the richer, determinate model in (2.4). Also, sup-

pose the researcher chooses a parsimonious dynamic structure such as in (2.1) where lagged

inflation is omitted. The inference would therefore mistakenly lead the econometrician to

conclude that the data is consistent with the dynamics of the indeterminate model in (2.3)

due to the observational equivalence.

The identification problem suggests that the findings in earlier studies of a passive mon-

etary policy before 1979 could be undermined by the choice of a parsimonious small-scale

model. Abstracting from relevant propagation mechanisms and structural shocks would fa-

vor this result. The adoption of richer models allows to verify if earlier findings rely on the

modeling choice.

In this paper, I consider the medium-scale model of SW to verify whether the findings

of Clarida et al. (2000b) and LS carry over to a model with a richer dynamic structure. As

presented in Section 5.1.1, I find that the data still supports the evidence of a passive mone-

tary policy before 1979. I then argue in Section 5.2 and 5.3 that the distinctive propagation

of structural shocks under such monetary policy regime is the feature of the indeterminate

representation that the data favors. Finally, in Section 5.1.3, I also shed light on the debate

of whether the Fed did not follow an active inflation targeting during the period after the

2001 slump and therefore generated economic conditions that led to the Great Recession.

Importantly, I show that while the analysis conducted using a small-scale model suggests the

latter interpretation of the events, using the SW model the data indicates that the monetary

authority implemented an active policy.

122



2.2 Digging into the Mechanisms

The second advantage of adopting a medium-scale model such as SW is to provide a suitable

framework to quantitatively assess the implications that a passive monetary policy has on

the macroeconomy. In this section, I use a simple classical monetary model to show that if

monetary policy is passive, the dynamic and stochastic properties of the model differ in two

dimensions. First, the propagation of fundamental shocks through the economy differs due

to the formation of self-fulfilling expectations in response to the shocks. Second, the model

is subject to an non-fundamental sunspot disturbances. While small-scale models are not

sufficiently detailed, medium-scale models account for richer transmission mechanisms and

provide a quantitative assessment of the relative importance in the data.

To provide the intuition, I consider a classical monetary model described by the Fisher

equation

Rt = rt + Et(πt+1), (2.6)

and the simple Taylor rule

Rt = φππt, (2.7)

where Rt and πt denote the deviations of the nominal interest rate and the inflation rate

from their target level. I assume that the real interest rate rt is given and follows a mean-

zero Gaussian i.i.d. distribution.56 To properly specify the model, I also define the one-step

ahead forecast error associated with the expectational variable, πt, as

ηt ≡ πt − Et−1(πt). (2.8)

56In the classical monetary model, the real interest rate results from the equilibrium in labor and goods
market and it depends on the technology shocks. I am considering an exogenous process for the technology
shocks and therefore I take the process for the real interest rate as given.
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Combining (2.6) and (2.7), I obtain the univariate model

Et(πt+1) = φππt − rt. (2.9)

In this simple model, the monetary authority is active if it responds to changes in the inflation

rate by more than one for one. By recalling the Taylor rule in (2.7), this condition can be

equivalently expressed as |φπ| > 1. The solution in this region of the parameter space is said

to be determinate, and it is obtained by solving forward equation (2.9) as follows,

πt =
1

φπ
Et(πt+1) +

1

φπ
rt

=
1

φπ
rt, (2.10)

where the second equality is derived by recalling the assumptions on rt. The strong response

of the monetary authority ensures that inflation is pinned down as a function of the exogenous

real interest rt.

Consequently, Et(πt+1) = 0, so that the expectations that agents hold about the future

inflation rate are constant at its steady-state. The determinate solution is therefore described

by the following system,57





πt = 1
φπ
rt,

Et(πt+1) = 0.

(2.11)

Conversely, a passive monetary policy, |φπ| ≤ 1, significantly affects the dynamic and

stochastic properties of the model. The solution is obtained by combining the definition of

the forecast error, ηt, with the univariate model in (2.9) as

57Also, note that this implies that ηt = πt −Et−1(πt) = πt =
1
φπ

rt. Therefore, the non-fundamental shock
ηt is endogenously determined as a function of the structural shock, rt.
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πt = Et−1(πt) + ηt

= φππt−1 + ηt − rt−1.

Expectations about future inflation are therefore described as,

Et(πt+1) = φππt − rt

= φ2
ππt−1 + φπηt − (rt + φπrt−1) .

Therefore, the solution corresponds to the following system of equations





πt = φππt−1 + ηt − rt−1,

Et(πt+1) = φ2
ππt−1 + φπηt − (rt + φπrt−1) .

(2.12)

The comparison of the representations in (2.11) and (2.12) shows that a change in mone-

tary policy substantially affects the properties of the model and the interpretation of business

cycle fluctuations in at least two dimensions. First, the impact and transmission of the same

structural shock, rt, on the dynamics of the model differs between the two specifications.

While under determinacy the inflation rate also follows an i.i.d. process, under indetermi-

nacy the shock de-anchors agents’ expectations from the central bank’s long-run target and

transmits via the formation of self-fulfilling inflation expectations.58 This is clearly not the

58The inflation rate is not affected by the structural shock to the real interest rate whenever it is assumed
that the real interest rate and the non-fundamental shock, ηt, are assumed to be uncorrelated. In a more
general setting, the data could prefer a specification in which the correlation between structural shocks and
non-fundamental shocks differs from zero.
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case for the determinate solution where expectations are constant at the long-run inflation

rate and play no role for the dynamics of the model.

Second, if monetary authority is passive, the economy is subject to an additional, non-

fundamental disturbance related to unexpected changes in agents’ expectations, ηt. The

sunspot shock therefore provides an additional source of uncertainty which could potentially

help the model in matching the high volatility of the data in the period prior to the ap-

pointment of Paul Volcker as the chairman of the Federal Reserve System. By solving and

estimating the SW model using the methodology in Bianchi and Nicolò (2017), I assess the

quantitative relevance of each of these two properties of the model, especially for the period

before 1979 that previous work showed to be associated with a passive monetary policy. In

Section 5.2 and 5.3, I argue that the feature that the data favors is the distinctive propa-

gation mechanism that relies on the formation of self-fulfilling expectations, while sunspot

shocks were not significant sources of uncertainty.

3 The Model and Data

Dynamic stochastic general equilibrium (DSGE) models are useful tools to conduct quantita-

tive policy analysis. To this purpose, a branch of the literature focused on developing richer

models that could provide a better match with the data. Based on the conventional three-

equation NK model, the work by Smets and Wouters (2003) and Christiano et al. (2005)

expands the framework to account for relevant frictions and shocks. The model presented

in Smets and Wouters (2007) now constitutes the heart of the structural DSGE models that

are adopted by most central banks in advanced economies. While the reader is referred to

the original paper for the details about the derivation of the model, this section describes

its relevant features as well as the measurement equations and the data used to estimate the

model using Bayesian techniques.

The model contains both real and nominal frictions. On the real side, households are
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assumed to form habit in consumption. By renting capital services to firms, households also

face an adjustment cost and optimally choose the capital utilization rate with an increasing

cost. Firms incur a fixed cost in production and are subject to nominal price rigidities

à la Calvo, while indexing the optimized price to past inflation. Similarly, the model displays

nominal wage frictions that also allow for indexation to past wage inflation.

The economy follows a deterministic, balanced growth path along which seven shocks

drive the dynamics of the model. Three shocks affect the demand-side of the economy. A

risk premium shock affects the household’s intertemporal Euler equation by impacting the

spread between the risk-free rate and the return on the risky asset. The investment-specific

shock has an effect on the investment Euler equation that the household considers when

choosing the amount of capital to accumulate. The third demand-side shock is an exogenous

spending shock that impacts the aggregate resource constraint. Similarly, the supply-side of

the economy is subject to three shocks: a productivity shocks well as price and wage mark-up

shocks. Finally, the monetary authority follows a Taylor rule as described in equation (3.1),

Rt = ρRt−1 + (1− ρ)
{
rππt + ry (yt − ypt ) + r∆y

[
(yt − ypt )−

(
yt−1 − ypt−1

)]}
+ εRt . (3.1)

The monetary authority chooses the nominal interest rate, Rt, by allowing for some

degree of interest rate inertia as measured by the parameter ρ. Changes in the inflation rate,

πt, and the output gap, defined as the deviations of actual output from its fully flexible price

and wage counterpart, also generate a response by the monetary authority. The Taylor rule

also accounts for changes in the output gap, while any unexpected deviation in the policy

instrument is defined as a monetary policy shock, εRt .59

To estimate the model, I use Bayesian techniques and the measurement equations that

relate the macroeconomic data to the endogenous variables of the model are defined in

59The model also assumes that the monetary policy shock follows an autoregressive process defined by

εRt = ρRε
R
t−1 + uRt , where uRt

iid
∼ N

(
0, σ2

R

)
. The same assumption also holds for the other structural shocks

of the model.
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equation (3.2), 


dlGDPt

dlCONSt

dlINVt

dlWAGt

lHourst

dlPt

FEDFUNDSt




=




γ̄

γ̄

γ̄

γ̄

l̄

π̄

R̄




+




yt − yt−1

ct − ct−1

it − it−1

wt − wt−1

lt

πt

Rt




, (3.2)

where dl denotes the percentage change measured as log difference and l denotes the log.

The observables are the seven macroeconomic quarterly U.S. macroeconomic time series used

in SW, and they match the number of shocks that affect the economy. The series considered

are: the growth rate in real GDP, consumption, investment and wages, log hours worked,

inflation rate measured by the GDP deflator, and the federal funds rate.

The deterministic balanced growth path is defined in terms of four parameters: γ̄, the

quarterly trend growth rate common to real GDP, consumption, investment and wages; l̄,

the steady-state hours worked (normalized to zero); π̄, the quarterly steady-state inflation

rate; R̄, the steady-state nominal interest rate. Hence, the measurement equations in (3.2)

relate the macroeconomic time series with the corresponding endogenous variables of the

model {yt, ct, it, wt, lt, πt, Rt}, while accounting for a balanced growth path.

While the full sample of SW ends in the fourth quarter of 2004, I updated the time series

and in Section 5.1.1 I estimate the model over three sub samples. The first period starts

in 1955:4, which corresponds to one year after the end of the Korean War, and it ends in

1969:4, the date in which the chairmanship of William Martin terminates.60 The second

sample considers the chairmanships of both Arthur Burns and William Miller, and it spans

from 1970:1 until 1979:2. As I argue in Section 5.1.1, it is relevant to distinguish the first

60As argued in the work of Bernanke and Blinder (1992) and Bernanke and Mihov (1998), the federal
funds rate has been the main policy tool in the United States in the post-war period, even if the Federal
Reserve varied its operational procedures.
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two sub samples since, in line with the evidence documented by Fernald (2014a) among

others, the second period is characterized by slower productivity growth, thus resulting into

a distinct balanced growth path. Finally, the beginning of the third period corresponds to

1984:1, in which Kim and Nelson (1999) initially identify a structural break in the U.S.

business cycle. The end is marked by the Great Recession in 2007:3.

4 Methodology

The adoption of medium-scale DSGE models to study the conduct of monetary policy raises

technical complexities. First, to compare determinate and indeterminate model solutions, a

researcher must be able to partition the parameter space into a determinate and indetermi-

nate region. While this partition can be easily derived analytically for small-scale models,

it is generally unknown for larger models. Second, the model could be characterized by

regions of the parameters space associated with multiple degrees of indeterminacy, and the

researcher has to test for the potential degrees of indeterminacy of the model.61 Third,

standard software packages do not allow for indeterminacy.62

The application of existing solution methods to deal with indeterminacy in medium-

scale models requires a substantial amount of coding work and technical skills (Lubik and

Schorfheide, 2003, Lubik and Schorfheide, 2004). In practice, most of the papers simply rule

out the possibility of indeterminacy by estimating the model exclusively in the determinate

region of the parameter space. Among others, SW also adopt this approach and assume

a priori a unique, determinate solution of the model.

The work of Bianchi and Nicolò (2017) develops a new method to solve and estimate LRE

models allowing for indeterminacy of the model solution. While the paper builds on Lubik

61A grid point method could be used to numerically identify the region of the parameter space associated
with the indeterminate solution and the degrees of indeterminacy. However, this method does not provide a
mapping between the dynamic properties of the model and its structural parameters.

62Examples of standard solution algorithm are the code developed by Sims (2001b), Gensys, the toolkit
by Uhlig (1999) and the algorithm of Anderson and Moore (1985) among others.
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and Schorfheide (2003, 2004) and Farmer et al. (2015), the novelty is to provide an approach

that, using the information in the data, endogenously partitions the parameter space into

the determinate and indeterminate region, and deals with the possibility of multiple degrees

of indeterminacy. Hence, this methodology substantially simplifies the approach to test for

indeterminacy in U.S. monetary policy. I show that the assumption is rejected before 1979

and monetary policy was passive, even when accounting for a richer model.

The method proposes to augment the original model with a set of auxiliary equations

that are used to provide the adequate number of explosive roots in presence of indeterminacy.

The augmented representation also introduces a non-fundamental sunspot shock to construct

the solution under indeterminacy. The characterization of the full set of equilibria under

indeterminacy is parametrized by the additional parameters related to the standard deviation

of the sunspot shock and its covariance with the structural shock of the model.

This augmented representation provides three main advantages. First, it accommodates

both the case of determinacy and indeterminacy, while considering the same augmented

system of equations. In particular, the solution in this expanded state space, if it exists, is

always determinate, and is identical to the indeterminate solution of the original model. The

model can therefore be solved by using standard solution algorithms. Second, given that the

method accommodates both the case of determinacy and indeterminacy, the researcher does

not need to take a stance on which area of the parameter space she is interested in exploring.

Finally, even when the region of determinacy is unknown as in the case of medium-scale

models, the methodology allows the researcher to estimate the model without imposing

a priori assumptions about the uniqueness of the equilibrium. Information contained in

the data indicates whether an estimated model is characterized by a unique solution or by

multiplicity of equilibrium paths.

While Section 4.1 provides a simple analytical example to explain the methodology de-

veloped in Bianchi and Nicolò (2017), Section 4.2 describes how I implement it to test for

indeterminacy in U.S. monetary policy in the richer medium-scale model by SW.
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4.1 Building the Intuition

I consider a simple analytical example to present the technical complexities that a researcher

faces when dealing with indeterminacy and to provide an intuition for how the methodology

developed in Bianchi and Nicolò (2017) simplifies the construction of the solution under

indeterminacy. Recalling the classical monetary model in Section 2.2, I report below the

corresponding univariate representation

Et(πt+1) = φππt − rt. (4.1)

As previously described, the solution to this model depends on the conduct of monetary

policy. If the monetary authority is active, |φπ| > 1, the determinate solution is

πt =
1

φπ
rt. (4.2)

Alternatively, if the monetary authority is passive, |φπ| ≤ 1, the indeterminate solution is

any process that takes the following form

πt = φππt−1 − rt−1 + ηt. (4.3)

The problem that a researcher faces when dealing with the indeterminate solution of a

LRE model such as the one presented in (4.1) is the following. The equilibrium dynamics

are uniquely determined if the Blanchard-Kahn condition is satisfied (Blanchard and Kahn,

1980b). The condition requires the number of expectational variables of the model to equal

the number of its unstable roots. The endogenous variable of the univariate model in (4.1)

is expectational and the dynamics properties of the model depends on the value assumed

by φπ. When |φπ| > 1, the model has a unique solution since it has a sufficient number of

unstable roots to match the number of expectational variables. However, when |φπ| ≤ 1, the

model is indeterminate since it is missing one explosive root. The latter case constitutes a
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challenge because standard software packages do not deal with indeterminacy.

The approach in Bianchi and Nicolò (2017) proposes to augment the original model by

appending an independent process which could be either stable or unstable. The key insight

consists of choosing this auxiliary process in a way to deliver the correct solution. When

the original model is determinate, the auxiliary process must be stationary so that also

the augmented representation satisfies the Blanchard-Kahn condition. When the model is

indeterminate, the additional process should however be explosive so that the Blanchard-

Kahn condition is satisfied for the augmented system, even if it is not for the original model.

In what follows, I apply this intuition to the example considered in this section and explain

how to choose the auxiliary process.

Considering the univariate example in (4.1), the methodology of Bianchi and Nicolò

(2017) proposes to solve the following augmented system of equations





Et(πt+1) = φππt − rt,

ωt =
(
1
α

)
ωt−1 − νt + ηt,

(4.4)

where ωt is an auxiliary autoregressive process, α ∈ [0, 2], νt is a newly defined mean-zero

sunspot shock with standard deviation σv and ηt still denotes the forecast errors, ηt =

πt − Et−1(πt) as in the original model.63

Table 4.1 summarizes the intuition behind the approach. When the original LRE model

in (4.1) is determinate, |φπ| > 1, the Blanchard-Kahn condition for the augmented repre-

sentation in (4.4) is satisfied when |1/α| ≤ 1. Indeed, for |φπ| > 1 the original model has

the same number of unstable roots as the number of expectational variables. The methodol-

ogy thus suggests to append a stable autoregressive process and standard solution methods

deliver the same solution for the endogenous variable πt as in equation (4.2). Since the coeffi-

cient |1/α| is smaller than 1, the solution for the augmented representation also includes the

63The choice of parametrizing the auxiliary process with 1/α instead of α induces a positive correlation
between φπ and α that facilitates the implementation of the method when estimating a model.
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Unstable Roots B-K condition in Solution

augmented model (4.4)

Determinacy |φπ| > 1
in original model (4.1)

1
α
< 1 1 Satisfied

{
πt =

1
φπ
rt, ωt = αωt−1 − νt + εt

}

1
α
> 1 2 Not satisfied -

Indeterminacy |φπ| ≤ 1
in original model (4.1)
1
α
< 1 0 Not satisfied -{ ωt = 0}

1
α
> 1 1 Satisfied

{
πt = φππt−1 − rt−1 + ηt,
ηt = vt, ωt = 0

}

Table 4.1: Regions of the parameter space for which the Blanchard-Kahn condition in the
augmented representation is satisfied, even when the original model is indeterminate.

autoregressive process ωt. Importantly, its dynamics do not impact the endogenous variable

yt.

Considering the case of indeterminacy (i.e. |φπ| ≤ 1), the original model has one expec-

tational variable, but no unstable root, thus violating the Blanchard-Kahn condition. If the

autoregressive process is explosive (i.e. |1/α| > 1), the augmented representation satisfies

the Blanchard-Kahn condition and delivers the same solution for πt as in equation (4.3).

Moreover, to guarantee boundedness, the solution imposes conditions such that ωt is always

equal to zero, and the solution for the endogenous variable, πt, does not depend on the

appended autoregressive process.

Summarizing, the choice of the additional parameter α should be made as follows. For

values of |φπ| outside the unit circle, the Blanchard-Kahn condition for the augmented repre-

sentation is satisfied for values of |1/α| smaller than 1. Conversely, under indeterminacy (i.e.

|φπ| ≤ 1) the condition is satisfied when |1/α| is greater than 1. Also, note that under both

determinacy and indeterminacy, the exact value of 1/α is irrelevant for the law of motion

of πt. Under determinacy, the auxiliary process ωt is stationary, but its evolution does not
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affect the law of motion of the model variables. Under indeterminacy, ωt is always equal to

zero. Hence, the introduction of the auxiliary processes does not affect the properties of the

solution in either case. These processes only serve the purpose of providing the necessary

explosive roots under indeterminacy and creating the mapping between the sunspot shocks

and the expectational errors.

4.2 Implementation to Smets and Wouters (2007)

When adopting a univariate model such as in Section 4.1 or a small-scale model such as

the NK model in LS, a researcher derives analytically the condition which partitions the

parameter space into a determinate and indeterminate region. Also, she studies the dynamic

properties of the model and determines the maximum degree of indeterminacy of the model.

To implement the methodology developed in Bianchi and Nicolò (2017) to medium-scale

models such as SW, a researcher faces the following technical complexities. It is not possible

to derive analytically the partition of the parameter space, and the researcher does not know

the exact properties of the determinacy region. Also, the adoption of a medium-scale model

implies that a researcher does not know the degree of indeterminacy which characterizes the

model.

To overcome these complexities, Bianchi and Nicolò (2017) indicate the following steps.

First, the researcher should note that, for any model with p expectational variables, then

the maximum degree of indeterminacy also corresponds to p. Defining {ηi,t}
p
i=1 to be the

forecast errors associated with each expectational variable, the original LRE model should

be augmented by appending up to p exogenous processes ωi,t =
(

1
αi

)
ωi,t−1 − νi,t + ηi,t

for i = 1, .., p. Second, the researcher cannot derive the partition of the parameter space

analytically. For a given draw of the structural parameters of the model, the researcher

would like to make draws of αi smaller or greater than 1 with equal probabilities. Therefore,

to implement this methodology to the model of SW, I assume a uniform distribution over the
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interval [0.9, 1.1] as a prior distribution.64 Third, while the newly defined shocks, {νi,t}
p
i=1,

are independent, they are potentially related to the structural shocks of the model. Hence,

I assume a uniform distribution over the interval [−1, 1] for the correlations between the

newly defined shocks, {νi,t}
p
i=1, and the seven structural shocks that impact the economy as

described in Section 3.65

Following these steps, I find that the data favors a specification with one degree of

indeterminacy. Hence, the augmented representation that I use to present the findings only

includes one auxiliary process, ωt. Also, the data indicates that the non-fundamental shock

included in the augmented representation is the forecast error associated with the inflation

rate ηπ,t ≡ πt − Et−1(πt). In Section 5.1 I estimate the SW model augmented with the

exogenous process ωt =
(
1
α

)
ωt−1−νt+ηπ,t, where the newly defined sunspot shock, νt, could

potentially be correlated with the seven structural shocks of the model. The estimation also

shows that, according to the data, the correlation between the sunspot shock and the price

mark-up shock is the only statistically significant.

5 Main Findings

I show that monetary policy was passive between 1955 and 1979, and active since 1984. As

a result, the imposition of an active monetary policy as in SW delivers erroneous estimates

64Note that any symmetric interval around 1 also guarantees an equal probability of drawing α greater or
smaller than 1. Alternatively, a researcher could assume a discrete distribution for which α could assume
only two values (one inside the unit circle and one outside) with equal probabilities. However, this option
is not implementable in standard software packages such as Dynare, since only continuous distributions are
available as possible choice of prior distribution for the model parameters.

65From a technical perspective, the parameters which characterize the full set of indeterminate equilibria in
LS relate to the covariances between the structural shocks of the model and a newly defined shock that their
solution method introduces. As shown in Bianchi and Nicolò (2017), there is a unique mapping between their
parametrization of the set of equilibria and the covariances which arise in this paper between the sunspot
shock, νt, and the remaining structural shocks of the model. However, the additional parameters introduced
in LS do not have a well-defined domain and the authors discipline the normal prior distributions for these
parameters by centering them around the point estimates that minimize the distance between the impulse
responses under determinacy and indeterminacy. On the contrary, the methodology of Bianchi and Nicolò
(2017) that I adopt in this paper allows to deal with correlations, that are well-defined in the interval [−1, 1]
and for which a uniform distribution can be used as a prior.
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of the structural parameters. I also analyze the conduct of U.S. monetary policy during the

period between the collapse of the dot-com bubble and the Great Recession. The evidence

of a passive monetary policy in a conventional three-equation NK model is instead ruled out

when accounting for the rich dynamic and stochastic structure of the SW model.

I document the effects of a change in monetary policy on the dynamics of the economy

and the transmission of structural shocks. When monetary policy is passive, the propaga-

tion of structural shocks is altered and more persistent due to the formation of self-fulfilling

expectations. In this regime, a productivity shock still generates economic activity by de-

creasing the marginal cost incurred by the firms. However, the shock is also associated

with the formation of persistent, inflationary expectations that more than offset the drop in

marginal cost and finally result into self-fulfilling inflationary pressures.

Fundamental productivity and cost shocks were the primary drivers of the run-up in

the inflation rate from the early 1960s to 1979. Positive technology shocks in the 1960s

de-anchored inflation expectations from the central bank’s long-run target and generated

persistent inflationary pressures via self-fulfilling expectations. Mark-up shocks account for

the sudden inflationary episodes related to the oil crisis during the 1970s, while they are not

significant drivers of the rise in inflation during the 1960s. On the contrary, previous studies

that impose an active monetary policy before 1979 exclude the role of self-fulfilling expecta-

tions for the transmission of structural shocks. The persistent rise in inflation from the early

1960s through the 1970s would be entirely and erroneously attributed to mark-up shocks.

Moreover, the high volatility of inflation and output growth before 1979 was caused by fun-

damental disturbances, and non-fundamental sunspot shocks were not significant drivers of

volatility between 1955 and 1979.

Finally, I revisit the question about the sources of the reduction in U.S. macroeconomic

volatility between the early 1980s to 2007. Based on the SW model, I find that the reduction

in macroeconomic uncertainty was a combination of both a change in monetary policy to a

more active stance and a lower volatility of the shocks.
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5.1 U.S. Monetary Policy in the Post-War Period

Section 5.1.1 provides evidence of a change in the conduct of monetary policy in the post-

war period, from a passive stance before 1979 to an active inflation targeting since the

early 1980s. This results has two implications. First, the assumption imposed in SW about

an active monetary policy both before and after 1979 is rejected. Second, the findings in

previous studies that adopted univariate or small-scale models (Clarida et al., 2000b, Lubik

and Schorfheide, 2004) carry over to the SW model.

The section provides two additional findings. First, in Section 5.1.2 I show that, if a

researcher assumes an active monetary policy before 1979, she would find erroneous estimates

of the structural parameters, especially related to the persistence in inflation dynamics. The

data would mistakenly indicate a higher degree of wage and inflation indexation as well as

more persistence of the price mark-up shock.

Second, in Section 5.1.3 I shed light on the debate about whether the conduct of monetary

policy after the dot-com bubble led to economic conditions that facilitated the occurrence

of the Great Recession. I show that the results are susceptible to the modeling choice of the

researcher due to the identification problem presented in Section 2.1. While the conventional

three-equation NK model in LS rationalizes the data with a passive monetary policy, the

adoption of the richer dynamic and stochastic structure in the SW model overturns this

conclusion and indicates the conduct of an active monetary policy.

5.1.1 Changes in the Conduct of U.S. Monetary Policy

This section provides evidence of the change in the conduct of U.S. monetary policy in the

post-war period. By considering the model and the data described in Section 3, I apply the

methodology presented in Section 4 to estimate the SW model over three subsamples. The

first period starts in 1955:4, which corresponds to one year after the end of the Korean War,

and it ends in 1969:4, the date in which the chairmanship of William Martin terminates.

The second sample considers the chairmanships of both Arthur Burns and William Miller,
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and it spans from 1970:1 until 1979:2. Finally, the beginning of the third period corresponds

to 1984:1, in which Kim and Nelson (1999) initially identify a structural break in the U.S.

business cycle, while the end is marked by the Great Recession in 2007:3.66

Appendix A reports the prior distributions for the structural parameters of the model

and the exogenous processes that drive the dynamics of the economy. Relative to the prior

distributions used in SW, the only difference relates to the Taylor rule coefficient associated

with the response of the monetary authority to changes in the inflation rate. While SW

specify a normal distribution truncated at 1, centered at 1.50 and with standard deviation

0.25, I consider a prior which assigns an approximately equal probability of observing inde-

terminacy as well as a unique solution. In particular, I set a flatter normal prior distribution

centered at 1 and with standard deviation 0.35.

As discussed in Section 4.2, I estimate the model implementing the methodology de-

veloped in Bianchi and Nicolò (2017) and using Bayesian techniques. The data favors a

specification with one degree of indeterminacy and in which the non-fundamental shock in-

cluded in the augmented representation is the forecast error associated with the inflation rate

ηπ,t ≡ πt − Et−1(πt). Therefore, I estimate the SW model augmented it with the exogenous

process ωt =
(
1
α

)
ωt−1− νt+ ηπ,t. For the parameter α, I assume a uniform prior distribution

over the interval [0.9, 1.1] and I also specify a uniform prior distribution over the interval

[0, 1] for the standard deviation of the sunspot shock, σν .
67 Moreover, the data favors a

specification in which the sunspot shock, νt, is correlated with price mark-up shock, while

restricting the remaining correlations to 0. For the estimation, I therefore use a uniform dis-

tribution over the interval [−1, 1] as the prior for the correlation between the price mark-up

66The findings in this section for the period prior to 1979:2 are quantitatively unchanged when considering
a sample spanning from 1955:4 until 1979:2. However, studying the two samples separately is relevant
to understand the connection between different steady state properties between the two periods and the
exceptional growth in productivity until the early 1970s documented in Fernald (2014a).

67As shown in Table 5.3, the posterior distribution for the sunspot shock is not at the boundary but rather
interior to the interval over which the uniform prior distribution.
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shock and the sunspot shock.68

Table 5.1 reports the results of the estimation for each subsample. Relative to SW,

the novelty is to relax the a priori assumption of equilibrium uniqueness. The method

described in Section 4 allows to estimate the model over the entire parameter space. For

each period, the Metropolis-Hastings algorithm finds two local maxima, one associated with

the determinate solution and the other with the indeterminate representation. It is therefore

possible to compute the corresponding marginal data density using the modified harmonic

mean estimator proposed by Geweke (1999b) and the posterior model probabilities associated

with each local maxima. Focusing on the first two samples that cover the period from

1955:4 to 1979:2, the data strongly favors the representation associated with indeterminacy,

therefore rejecting the assumption of equilibrium uniqueness imposed in SW. On the contrary,

the period subsequent to the Volcker disinflation is associated with a determinate, unique

representation.

Determinacy Indeterminacy

Martin (55Q4 - 69Q4) Log data density -278.38 -272.50

Posterior Model Prob (%) 0.0% 100.0%

Burns-Miller (70Q1 - 79Q2) Log data density -337.23 -319.29

Posterior Model Prob (%) 0.0% 100.0%

Post-Volcker (84Q1 - 07Q3) Log data density -399.85 -406.88

Posterior Model Prob (%) 100.0% 0.0%

Table 5.1: Log-data densities and the posterior model probabilities obtained for each sample
period.

The evidence of a change in the monetary policy stance since 1984:1 is presented in Table

5.2, where the posterior distributions of the structural parameters in the three sub-periods

are compared.69 Considering the Taylor rule coefficient associated with the response of the

68The reader is referred to Section 4.2 for the technical details of the implementation of the methodology
presented in Bianchi and Nicolò (2017) to medium-scale model of SW.

69I consider the posterior estimates to be unchanged when the posterior mean of a parameter estimated
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monetary authority to changes in the inflation rate, rπ, it is clear that the monetary authority

was passive prior to 1979, thus consistent with a weak response of the monetary authority to

changes in the inflation rate. Table 5.2 also suggests that for the period subsequent to the

Volcker disinflation, the monetary authority changed its stance and acted more aggressively

to stabilize inflation, therefore ensuring equilibrium uniqueness.

Importantly, these results provide evidence that, even when accounting for the richer

propagation mechanisms, equilibrium was indeterminate before 1979, and the findings of

Clarida et al. (2000b) and LS among others carry over to a medium-scale model.

Table 5.2 also provides evidence in support of Fernald (2014a) who documents that the

U.S. economy experienced a period of exceptional growth in productivity in the post-war

period until the early 1970s. Both the trend growth rate of the economy and the (steady

state) hours worked drop significantly in the period between 1970 until 1979 relative to

the previous period. The posterior distributions also show that the post-Volcker period is

characterized by a mildly higher degree of price stickiness, ξp, and a more persistent process

of the price-markup shock measured by ρp in Table 5.3. This finding is supported by Galí

and Gertler (1999), who provide evidence of an increased average price duration over this

period due to the lower and more stable inflation rate. Also, the post-Volcker period is

associated with a larger adjustment cost faced by the representative agent that chooses a

higher degree of capital utilization rate.

Finally, the comparison in Table 5.3 of the properties of the exogenous processes between

the period before and after 1979 provides an additional finding. In line with a large literature,

the volatility of the shocks that drive fluctuations of the economy are significantly smaller

starting from the mid 1980s (Stock and Watson, 2003, Primiceri, 2005, Sims and Zha, 2006).

This result and the evidence of the change in the conduct of monetary policy are clearly

linked to the discussion on the possible explanations for the sources of the reduction in U.S.

in either of the two sample periods is within the 90% probability interval associated with the posterior
distribution obtained in the alternative sample.
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1955:4-1969:4 1970:1-1979:2 1984:1-2007:3

Coefficient Description Mean [ 5 , 95 ] Mean [ 5 , 95 ] Mean [ 5 , 95 ]

φ Adjustment cost 4.58 [2.68,6.38] 3.41 [2.01,4.64] 6.95 [5.20,8.73]

σc IES 1.13 [0.85,1.40] 0.91 [0.67,1.15] 1.61 [1.38,1.84]

h Habit Persistence 0.60 [0.48,0.73] 0.62 [0.49,0.76] 0.65 [0.57,0.73]

σl Labor supply elasticity 1.98 [0.93,3.07] 1.29 [0.25,2.15] 2.29 [1.33,3.22]

ξw Wage stickiness 0.73 [0.62,0.84] 0.70 [0.59,0.81] 0.68 [0.53,0.83]

ξp Price Stickiness 0.59 [0.51,0.67] 0.58 [0.50,0.65] 0.75 [0.67,0.83]

ιw Wage Indexation 0.33 [0.14,0.53] 0.57 [0.36,0.78] 0.44 [0.20,0.68]

ιp Price Indexation 0.29 [0.12,0.45] 0.48 [0.25,0.73] 0.28 [0.10,0.44]

ψ Capacity utiliz. elasticity 0.55 [0.36,0.75] 0.49 [0.26,0.72] 0.71 [0.57,0.86]

Φ Share of fixed costs 1.59 [1.46,1.72] 1.34 [1.18,1.50] 1.60 [1.46,1.75]

α Share of capital 0.24 [0.19,0.29] 0.18 [0.13,0.23] 0.23 [0.19,0.26]

π̄ S.S. inflation rate (quart.) 0.62 [0.45,0.78] 0.62 [0.46,0.77] 0.68 [0.55,0.80]

100(β−1 − 1) Discount factor 0.17 [0.06,0.27] 0.21 [0.08,0.33] 0.13 [0.05,0.21]

l̄ S.S. hours worked 1.36 [0.21,2.53] -2.37 [-3.58,-1.05] 1.57 [0.36,2.80]

γ̄ Trend growth rate (quart.) 0.47 [0.40,0.53] 0.36 [0.32,0.41] 0.45 [0.42,0.48]

rπ Taylor rule inflation 0.64 [0.32,0.98] 0.75 [0.54,0.99] 1.80 [1.39,2.20]

ry Taylor rule output gap 0.13 [0.05,0.20] 0.16 [0.09,0.23] 0.09 [0.03,0.14]

r∆y Taylor rule ∆(output gap) 0.11 [0.07,0.15] 0.18 [0.12,0.24] 0.15 [0.10,0.19]

ρ Taylor rule smoothing 0.87 [0.81,0.95] 0.73 [0.60,0.86] 0.84 [0.80,0.88]

Table 5.2: Posterior estimates comparison of structural parameters under indeterminacy for
the pre-Volcker and under determinacy for the post-Volcker period.
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macroeconomic volatility from the early 1980s to 2007. In Section 5.4, I show that, according

to the SW model, both the change in the monetary policy stance and the lower size of the

shocks explain this empirical observation for U.S. macro data.

1955:4-1969:4 1970:1-1979:2 1984:1-2007:3

Coefficient Description Mean [ 5 , 95 ] Mean [ 5 , 95 ] Mean [ 5 , 95 ]

σa Technology shock 0.52 [0.44,0.61] 0.56 [0.45,0.67] 0.36 [0.31,0.40]

σb Risk premium shock 0.19 [0.11,0.27] 0.17 [0.10,0.23] 0.18 [0.14,0.22]

σg Government sp. shock 0.51 [0.43,0.59] 0.55 [0.44,0.65] 0.41 [0.36,0.46]

σI Investment-specific shock 0.60 [0.42,0.77] 0.38 [0.23,0.53] 0.35 [0.28,0.43]

σr Monetary policy shock 0.11 [0.09,0.12] 0.22 [0.18,0.26] 0.12 [0.10,0.14]

σp Price mark-up shock 0.24 [0.20,0.29] 0.31 [0.24,0.39] 0.09 [0.07,0.11]

σw Wage mark-up shock 0.24 [0.19,0.28] 0.31 [0.23,0.38] 0.31 [0.24,0.37]

σν Sunspot shock 0.14 [0.07,0.21] 0.19 [0.06,0.33] - -

ρa Persistence technology 0.95 [0.92,0.99] 0.73 [0.60,0.87] 0.92 [0.87,0.97]

ρb Persistence risk premium 0.59 [0.35,0.84] 0.77 [0.62,0.92] 0.20 [0.05,0.35]

ρg Persistence government sp. 0.86 [0.78,0.94] 0.85 [0.77,0.94] 0.96 [0.94,0.98]

ρI Persistence investment-specific 0.50 [0.30,0.70] 0.65 [0.47,0.84] 0.64 [0.52,0.76]

ρr Persistence monetary policy 0.50 [0.31,0.68] 0.32 [0.11,0.51] 0.37 [0.21,0.52]

ρp Persistence price mark-up 0.24 [0.04,0.43] 0.39 [0.11,0.65] 0.83 [0.72,0.95]

ρw Persistence wage mark-up 0.63 [0.36,0.91] 0.42 [0.14,0.68] 0.81 [0.66,0.95]

µp MA price mark-up 0.64 [0.43,0.85] 0.70 [0.45,0.95] 0.66 [0.48,0.84]

µw MA wage mark-up 0.50 [0.27,0.75] 0.56 [0.26,0.88] 0.61 [0.38,0.82]

ρga Cov(σa, σg) 0.59 [0.39,0.78] 0.62 [0.40,0.84] 0.40 [0.22,0.57]

ρνp Corr(σν , σp) 0.92 [0.82,0.99] 0.69 [0.37,0.99] - -

Table 5.3: Posterior estimates comparison of the parameters associated with the exoge-
nous processes under indeterminacy for the pre-Volcker and under determinacy for the post-
Volcker period.

5.1.2 The Impact of the SW Restriction

This subsection studies the implications of the a priori restriction about equilibrium unique-

ness imposed in SW for the study of U.S. business cycle fluctuations. As shown in Table

5.1, the assumption is validated by the data exclusively for the post-Volcker period. On

the contrary, the restriction is rejected when considering the sample prior to 1979. Table

5.4 reports the posterior distribution of the structural parameters estimated for each of the
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two local maxima found by the Metropolis-Hastings algorithm for the first sample period

(1955:4-1969:4). The table allows for a comparison with the estimation results that would be

obtained by imposing the same a priori assumption as in SW.70 While most of the estimates

are unchanged, relaxing the restriction implies that the Taylor rule coefficient on inflation

is estimated to be associated with a weak response of the monetary authority, therefore

rejecting the assumption imposed in SW. As shown in Section 5.2 and 5.3, this finding has

crucial implications for the propagation of the shocks and to explain U.S. business cycle

fluctuations.

The comparison of the posterior estimates also highlights a higher degree of both the wage

and inflation indexation, as well as more persistence of the price mark-up shock. This finding

is in line with the intuition provided in Section 2.1. A characteristic feature of indeterminate

models is their richer endogenous persistence. Hence, when imposing the assumption of an

active monetary policy, the model incurs a difficulty in matching the observed persistence in

the data and mistakenly suggests a higher persistence than in the representation favored by

the data.

70Similar differences arise when using the second subsample (1970:1-1979:2) to study how the imposition
of the assumption in SW would impact the results.

143



Period: 1955:4-1969:4 Indeterminacy Determinacy

Coefficient Description Mean [ 5 , 95 ] Mean [ 5 , 95 ]

φ Adjustment cost 4.58 [2.68,6.38] 4.95 [3.11,6.74]

σc IES 1.13 [0.85,1.40] 1.18 [0.81,1.55]

h Habit Persistence 0.60 [0.48,0.73] 0.61 [0.44,0.79]

σl Labor supply elasticity 1.98 [0.93,3.07] 1.43 [0.35,2.34]

ξw Wage stickiness 0.73 [0.62,0.84] 0.76 [0.67,0.84]

ξp Price Stickiness 0.59 [0.51,0.67] 0.62 [0.50,0.73]

ιw Wage Indexation 0.33 [0.14,0.53] 0.43 [0.20,0.65]

ιp Price Indexation 0.29 [0.12,0.45] 0.39 [0.12,0.68]

ψ Capacity utiliz. elasticity 0.55 [0.36,0.75] 0.46 [0.25,0.66]

Φ Share of fixed costs 1.59 [1.46,1.72] 1.62 [1.46,1.78]

α Share of capital 0.24 [0.19,0.29] 0.24 [0.20,0.29]

π̄ S.S. inflation rate (quart.) 0.62 [0.45,0.78] 0.62 [0.48,0.75]

100(β−1 − 1) Discount factor 0.17 [0.06,0.27] 0.18 [0.06,0.29]

l̄ S.S. hours worked 1.36 [0.21,2.53] 2.03 [0.72,3.47]

γ̄ Trend growth rate (quart.) 0.47 [0.40,0.53] 0.47 [0.29,0.60]

rπ Taylor rule inflation 0.64 [0.32,0.98] 1.37 [0.99,1.71]

ry Taylor rule output gap 0.13 [0.05,0.20] 0.14 [0.06,0.23]

r∆y Taylor rule ∆(output gap) 0.11 [0.07,0.15] 0.12 [0.08,0.17]

ρ Taylor rule smoothing 0.87 [0.81,0.95] 0.87 [0.82,0.92]

Table 5.4: Posterior estimates comparison of structural parameters for the pre-Volcker period
under indeterminacy and determinacy.
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Period: 1955:4-1969:4 Indeterminacy Determinacy

Coefficient Description Mean [ 5 , 95 ] Mean [ 5 , 95 ]

σa Technology shock 0.52 [0.44,0.61] 0.53 [0.43,0.62]

σb Risk premium shock 0.19 [0.11,0.27] 0.17 [0.05,0.29]

σg Government sp. shock 0.51 [0.43,0.59] 0.50 [0.42,0.58]

σI Investment-specific shock 0.60 [0.42,0.77] 0.58 [0.40,0.75]

σr Monetary policy shock 0.11 [0.09,0.12] 0.11 [0.09,0.14]

σp Price mark-up shock 0.24 [0.20,0.29] 0.22 [0.15,0.29]

σw Wage mark-up shock 0.24 [0.19,0.28] 0.24 [0.19,0.30]

σν Sunspot shock 0.14 [0.07,0.21] - -

ρa Persistence technology 0.95 [0.92,0.99] 0.93 [0.85,0.99]

ρb Persistence risk premium 0.59 [0.35,0.84] 0.64 [0.17,0.98]

ρg Persistence government sp. 0.86 [0.78,0.94] 0.85 [0.74,0.96]

ρI Persistence investment-specific 0.50 [0.30,0.70] 0.53 [0.33,0.74]

ρr Persistence monetary policy 0.50 [0.31,0.68] 0.44 [0.27,0.60]

ρp Persistence price mark-up 0.24 [0.04,0.43] 0.64 [0.22,0.98]

ρw Persistence wage mark-up 0.63 [0.36,0.91] 0.52 [0.22,0.81]

µp MA price mark-up 0.64 [0.43,0.85] 0.75 [0.46,0.99]

µw MA wage mark-up 0.50 [0.27,0.75] 0.47 [0.19,0.75]

ρga Cov(σa, σg) 0.59 [0.39,0.78] 0.56 [0.37,0.76]

ρνp Corr(σν , σp) 0.92 [0.82,0.99] - -

Table 5.5: Posterior estimates comparison of the parameters associated with the exogenous
processes for the pre-Volcker period under indeterminacy and determinacy.

5.1.3 The Federal Reserve Leading to the Great Recession?

The framework considered in this paper also allows to shed light on the recent debate on the

conduct of U.S. monetary policy during the period between the collapse of the dot-com bubble

and the Great Recession. On the one hand, Taylor (2012) considers the headline consumer

price index (CPI) to measure the inflation rate and suggests that, by keeping the federal

fund rate too low relative to a conventional Taylor rule since the 2001, the Fed generated

economic conditions which led to the Great Recession. On the other hand, Bernanke (2015)

constructs a measure of inflation using the core personal consumption expenditure deflator

(PCE) and finds that the Fed reacted as prescribed by a conventional Taylor rule to changes

in the inflation rate.
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Doko Tchatoka et al. (2017) assess the performance of the Fed by using a structural

approach and in particular a conventional three-equation NK model in the spirit of LS. The

authors find that monetary policy was active only when the inflation rate is measured with

core PCE. However, when the same analysis is conducted using headline CPI to measure

inflation, the evidence of equilibrium indeterminacy cannot excluded.

In this section, I argue that, after accounting for the richer dynamic and stochastic struc-

ture of the SW model, the evidence of a passive monetary is overturned. As in Doko Tchatoka

et al. (2017), I focus on the period between the 2001 slump and the onset of the Great Re-

cession (2002:1-2007:3) and I use the GDP deflator to measure inflation as in SW. However,

I address the question about the conduct of U.S. monetary policy by estimating both the

small-scale model in LS and the medium-scale model of SW.71

Table 5.6 reports the (log) data densities and the corresponding marginal data densities

for the determinate and indeterminate representations using two alternative models. The

first row is in line with the result of Taylor (2012) and Doko Tchatoka et al. (2017). By

estimating the small-scale model of LS, the data provides evidence of indeterminacy with

a posterior probability of 78.8%. Nevertheless, the conclusion is reversed once richer and

more relevant propagation mechanisms and structural shocks are included. According to

the SW model, monetary policy was active and consistent with a determinate equilibrium.

Finally, Table 5.6 provides an empirical example of the identification problem described in

Section 2.1 for which missing propagation mechanisms could be misinterpreted as evidence

of indeterminacy.

71Regarding the estimation of the SW model, I use the same model as in the Section 3 and I restrict the
data to consider the sample under study. The LS model is described in Section 5.4 and I use the same data as
for SW for the observables of the model: the output gap, the inflation rate and the nominal interest rate. As
a note, since the SW model assumes the uncorrelation of the structural shocks (except the productivity and
government spending shocks), I also assume that the structural shocks of the LS model (mark-up, demand
and monetary policy shocks) are uncorrelated.
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Sample: 2002:1-2007:3 Determinacy Indeterminacy

LS model Log data density -20.48 -19.16

Posterior Model Prob (%) 21.2% 78.8%

SW model Log data density -122.20 -125.76

Posterior Model Prob (%) 97.2% 2.8%

Table 5.6: Log-data densities and the posterior model probabilities for the LS model and
the SW model using the sample period 2002:1-2007:3.

5.2 Monetary Policy, Expectations and the Propagation Mecha-

nism

In this section, I focus on the implications that the observed change in the stance of monetary

policy has on the transmission of the structural shocks of the SW model. In particular, I

study the propagation of three shocks that, as highlighted in Section 5.3, explain most of

U.S. business cycle fluctuations in the period prior to 1979: productivity, risk-premium and

monetary policy shocks.72

Productivity Shock The impact of a productivity shock has implications that differ

depending on the conduct of U.S. monetary policy. The four panels on the right of Figure

5.1 show the transmission of a (one standard deviation) productivity shock in the post-

Volcker period on the output gap, the inflation rate, the nominal interest rate and the

marginal cost incurred by firms.73 The shock generates economic activity and deflationary

pressures due to a drop in marginal cost. Under the active inflation targeting, the monetary

authority responds by lowering the policy rate by more than one-for-one. Conversely, the

four panels on the left are associated with the passive monetary policy of the Burns and

72Regarding the remaining shocks, either the propagation mechanism is mostly independent of the conduct
of monetary policy or the shocks do not play a major role for U.S. business cycles.

73The size of the shock depends on the standard deviation estimated in each of the two samples. As
found in Table 5.3, the size of the shock in the two samples before 1979 is larger that the standard deviation
estimated for the post-Volcker period.
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Burns-Miller Post-Volcker

Figure 5.1: Mean impulse responses to a productivity shock are denoted by solid lines, while
dashed lines represent the associated 90% probability intervals.

Miller chairmanship. The shock still results into a drop in marginal costs and an economic

expansion. However, the productivity shock also generates inflationary expectations that

are not suppressed by the passive monetary authority and more than compensate the drop

in marginal cost. This mechanism thus results into a self-fulfilling rise of the inflation rate.74

The corresponding increase in the nominal interest rate is gradual and not aggressive enough

to stabilize the inflation rate, therefore allowing for persistent effects on the economy.

Risk-Premium Shock The risk-premium shock represents a wedge between the policy

rate set by the central bank and the return that households receive to hold their assets. As

Figure 5.2 suggests, the shock has similar effects on the real economy regardless of the conduct

of monetary policy. A (one standard deviation) negative shock increases consumption since

the required rate of return on assets is lower. Also, the decrease in the cost of capital further

stimulates economic activity due to larger investments by firms. However, the inflation

response to the risk-premium shock depends on the conduct of monetary policy. When

monetary policy is active, firms face a higher marginal cost that maps into inflationary

pressures. When monetary policy is passive, agents observe a rise in the real interest rate

74As discussed in Section 4.2, the data favors a specification which includes the forecast error associated
with the inflation rate, ηπ,t, as a non-fundamental shock. This implies that the inflation rate is predetermined
as a function of the previous period’s conditional expectation, πt = Et−1(πt)+ηπ,t. Equivalently, the inflation
rate is not affected on impact.
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and form self-fulfilling deflationary expectations due to the convergence of the economy to its

long-run steady state. In this case, the risk-premium shock therefore dampens the inflation

rate of the economy.

Burns-Miller

Post-Volcker

Figure 5.2: Mean impulse responses to a risk-premium shock are denoted by solid lines, while
dashed lines represent the associated 90% probability intervals.

Monetary Policy Shock The bottom three panels of Figure 5.3 describe the predictions

of a contractionary monetary policy shock under the active regime of the post-Volcker period.

Output and inflation drop and revert to the steady state of the economy. When monetary

policy is indeterminate, the responses to a contractionary monetary policy shock are re-

ported in the top three panels. Economic activity is depressed. However, in line with the

empirical findings of LS, the unexpected tightening of monetary policy is associated with a

persistent inflationary effect. Agents form inflationary expectations due to the convergence

of the economy back to its long-run. These expectations are then self-fulfilled and the con-

tractionary monetary policy shock results into a persistent inflationary effect. Therefore,

Figure 5.3 highlights the differences in the impact and the transmission of structural shocks

such as an unexpected monetary policy tightening.
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Burns-Miller

Post-Volcker

Figure 5.3: Mean impulse responses to a monetary policy shock are denoted by solid lines,
while dashed lines represent the associated 90% probability intervals.

5.3 The History of U.S. Business Cycles

The interpretation of U.S. business cycle fluctuations relies on the conduct of monetary

policy. I find that for the period prior to 1979, persistent technology shocks explain the

upward trend in the inflation rate observed since the early 1960s. This result is in line

with the observation of Fernald (2014a) according to which the U.S. economy experienced a

period of exceptional growth in productivity since World War II until the oil crisis in 1973.

Mark-up shocks account for the sudden inflationary episodes related to the oil price shocks

during the early 1970s, but do not explain the persistent rise in the inflation rate. Sunspot

shocks play a minor role to explain the high macroeconomic volatility observed before 1979.

These findings indicate that the strong evidence of a passive monetary policy before 1979

lies in the persistence of the distinctive transmission mechanism of structural shocks rather

than in the quantitative relevance of non-fundamental disturbances. Regarding the period

after the Volcker disinflation, the results are in line with previous findings in the literature.

The recessionary episodes in the early 1990s and the burst of dot com bubble are mostly

explained by negative demand shocks, and mark-up shocks kept the inflation rate subdued

relative to its target level during the 1990s.
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5.3.1 Martin and the Post-Korean War Period

I first focus on the post-Korean war period that starts in 1955 and during which William Mar-

tin has been the chairman of the Fed until 1969. Figure L.1 plots the historical decomposition

of the deviations of the inflation rate from its long-run for two alternative specifications.75

The top panel of Figure 5.4 plots the decomposition under indeterminacy that is favored

by the data.76 While sunspot shocks could have potentially contributed for the model to

better match the high volatility in the inflation rate, the historical decomposition indicates

that they played no quantitative role. The rise in inflation since the early 1960s is associated

with a sequence of productivity shocks. In line with the analysis in Section 5.2 on the

persistent inflationary effects induced by positive productivity shocks, the top panel indicates

that the impact of each shock cumulated over time and explained the upward trend in the

inflation rate.77 As discussed below, this result is supported by the empirical evidence

presented in Fernald (2014a) among others.

The bottom panel reports the decomposition that results by imposing equilibrium unique-

ness as conducted in SW.78 A comparison with the top panel also suggests that the assump-

tion substantially affects the interpretation of the data. The upward trend in the inflation

rate during the 1960s is erroneously attributed to mark-up shocks. However, the results in

Section 5.1 reject the assumption, thus indicating that the correct interpretation relies on

75The historical decomposition of output growth for the two sample periods prior to 1979 is provided in
Appendix B and shows minor differences between the determinate and the indeterminate representation.

76To conduct the historical decompositions, I use the posterior means estimated for the pre-Volcker period
for each of the two local maxima found during the estimation and that are reported in Table 5.2 and 5.3.
Also, to simplify the analysis, I group the exogenous spending shock, the investment-specific shock and the
risk-premium shock as “demand” shocks. Similarly, price and wage mark-up shocks are grouped as “mark-up”
shocks.

77Monetary policy shocks had a minor impact that resulted into mildly deflationary pressures during the
early 1960s. It is useful to recall that the historical decomposition cumulates the effect of a given shock on the
inflation rate until a given date. Given the persistence of the monetary policy shocks under indeterminacy
as described in Section 5.2, a monetary policy shock can be identified as the change in the contribution to
explain the dynamics.

78Minor differences in the historical decomposition at a given year across the two panels are explained by
differences in the contribution of the initial conditions for each representation.
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the top panel.

Figure 5.4: Sample 1955-1969. Historical decomposition of the inflation rate under indeter-
minacy (top) and determinacy (bottom) at quarterly rates.

The evidence that the U.S. economy experienced exceptional growth in productivity prior

to the early 1970s is documented by Fernald (2014a) among others79. This literature points

to a wave of technological innovations as the source of a rise in growth of productivity

and therefore economic activity. In particular, when considering the quarterly time series for

Total Factor Productivity produced by Fernald (2014b), the resulting (standardized) series is

plotted in Figure 5.5 together with the smoothed productivity shocks estimated using the SW

model. The comparison indicates that the estimation of the SW model successfully identifies

the sequence of positive productivity shocks that the U.S. economy experienced starting from

the early 1960s.80 Importantly, in a passive monetary policy regime, productivity shocks

79Other work that supports this view is provided by Fernald (2014b), Gordon (2000), Davig and Wright
(2000) and Field (2003).

80The correlation between the two sequences of productivity shocks is 0.74, suggesting that the model does
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generate persistent inflationary expectations that are consistent with the observed upward

trend in inflation.
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Figure 5.5: Sample 1955:4-1969:4. Quarterly (standardized) series of Total Factor Produc-
tivity from Fernald (2014a, solid line) and of the smoothed productivity shocks from SW
model (dashed line) in percentages at quarterly rates.

5.3.2 The Burns and Miller Chairmanships

The second period begins with the chairmanship of Arthur Burns in 1970 and ends in 1979

with the conclusion of the chairmanship of William Miller. Figure 5.6 presents the historical

decomposition of the inflation rate over this sample period according to alternative monetary

policy regimes. The top panel presents the decomposition associated with indeterminacy as

supported by the data, while the bottom panel is obtained by imposing the assumption that

monetary policy successfully suppressed self-fulfilling expectations. As explained in Section

5.2, the conduct of a passive monetary policy is such that positive risk-premium shocks have

a contractionary effect on the economy but also lead agents to form inflationary expectations

that are self-fulfilling and persistent.81 Hence, a combination of demand shocks and positive

remarkably well in extracting productivity shocks that are in line with Fernald (2014b).

81The drop in the inflation rate between 1969 in Figure 5.4 and 1970 in Figure 5.6 is due to a relatively
mild recession that coincided with an attempt of the U.S. government to start closing the budget deficits of
the Vietnam War. Hence, the decomposition attributes most of the drop to the initial condition since the
economy is not at its steady state. However, as mentioned in Section 5.1.1, it is relevant to account for the
two samples separately since the balanced growth path of the economy differs substantially.
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productivity shocks sustained the high inflation observed in the late 1970s, while the spike

in 1979 is also attributed to mark-up shocks.82 Even for this sample period, sunspot shocks

have no quantitative relevance for U.S. business cycles. Conversely, the bottom panel shows

that the assumption of an active monetary policy mistakenly attributes the fluctuations in

the inflation rate exclusively to mark-up shocks.

Figure 5.6: Sample 1970-1979. Historical decomposition of the deviation of the inflation
rate from its steady state under indeterminacy (top) and determinacy (bottom) at quarterly
rates.

5.3.3 The Post-Volcker Period

Finally, I focus on the post-Volcker period and Figure 5.7 reports the historical decomposi-

tion for the output gap (top panel) and the inflation rate (bottom panel). The decomposition

is conducted under an active monetary policy as found in Section 5.1 for this sample period.

82While Figure 5.6 generally refers to demand shocks, the break down for each demand shock shows that
the contribution of the risk-premium shock is the most relevant as opposed to the government spending or
investment-specific shocks.
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The results are in line with those in SW. The economic contractions and below-target in-

flation rate of the early 1990s and 2000s are mostly explained by negative demand shocks,

while mark-up shocks maintained the inflation rate subdued during the 1990s.

Figure 5.7: Post-Volcker sample. Historical decomposition of output gap (top) and inflation
rate (bottom) at quarterly rates.

5.4 What Changed in the Early 1980s?

The work of Kim and Nelson (1999) and McConnell and Perez-Quiros (2000) first docu-

mented the lower volatility of U.S. real GDP since the early-1980s. Extensive research has

been conducted to provide explanations for the reduction in U.S. macroeconomic volatility.

Using the SW model, I investigate the validity of two prominent theories that have been

advocated to explain this empirical fact. The work by Sims and Zha (2006) suggests that

the behavior of the data changed due to a decrease in the variance of the structural shocks

since the Volcker disinflation. Primiceri (2005) finds some evidence that policy also changed,

but the role played by structural disturbances is more relevant. According to this strand
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of the literature, the reduction in volatility of U.S. macroeconomic data is not related to

monetary policy and it can therefore be considered as “good luck”.

An alternative theory has been supported by the work of Clarida et al. (2000b) and LS

among others who find evidence of an active inflation targeting since the Volcker disinflation.

The reduction in volatility can therefore be attributed to the “good policy” of the monetary

authority.

The results in Section 5.1 support both theories. The comparison of the posterior es-

timates of the structural parameters in Table 5.2 indicates that the conduct of monetary

policy changed toward a more aggressive stance in the post-Volcker period. Moreover, the

estimates of the volatility of the shocks driving the economy dropped significantly since the

early 1980s (Table 5.3). In this section, I show that, according to the SW model, both theories

contribute to explain the reduction in U.S. macroeconomic volatility.

To provide an intuition for the approach that I adopt using the SW model, I first consider

a conventional three-equation NK model such as in LS. The model is described by a dynamic

IS curve

yt = Et (yt+1)− τ (Rt − Et (πt+1)) + zd,t,

a NK Phillips Curve

πt = Et (πt+1) + κ (yt − zs,t) ,

and a monetary policy reaction function

Rt = φππt + εR,t,

where yt represents the deviation of output from its trend and the demand shock, zd,t,

and supply shock, zs,t, are autoregressive processes of the form

zd,t = ρdzd,t−1 + εd,t zs,t = ρszs,t−1 + εs,t.
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Log data density Posterior model prob

Policy and shocks -986.85 100% 100%

Shocks only -994.51 0% -

Policy only -1021.08 - 0%

Table 5.7: Marginal data densities for the three alternative specifications and the pairwise
posterior model probabilities relative to Model 1, Policy and Shocks.

To test alternative theories, I estimate different model specifications by imposing restric-

tions on sets of parameters and volatilities. In Model 1, “Policy and Shocks”, I constrain the

private sector parameters, {τ, κ}, to be the same across the period from 1955 to 1979 and

the period from 1984 to 2007. I also allow the policy parameter, φπ, the variances of the

shocks, {σd, σs}, and the autoregressive coefficients, {ρd, ρs}, to vary across the two periods.

This specification considers a combination of “good luck” and “good policy” to explain the

data. Relative to Model 1, I then consider Model 2, “Shocks only”, by further restricting the

policy parameter, φπ, thus considering the “good luck” view. Conversely, consistent with the

“good policy” theory, Model 3, “Policy only”, allows for the policy parameter to vary across

sub-periods, while constraining all the other structural parameters and variances to be con-

stant. Following the intuition provided with the conventional three-equation NK model, I

apply the same approach to estimate alternative model specifications of the SW model and

test for the validity of the “good luck” and/or “good policy” theory in the data.

Table 5.7 reports the marginal data densities obtained for the estimation of each of the

three models. The posterior model probabilities are computed as pairwise comparisons rela-

tive to Model 1, Policy and Shocks, and indicate that, based on the SW model, a combination

of both good luck and good policy is the explanation for the observed reduction in the volatil-

ity since the mid-1980s. Also, in line with the findings of Primiceri (2005), Model 2, Shocks

only, has a more relevant role rather than the theory based exclusively on the change of

monetary policy to an active stance, Model 3 Policy only.

Focusing on the estimation of Model 1, Policy and Shocks, Table 5.8 reports the poste-
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rior estimates of the constrained parameters across the two sub-samples. As expected, the

posterior distribution of the model parameters are in line with those estimated for the two

samples separately and reported in Section 5.1.

Coefficient Description Mean [ 5 , 95 ]

φ Adjustment cost 6.59 [4.75,8.48]

σc IES 1.44 [1.25,1.63]

h Habit Persistence 0.62 [0.51,0.73]

σl Labor supply elasticity 2.14 [1.37,2.91]

ξw Wage stickiness 0.84 [0.79,0.89]

ξp Price Stickiness 0.77 [0.70,0.83]

ιw Wage Indexation 0.40 [0.24,0.56]

ιp Price Indexation 0.18 [0.06,0.30]

ψ Capacity utiliz. elasticity 0.68 [0.55,0.81]

Φ Share of fixed costs 1.63 [1.50,1.75]

α Share of capital 0.22 [0.19,0.25]

π̄ S.S. inflation rate (quart.) 0.60 [0.48,0.71]

100(β−1
− 1) Discount factor 0.10 [0.04,0.16]

l̄ S.S. hours worked 0.67 [-0.29,1.55]

γ̄ Trend growth rate (quart.) 0.42 [0.39,0.45]

Table 5.8: Posterior estimates of the constrained structural parameters.

Table 5.9 and 5.10 highlight substantial differences in the posterior estimates for the

policy parameters and the exogenous processes between the two periods. Monetary policy

acted more systematically to stabilize inflation. Consistent with the findings of Sims and Zha

(2006) among others, the magnitude of the volatility of the shocks is significantly reduced

in the post-Volcker period.
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Pre-Volcker (55:4 - 79:2) Post-Volcker (84:1 - 07:3)

Coefficient Description Mean [ 5 , 95 ] Mean [ 5 , 95 ]

rπ Taylor rule inflation 0.85 [0.73,0.97] 1.80 [1.37,2.18]

ry Taylor rule output gap 0.15 [0.09,0.21] 0.05 [0.02,0.10]

r∆y Taylor rule ∆(output gap) 0.17 [0.12,0.22] 0.17 [0.12,0.21]

ρ Taylor rule smoothing 0.86 [0.80,0.91] 0.84 [0.80,0.88]

Table 5.9: Posterior estimates of policy parameters for the pre- and post-Volcker period.

Pre-Volcker (55:4 - 79:2) Post-Volcker (84:1 - 07:3)

Coefficient Description Mean [ 5 , 95 ] Mean [ 5 , 95 ]

σa Technology shock 0.54 [0.47,0.60] 0.36 [0.31,0.40]

σb Risk premium shock 0.14 [0.08,0.19] 0.15 [0.08,0.21]

σg Government sp. shock 0.53 [0.46,0.60] 0.41 [0.36,0.46]

σI Investment-specific shock 0.45 [0.35,0.56] 0.30 [0.23,0.37]

σr Monetary policy shock 0.17 [0.15,0.20] 0.12 [0.10,0.14]

σp Price mark-up shock 0.30 [0.25,0.34] 0.09 [0.07,0.11]

σw Wage mark-up shock 0.26 [0.22,0.30] 0.31 [0.25,0.37]

σν Sunspot shock 0.06 [0.01,0.11] - -

ρa Persistence technology 0.97 [0.96,0.98] 0.93 [0.89,0.96]

ρb Persistence risk premium 0.75 [0.55,0.93] 0.38 [0.05,0.71]

ρg Persistence government sp. 0.90 [0.86,0.95] 0.97 [0.95,0.98]

ρI Persistence investment-specific 0.68 [0.55,0.81] 0.74 [0.62,0.86]

ρr Persistence monetary policy 0.35 [0.20,0.51] 0.32 [0.19,0.45]

ρp Persistence price mark-up 0.24 [0.04,0.42] 0.82 [0.73,0.92]

ρw Persistence wage mark-up 0.34 [0.12,0.55] 0.69 [0.50,0.88]

µp MA price mark-up 0.77 [0.64,0.92] 0.63 [0.44,0.83]

µw MA wage mark-up 0.38 [0.21,0.57] 0.56 [0.32,0.80]

ρga Cov(σa, σg) 0.62 [0.46,0.76] 0.40 [0.22,0.57]

Table 5.10: Posterior estimates of parameters associated with the exogenous shocks for the
pre- and post-Volcker period.

6 Conclusions

The paper studies the relevance of the interactions between monetary policy and the forma-

tion of expectations for U.S. business cycle fluctuations during the post-war period. I argue
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that a quantitative assessment of the mechanisms that rationalize the behavior of the data

requires the adoption of a rich dynamic and stochastic structure such as the SW model. By

implementing the methodology of Bianchi and Nicolò (2017), this paper constitutes, to the

best of my knowledge, the first study that quantitatively investigates the role of self-fulfilling

expectations and non-fundamental disturbances for the macroeconomic instability observed

in the United States prior to 1979 in the context of a medium-scale model.

The data strongly supports the evidence of a passive monetary policy before 1979, even

when accounting for richer propagation mechanisms and additional structural shocks. Ac-

cording to this monetary regime, the transmission of structural shocks is altered and crucially

depends on the de-anchoring of expectations that instead are self-fulfilling.

The quantitative relevance of the role of self-fulfilling expectations and non-fundamental

disturbances provides an explanation for U.S. business cycle that differs from previous stud-

ies such as SW in which these mechanisms are excluded a priori. While in the latter the

run-up in inflation from the early 1960s to 1979 is attributed exclusively to mark-up shocks,

the transmission mechanism based on self-fulfilling expectations provides an alternative ex-

planation. Productivity shocks generated economic activity and self-fulfilling inflationary

pressures that account for the rise in inflation in the 1960s. Mark-up shocks have quantita-

tive importance to explain the sudden rise in inflation during the oil crisis of the 1970s. The

high volatility before 1979 is explained by large structural shocks, while non-fundamental

sunspot shocks play no quantitative role.

Extensions of this work would explore the possibility of accounting not only for dynamic

indeterminacy, but also for static indeterminacy (i.e. multiplicity of steady states). Based on

these cointegrating properties of the data (Beyer and Farmer, 2007b), Farmer and Platonov

(2016) develop a micro-founded model that accounts for the possibility of observing multiple

steady-state unemployment rates.83 The three-equations version of the model corresponds

83Beyer and Farmer (2007b) study the low frequency comovements in unemployment, inflation and the
federal funds rate and find that the data is well described by cointegrating relationships. This evidence raises
doubts about the validity of the natural rate hypothesis on which conventional NK models such as SW rely
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to the structural representation studied in Farmer (2012a). The model is equivalent to the

conventional three-equation NK model in which the NK Phillips curve is replaced by a ’belief

function’ that describes how agents form expectations about future nominal income growth.

In Farmer and Nicolò (2018), we show that the reduced-form representation corresponds

to a cointegrated Vector Error Correction Model (VECM) and the model outperforms the

conventional three-equation NK model in fitting the data before and after 1979.

An interesting avenue of research extends the proposed alternative framework to a medium-

scale model that also displays multiplicity of steady states and therefore maps into a VECM

in reduced-form. The purpose would therefore be to study whether the cointegrating prop-

erties of the proposed model would better explain the data in the post-war period relative to

a conventional NK model that displays self-stabilizing properties around the unique steady

state.

(i.e. the assumption that the long-run unemployment rate is independent of monetary and fiscal policies).
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Appendices

A Appendix I.A

Proof. [Proof of Theorem 1] Let A1 and A2 be two orthonormal row operators associated

with partitions p1 and p2;




zt

η1f,t

η1n,t



= A1



zt

ηt


 ,




zt

η2f,t

η2n,t



= A2



zt

ηt


 . (A1)

We assume that the operators, Ai have the form

Ai =




I
l×l

0

0 Ãi
p×p


 , (A2)

where Ãi is a permutation of the columns of an Ip identity matrix. Premultiplying

the vector [zt, ηt]
T by the operator Ai permutes the rows of ηt while leaving the rows of

zt unchanged. Define matrices Ωff and Ωzf for i ∈ {1, 2} to be the new terms in the

fundamental covariance matrix,

E







zt

ηif,t







zt

ηif,t




T
 =




Ωzz Ωzf

Ωfz Ωff


 .

Next, use (3.1) and (3.2) to write the non-fundamentals as linear functions of the fundamen-

tals,

ηin,t = Θi
zzt +Θi

fη
i
f,t, (A3)

where

Θi
z ≡ −

(
Π̃i

2n

)−1

Ψ̃2, and Θi
f ≡ −

(
Π̃i

2n

)−1

Π̃i
2f , (A4)
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and define the matrix Di,

Di =




I
l×l

0
l×m

0
m×l

I
m×m

Θi
z

(p−m)×l

Θi
f

(p−m)×m



. (A5)

Using this definition, the covariance matrix of all shocks, fundamental and non-fundamental,

has the following representation,

E







zt

ηif,t

ηin,t







zt

ηif,t

ηin,t




T


= Di




Ωzz Ωzf

Ωfz Ωff


DiT . (A6)

We can also combine the last two row blocks of Di and write Di as follows

Di =




I
l×l

0
l×m

Di
21

p×l

Di
22

p×m


 , (A7)

where,

Di
21 =




0
m×l

Θi
z

(p−m)×l


 , Di

22 =




I
m×m

Θi
f

(p−m)×m


 . (A8)

Using (A1) and the fact that Ai is orthonormal, we can write the following expression for

the complete set of shocks


zt

ηt


 = AiT




zt

ηif,t

ηin,t



. (A9)
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Using equations (A6) and (A9), it follows that

E






zt

ηt






zt

ηt




T
 = BiW iBiT , for all pi ∈ P, (A10)

where

W i ≡




Ωzz Ωzf

Ωfz Ωff


 , (A11)

and

Bi ≡ AiTDi =



I 0

0 Ãi







I 0

Di
21 Di

22


 =




I 0

Bi
21 Bi

22


 . (A12)

Using this expression, we can write out equation (A10) in full to give,

E






zt

ηt






zt

ηt




T
 =




I 0

Bi
21 Bi

22







Ωzz Ωzf

Ωfz Ωff






I BiT

21

0 BiT
22


 . (A13)

We seek to establish that for any partition pi, parameterized by matrices Ωff , and Ωzf that

there exist matrices Ωff and Ωzf for all partitions pj ∈ P, j 6= i, such that

Ω = E






zt

ηt






zt

ηt




T
 = BiW iBiT = BjW jBjT . (A14)

To establish this proposition, we write out the elements of (A13) explicitly. Since W i and

Bi are symmetric we need consider only the upper-triangular elements which give three

equations in the matrices of Ωzf and Ωff ,

Ω11 = Ωzz,

Ω12 = ΩizzB
iT
21 + ΩzfB

iT
22 , (A.1)

Ω22 = Bi
21Ω

i
zzB

iT
21 + 2Bi

21ΩzfB
iT
22 +Bi

22ΩffB
iT
22 .
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The first of these equations defines the covariance of the fundamental shocks and it holds

for all i, j. Now define

a = vec (Ωzz) , xi = vec (Ωzf) , yi = vec (Ωff ) . (A16)

Using the fact that

vec (ABC) =
(
CT ⊗ A

)
vec (B) , (A17)

we can pass the vec operator through equation (A.1) and write the following system of linear

equations in the unknowns xj and yj,

Si



xi

yi


+ T ia = Sj



xj

yj


+ T ja, (A18)

Sk =



(
Bk

22 ⊗ I
)

0
(
Bk

22 ⊗Bj
21

) (
Bk

22 ⊗ Bk
22

)


 , T k =



(
Bk

21 ⊗ I
)

(
Bk

21 ⊗ Bk
21

)


 , k ∈ {i, j} . (A19)

It follows from the assumption that the equilibrium is regular that Sj has full rank for

all j hence for any permutation pi, parameterized by {xi, yi}we can find an alternative

permutation pj with associated parameterization {xj , yj} ,



xj

yj


 =

(
Sj
)−1


Si



xi

yi


+

[
T i − T j

]
a


 , (A20)

that gives the same covariance matrix Ω̃ for the fundamental and non-fundamental shocks.
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B Appendix I.B

Proof. [Proof of Lemma 1] We seek to characterize the full set of solutions to the equation,

Ψ̃2
n×ℓ

zt
ℓ×1

+ Π̃2
n×p

ηt
p×1

= 0. (B1)

Let U1, V and D11 characterize the singular value decomposition of Π̃2,

Π̃2
n×p

≡ U1
n×n

[
D11
n×n

0
n×m

]
V T

p×p
, (B2)

where we partition the matrix V as

V =

[
V1
p×n

V2
p×m

]
,

Let θFKN characterize a regular indeterminate equilibrium for some partition pi and we

partition ηt into two mutually exclusive subsets, ηif,t and ηin,t such that ηif,t ∪ ηin,t = ηt.

From Appendix A, equation A3, we write the non-fundamentals ηin,t as functions of the

fundamentals and where Θi
z and Θi

f are functions of θ1,

ηin,t
n×1

= Θi
z

n×ℓ

zt
ℓ×1

+ Θi
f

n×m

ηif,t
m×1

. (B3)

Equation (B3) connects the non-fundamental shocks ηin,t to the fundamental shocks
[
zt, η

i
f,t

]

in the FKN equilibrium. Equation (4.9) reproduced below as (B4), characterizes the addi-

tional equations that define an LS equilibrium,

ηt
p×1

= V1
p×n

N
n×ℓ

zt
ℓ×1

+ V2
p×m

Mz
m×ℓ

zt
ℓ×1

+ V2
p×m

ζt
m×1

, (B4)

where N ≡ −D−1
11 U

T
1 Ψ̃2. To establish the connection between the LS and FKN represen-
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tations we split the equations of (B4) into two blocks

ηin,t
n×1

= V i
1,n

n×n

N
n×ℓ

zt
ℓ×1

+ V i
2,n

n×m

Mz
m×ℓ

zt
ℓ×1

+ V i
2,n

n×m

ζt
m×1

(B5)

ηif,t
m×1

= V i
1,f

m×n

N
n×ℓ

zt
ℓ×1

+ V i
2,f

m×m

Mz
m×ℓ

zt
ℓ×1

+ V i
2,f

m×m

ζt
m×1

(B6)

where for j = 1, 2, the matrices V i
j,f and V i

j,n are composed of the row vectors of Vj which, ac-

cording to partition pi, correspond to the non-fundamental shocks included as fundamental,

ηif,t, and those that are still non-fundamental, ηin,t.

Using (B3) to replacing ηin,t in (B5) and combining with (B6)




Θi
f

n×m

Im


 ηif,t
m×1

= V i
1

p×n

N
n×ℓ

zt
ℓ×1

−




Θi
z

n×ℓ

0
m×ℓ


 zt
ℓ×1

+ V i
2

p×m

Mz
m×ℓ

zt
ℓ×1

+ V i
2

p×m

ζt
m×1

, (B7)

where

V i
j

p×n

≡



V i
j,n

n×n

V i
j,f

m×n


 .

Premultiplying (B7) by (V i
2 )
T

and exploiting the fact that V is orthonormal, leads to the

equation

Gi

m×m
ηif,t
m×1

= H i

m×ℓ
zt
ℓ×1

+Mz
m×ℓ

zt
ℓ×1

+ ζt
m×1

, (B8)

where

Gi

m×m
≡
(
V i
2

)T
m×p




Θi
f

n×m

Im




p×m

, and H i

m×ℓ
≡
(
V i
2

)T
m×p

V i
1

p×n

N
n×ℓ

−
(
V i
2

)T
m×p




Θi
z

n×ℓ

0
m×ℓ




p×l

. (B9)

Rearranging (B8) and defining

Si
m×ℓ

≡ H i

m×ℓ
+Mz

m×ℓ
(B10)

167



gives

ζt
m×1

= Gi

m×m
ηif,t
m×1

− Si
m×ℓ

zt
ℓ×1
, (B11)

which is the expression we seek.

C Appendix I.C

Proof. [Proof of Theorem 2] Let θFKN = {θ1, θ2} characterize an FKN equilibrium. From

(B8), which we repeat below omitting the superscript i to reduce notation,

G
m×m

ηf,t
m×1

= H
m×ℓ

zt
ℓ×1

+Mz
m×ℓ

zt
ℓ×1

+ ζt
m×1

. (C1)

Post-multiplying this equation by zTt and taking expectations gives

G
m×m

Ωfz
m×ℓ

= H
m×ℓ

Ωzz
ℓ×ℓ

+Mz
m×ℓ

Ωzz
ℓ×ℓ

= S
m×ℓ

Ωzz
ℓ×ℓ

, (C2)

which represents m× ℓ linear equations in the m× ℓ elements of vec (Mz) as functions of the

elements of H , G and Ωzz, (these are functions of θ1), and Ωfz (these are elements of θ2).

Applying the vec operator to (C2), using the algebra of Kronecker products, and rearranging

terms gives the following solution for the parameters vec (Mz),

vec (Mz)
(m×ℓ)×1

=

(Ωzz ⊗ Im)
−1

(m×ℓ)×(ℓ×m)

[
(Iℓ ⊗G)

(m×ℓ)×(ℓ×m)

vec (Ωfz)
(m×ℓ)×1

− (Iℓ ⊗H)
(m×ℓ)×ℓ2

vec (Ωzz)
ℓ2×1

]
. (C3)

Using equation (C3) we can construct an expression for the elements of S as functions of θ1

and θ2. Post-multiplying equation (B11) by itself transposed, and taking expectations, we

have

Ωζζ
m×m

= G
m×m

Ωff
m×m

GT

m×m
− G

m×m
Ωfz
m×ℓ

ST
ℓ×m

− S
m×ℓ

Ωzf
ℓ×m

GT

m×m
+ S

m×ℓ
Ωzz
ℓ×ℓ

ST
ℓ×m

(C4)
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= G
m×m

Ωff
m×m

GT

m×m
− S

m×ℓ
Ωzz
ℓ×ℓ

ST
ℓ×m

where the last equality is obtained using (C2). The terms on the RHS of (C4) are all

functions of the known elements of θ1 and θ2. Since the matrix Ωζζ is symmetric, this gives

m× (m+ 1) /2 equations that determine the parameters of vec (Ωζζ). This establishes that

every θFKN ∈ ΘFKN defines a unique parameter vector θLS ∈ ΘLS. To prove the converse,

solve equation (C3) for vec (Ωfz) as a function of θ1 and the elements of Mz and apply the

vec operator to (C4) to solve for vec (Ωff ) in terms of θ1 and vec (Ωζζ).

D Appendix I.D

To run the simulation of the New-Keynesian model in Lubik and Schorfheide (2004) under

indeterminacy, we need to compute the matrices Gi, H i and Si. We proceed as follows.

First, we apply the QZ decomposition to the representation of the model

Γ0(θ)Xt = Γ1(θ)Xt−1 +Ψ(θ)zt +Π(θ)ηt, (D1)

where Γ0(θ), Γ1(θ),Ψ(θ) and Π(θ) are described in Section 2. Let

Γ0 = QSZT , and Γ1 = QTZT , (D2)

be the QZ decomposition of {Γ0,Γ1} where Q and Z are k × k orthonormal matrices and

S and T are upper triangular and possibly complex. The resulting transformed parameters

are

Ψ̃ = QTΨ, and Π̃ = QTΠ, (D3)

which then allow us to define the equation connecting fundamental and non-fundamental
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errors

Ψ̃2
n×ℓ

zt
ℓ×1

+ Π̃2
n×p

ηt
p×1

= 0, (D4)

where Ψ̃2 and Π̃2 are described in Section 2. For the New-Keynesian model in Lubik and

Schorfheide (2004) the degree of indeterminacy m = (p− n) equals 1 since the number

of non-fundamental shocks is p = 2, while the number of generalized eigenvalues that are

greater than or equal to 1 is n = 1.

Second, we follow Lubik and Schorfheide (2004) and apply the singular value decompo-

sition as described in Section 4

Π̃2
n×p

≡ U1
n×n

[
D11
n×n

0
n×m

]
V T

p×p
. (D5)

and we compute

N
n×ℓ

≡ −D−1
11

n×n

UT
1

n×n

Ψ̃2.
n×ℓ

(D6)

Third, we partition ηt into two mutually exclusive subsets, ηf,t and ηn,t such that ηf,t∪ηn,t = ηt

and partition Π̃2 conformably so that

Π̃2
n×p

ηt
p×1

=

[
Π̃i

2f
n×m

Π̃i
2n

n×n

]


ηif,t
m×1

ηin,t
n×1


 . (D7)

For the New-Keynesian model we are considering there are two possible partitions i = {1, 2}

for which we include the non-fundamental shock η1,t = xt − Et−1 [xt] or η2,t = πt − Et−1 [πt]

respectively as fundamental shock. We then compute the matrices Θi
z and Θi

f as defined in
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(A4) and which we report here

Θi
z ≡ −

(
Π̃i

2n

)−1

Ψ̃2, and Θi
f ≡ −

(
Π̃i

2n

)−1

Π̃i
2f (D8)

Fourth, we partition V

V =

[
V1
p×n

V2
p×m

]
, (D9)

and define the matrices

V i
j

p×n

≡



V i
j,n

n×n

V i
j,f

m×n


 , (D10)

where the matrices V i
j,f and V i

j,n are composed of the row vectors of Vj which, according to

partition pi, correspond to the non-fundamental shocks included as fundamental, ηif,t, and

those that are still non-fundamental, ηin,t.

Finally, we use the definitions of Gi and H i

Gi

m×m
≡
(
V i
2

)T
m×p




Θi
f

n×m

Im




p×m

, and H i

m×ℓ
≡
(
V i
2

)T
m×p

V i
1

p×n

N
n×ℓ

−
(
V i
2

)T
m×p




Θi
z

n×ℓ

0
m×ℓ




p×l

. (D11)

for each partition i = {1, 2}. Therefore, we obtain the matrix

Si
m×ℓ

= H i

m×ℓ
+Mz

m×ℓ
, (D12)

where the m × ℓ matrix Mz captures the correlation of the forecast errors with the funda-

mentals in Lubik and Schorfheide (2004) as explained in Section 4.1.
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E Appendix II.A

In this Appendix, we show how the normalization chosen in Lubik and Schorfheide (2004)

maps into the methodology we propose. Recall the following notation: p denotes number

of expectational variables, n is the number of explosive roots and m = (p − n) are the

corresponding degrees of indeterminacy.

As in Lubik and Schorfheide (2004), consider the following structural model

Γ0(θ)Xt = Γ1(θ)Xt−1 +Ψ(θ)εt +Π(θ)ηt (E.1)

where Xt is the vector of endogenous variables, εt is the vector of exogenous shocks, ηt is

the vector of endogenous shocks and we assume that the matrix Γ0 is invertible. The system

can therefore be written as

Xt = Γ∗

1(θ)Xt−1 +Ψ∗(θ)εt +Π∗(θ)ηt (E.2)

Lubik and Schorfheide (2004) find that, if it exists, the solution to express the forecast

errors as a function of the exogenous shocks εt and sunspot shocks ζt takes the form

ηt
p×1

=

(
−V1
p×n

D−1
11

n×n

UT
1

n×n

Ψ̃2
n×ℓ

+ V2
p×m

M̃
m×ℓ

)
εt
ℓ×1

+ V2
p×m

Mζ
m×m

ζt
m×1

.

More compactly,

ηt
p×1

= V1
p×n

N
n×ℓ

εt
ℓ×1

+ V2
p×m

M̃
m×ℓ

εt
ℓ×1

+ V2
p×m

Mζ
m×m

ζt
m×1

, (E.3)

where

N(θ)
n×ℓ

≡ −D−1
11 (θ)
n×n

UT
1 (θ)
n×n

Ψ̃2(θ).
n×ℓ

is a function of the parameters of the model.
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Combining (E.2) with (E.3), the solution that appears in eq. (26) of their paper is

Xt = Γ∗

1(θ)Xt−1 + [Ψ∗(θ) + Π∗(θ)V1(θ)N(θ)] εt +Π∗(θ)V2(θ)
(
M̃εt +Mζζt

)
(E.4)

Determinacy Under determinacy, Lubik and Schorfheide (2004) show that V2(θ) = 0.

Hence, the endogenous variables only respond to exogenous shocks. From (E.4) the solution

is

Xt = Γ∗

1(θ)Xt−1 + [Ψ∗(θ) + Π∗(θ)V1(θ)N(θ)] εt (E.5)

Using the augmented representation that we propose in this paper, the solution under

determinacy is equivalent to (E.5). Indeed, we are appending a stationary process which

constitutes a separate block and does not interact with the endogenous variables of the

model.

Indeterminacy Under indeterminacy, Lubik and Schorfheide (2004) show that V2(θ) 6= 0

and the endogenous variables not only respond to exogenous shocks but also to the sunspot

shock ζt. Their solution is in eq. (E.4) and reported below

Xt = Γ∗

1(θ)Xt−1 + [Ψ∗(θ) + Π∗(θ)V1(θ)N(θ)] εt +Π∗(θ)V2(θ)
(
M̃εt +Mζζt

)
. (E.6)

Now we consider the solution under indeterminacy that we obtain using our methodology.

Also in our case we assume that Γ0 is invertible and the system in (E.1) can be written as

Xt = Γ∗

1(θ)Xt−1 +Ψ∗(θ)εt +Π∗(θ)ηt. (E.7)

Nevertheless, we can show that, if it exists, the solution to express to the endogenous
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shocks as a function of the exogenous shocks εt and sunspot shocks νt takes the form

ηt
p×1

= C1(θ)
p×l

εt
ℓ×1

+ C2(θ)
p×m

νt
m×1

. (E.8)

where C1(θ)
p×l

≡ −




(
Π̃n,2(θ)

)−1

n×n

Ψ̃2(θ)
n×l

0
m×l


 and C1(θ)

p×m

≡ −




(
Π̃n,2(θ)

)−1

n×n

Π̃f,2(θ)
n×m

−I
m×m


.

Combining (E.7) and (E.8), we obtain the following reduced form

Xt = Γ∗

1(θ)Xt−1 + [Ψ∗(θ) + Π∗(θ)C1(θ)] εt +Π∗(θ)C2(θ)νt. (E.9)

Identification As shown in the previous section, the solution under indeterminacy pro-

vided by Lubik and Schorfheide (2004) is derived by combining the following system of

equations

Xt = Γ∗

1(θ)Xt−1 +Ψ∗(θ)εt +Π∗(θ)ηt (E.10)

with the solution for the endogenous shocks as a function of the exogenous shocks εt and

the sunspot shock ηt

ηt
p×1

= V1(θ)
p×n

N(θ)
n×ℓ

εt
ℓ×1

+ V2(θ)
p×m

M̃
m×ℓ

εt
ℓ×1

+ V2(θ)
p×m

Mζ
m×m

ζt
m×1

, (E.11)

Similarly, the solution obtained using our methodology is derived by combining the same

system of equations in (E.10) with our solution for the endogenous shocks

ηt
p×1

= C1(θ)
p×l

εt
ℓ×1

+ C2(θ)
p×m

νt
m×1

. (E.12)

So, in order to understand how the identification strategy implemented in Lubik and

Schorfheide (2004) maps into our solution, we only have to study the solutions for the

endogenous shocks expressed in (E.11) and (E.12).
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Lubik and Schorfheide (2004) consider a three equation NK model for which the degree

of indeterminacy is at most 1 (i.e. m = 1). This implies that Mζ , ζt and νt are scalars.

Moreover, the authors assume the following two normalizations

E(εtζ
′

t) = 0, (E.13)

Mζ = 1. (E.14)

To understand the mapping of these normalizations, we equate the RHS of (E.11) and

(E.12),

(
V1N + V2M̃

)
εt + V2Mζζt = C1εt + C2νt. (E.15)

Pre-multiplying by V ′

2 and recalling that the matrix V2 is orthonormal,

Mζζt =
(
V ′

2C1 − V ′

2V1N − M̃
)
εt + V ′

2C2νt. (E.16)

Post-multiplying by ζ ′t, we take expectation and consider the normalization in (E.13) to

obtain

Mζσ
2
ζ = (V ′

2C2) σνζ . (E.17)

Noting that

(
V ′

2
1×p

C2
p×1

)
is also a scalar

σνζ =
Mζ

(V ′

2C2)
σ2
ζ . (E.18)

So, the normalization in (E.13) corresponds to specify a relationship between the covari-

ance of the sunspot shock introduced in Lubik and Schorfheide (2004), ζt, and the sunspot

shock that we specify in our methodology, νt, with the standard deviation of the sunspot

shock, ζt, scaled by Mζ . Therefore, the normalization Mζ = 1 in (E.14) is such that the

relationship in (E.18) becomes
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σνζ = (V ′

2C2)
−1
σ2
ζ . (E.19)

F Appendix II.B

We prove the equivalence between the parametrization of the Lubik-Schorfheide indetermi-

nate equilibrium θLS ∈ ΘLS and the Bianchi-Nicolò equilibrium parametrized by θBN ∈ ΘBN .

In particular, we show that there is a unique mapping between the linear restrictions imposed

in each of the two methodologies on the forecast errors to guarantee the existence of at least

a bounded solution. As shown in Section 2.2.1, the method by Lubik and Schorfheide (2003)

imposes the following restrictions on the non-fundamental shocks, ηt, as a function of the

exogenous shocks, εt, and the sunspot shocks introduced in their specification, ζt,

ηt
p×1

=


 V1
p×n

N
n×ℓ

+ V2
p×m

M̃
m×ℓ
m×ℓ


 εt

ℓ×1
+ V2

p×m
ζt
m×1

. (F.1)

Using the methodology proposed in this paper, Section 2.2.2 shows that the restrictions

on the non-fundamental shocks, ηt, as a function of the exogenous shocks, εt, and the sunspot

shocks, vt, are

ηt
p×1

= C1
p×ℓ

εt
ℓ×1

+ C2
p×m

νt
m×1

, (F.2)

where

C1 ≡ −



Π̃−1
n,2Ψ̃2

0


 and C2 ≡ −



Π̃−1
n,2Π̃f,2

−I


 .

Post-multiplying equation (F.1) and (F.2) by εTt and taking expectation,

Ωηε
p×l

= V1
p×n

N
n×ℓ

Ωεε
ℓ×l

+ V2
p×m

M̃
m×ℓ

Ωεε
ℓ×l
,

Ωηε
p×l

= C1
p×ℓ

Ωεε
ℓ×l

+ C2
p×m

Ωνε
m×l
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Pre-multiplying by V T
2 and equating the equations,

M̃
m×ℓ

Ωεε
ℓ×l

=

(
V T
2

m×p

C1
p×ℓ

− V T
2

m×p

V1
p×n

N
n×ℓ

)
Ωεε
ℓ×l

+ V T
2

m×p

C2
p×m

Ωνε
m×l

.

Using the properties of the vec operator, the following result holds

vec(M̃)
(m×ℓ)×1

= (Ωεε ⊗ Im)
−1

(m×ℓ)×(m×ℓ)

[
[
Il ⊗

(
V T
2 C1 − V T

2 V1N
)]

(m×ℓ)×ℓ2

vec (Ωεε)
ℓ2×1

+
(
Il ⊗ V T

2 C2

)
(m×ℓ)×(m×ℓ)

vec (Ωνε)
(m×ℓ)×1

]
.

(F.3)

Also, considering again equation (F.1) and (F.2), we post-multiply by ζTt and take ex-

pectation,

Ωηζ
p×m

= V2
p×m

Ωζζ
m×m

,

Ωηζ
p×m

= C2
p×m

Ωνζ
m×m

Pre-multiplying both equations by V T
2 and equating them,

Ωζζ
m×m

= Ωζν
m×m

(
V T
2 C2

)T
m×m

. (F.4)

Finally, to obtain an expression for Ωζν , we post-multiply equation (F.1) and (F.2) by

νTt and taking expectations

Ωην
p×m

=

(
V1
p×n

N
n×ℓ

+ V2
p×m

M̃
m×ℓ

)
Ωεν
ℓ×m

+ V2
p×m

Ωζν
m×m

,

Ωην
p×m

= C1
p×ℓ

Ωεν
ℓ×m

+ C2
p×m

Ωνν
m×m

Pre-multiplying both equations by V T
2 and solving for Ωζν ,

Ωζν
m×m

=

(
V T
2

m×p

C1
p×ℓ

− V T
2

m×p

V1
p×n

N
n×ℓ

− M̃
m×ℓ

)
Ωεν
ℓ×m

+
(
V T
2 C2

)
m×m

Ωνν
m×m

. (F.5)
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Post-multiplying (F.5) by
(
V T
2 C2

)T
m×m

and using (F.4), then

Ωζζ
m×m

=

(
V T
2

m×p

C1
p×ℓ

− V T
2

m×p

V1
p×n

N
n×ℓ

− M̃
m×ℓ

)
Ωεν
ℓ×m

(
V T
2 C2

)T
m×m

+
(
V T
2 C2

)
m×m

Ωνν
m×m

(
V T
2 C2

)T
m×m

. (F.6)

Therefore, equation (F.3) and (F.6) define the one-to-one mapping between the parametriza-

tion in Lubik and Schorfheide {Θ,ΘLS} and the parametrization in Bianchi and Nicolò

{Θ,ΘBN}.

G Appendix II.C

In this section, we provide the derivation for the solutions under the two alternative repre-

sentations discussed in Section 3.1 are provided.

a) Under determinacy, it is possible to use standard solution algorithms, such as Sims

(2001b).

Consider the three equations NK model in (3.1)∼(3.3) and reported below as equations

(G.1)∼(G.5)

xt = Et(xt+1)− τ(Rt − Et(xt+1)) (G.1)

πt = βEt−1(πt+1) + κxt (G.2)

Rt = ψπt + εR,t (G.3)

η1,t = xt − Et−1(xt) (G.4)

η2,t = πt − Et−1(πt) (G.5)

The LRE model can be written in the following matrix form

Γ0Xt = Γ1Xt−1 +Ψzt +Πηt, (G.6)

178



where Xt = (xt, πt, Et(xt+1), Et(πt+1))
T , εt = (εR,t) and ηt = (η1,t, η2,t)

T .

The solution to (G.6) can be found following four steps. First, since the matrix Γ0 is

non-singular, the LRE model in (G.6) can be written as

Xt = Γ∗

1Xt−1 +Ψ∗εt +Π∗ηt, (G.7)

where

Γ∗

1 ≡ Γ−1
0 Γ1 =




02×2 I2×2

02×2 A2×2



, A ≡




1 + κτ
β

τ
(
ψ − 1

β

)

−κ
β

1
β




Ψ∗ ≡ Γ−1
0 Ψ =




0

0

τ

0




, Π∗ ≡ Γ−1
0 Π =




I2×2

A2×2




Equivalently, the equations in (43) are

xt = Et−1(xt) + η1,t (G.8)

πt = Et−1(πt) + η2,t (G.9)

ξt = Aξt−1 +



τ

0


 εR,t + Aηt (G.10)

where ξt = (Et(xt+1), Et(πt+1))
T .

Second, in order to study the stability of the system, the matrix A is decomposed using

the Jordan decomposition84 and (G.10) can be written as

84The Jordan decomposition of the matrix A is A ≡ JΛJ−1, where the diagonal elements of the matrix Λ
are the roots of the system.
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J−1ξt = ΛJ−1ξt−1 + J−1



τ

0


 εR,t + J−1Aηt, (G.11)

where

J−1 =



−κ
φ

− a2
2φ

κ
φ

β+φ+κτ−1
2φ




and

Λ =



λ1 0

0 λ2


 , λ1,2 =

(1 + β + κτ)± φ

2β
(G.12)

where a2 ≡ (β − φ + κτ − 1), φ ≡ [(1 + β + κτ)2 − 4β(1 + κτψ)]−1/2 and the diagonal

elements of the matrix Λ are the roots of the system and under determinacy |λ1,2| > 1.

Third, restrictions which eliminate the explosive dynamics of the system have to be

imposed. Under determinacy both roots of (G.11) are unstable, which requires to impose

the following conditions

ξt =



Et(xt+1)

Et(πt+1)


 = 02×1 (G.13)

ηt = −A−1



τ

0


 εR,t = −

τ

1 + κτψ



1

κ


 εR,t (G.14)

Fourth, the restrictions imposed on the endogenous variables and on the forecast errors

are combined with the equations which define the remaining endogenous variables, that is

(G.8) and (G.9). This implies



xt

πt


 = ηt = −

τ

1 + κτψ



1

κ


 εR,t. (G.15)

b) Here we provide the derivation for the solution in Section 3.1 for the methodology pro-
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posed in this paper.

The proposed methodology consists in appending to the original LRE model the following

equation85

ωt =
1

α
ωt−1 + νt − η2,t,

where without loss of generality α ≡ ψ > 1. Denoting the newly defined vector of

endogenous variables X̂t ≡ (Xt, ωt)
T = (xt, πt, Et(xt+1), Et(πt+1), ωt)

T , and the newly defined

vector of exogenous shocks ε̂t ≡ (εt, vt)
T = (εR,t, vt)

T , the augmented representation of the

LRE model is

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ẑt + Π̂ηt. (G.16)

Given (G.16), the same steps are followed to obtain the solution to the system. First,

the system in (G.16) is pre-multiplied by Γ̂−1
0 to obtain

X̂t = Γ̂∗

1X̂t−1 + Ψ̂∗ε̂t + Π̂∗ηt, (G.17)

where

Γ̂∗

1 ≡




Γ∗

1 04×1

01×4

1
α



, Ψ̂∗ ≡




Ψ∗ 04×1

0 −1



, Π̂∗ ≡




Π∗

4×2

0 1



.

85Note that m = 1, thus implying that only one equation should be appended. Also, since Farmer et al.
(2015) show that the choice of which forecast errors should be redefined as fundamental, it is without loss
of generality that we consider the case when η2,t is redefined.
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Hence, defining ξ̂t ≡ (ξt, ωt)
T = (Et(xt+1), Et(πt+1), ωt)

T , the equations in (G.17) can be

written as

xt = Et−1(xt) + η1,t (G.18)

πt = Et−1(πt) + η2,t (G.19)

ξ̂t = Â ξ̂t−1 +




τ 0

0 0

0 1



ẑt +




A2×2

0 −1



ηt (G.20)

where Â =



A 0

0 α


.

Second, the matrix Â is decomposed using the Jordan decomposition and the system in

(G.20) can be written as

Ĵ−1ξ̂t = Λ̂Ĵ−1ξ̂t−1 + Ĵ−1




τ 0

0 0

0 1



ẑt + Ĵ−1




A2×2

0 −1



ηt, (G.21)

where

Ĵ−1 ≡




01×2 1

J−1 02×1



, Λ̂ ≡



λ3 0

0 Λ


 =




λ3 0

λ1

0 λ2




and λ1,2 are the same as in (G.12) and λ3 = (1/α) = (1/ψ) < 1.

Third, since |λ1,2| > 1 and λ3 < 1, then the conditions which guarantee the boundedness

of the solution are imposed on the last two equations of (G.21). This implies

ξt =



Et(xt+1)

Et(πt+1)


 = 02×1 (G.22)
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ηt = −
τ

1 + κτψ



1 0

κ 0






εR,t

νt


 (G.23)

Fourth, combining these restrictions with the first equation of (G.21) which displays

stable dynamics and with (G.18) and (G.19), the obtained solution is

ωt =
1

α
ωt−1 +

[
τκ

1+κτψ
1

]


εR,t

νt


 (G.24)



xt

πt


 = ηt = −

τ

1 + κτψ



1 0

κ 0






εR,t

νt


 . (G.25)

H Appendix II.D

In Section 3.2, the NK model is indeterminate and the derivations for the solutions under

two alternative representations are provided.

c) To select a unique, bounded rational expectation equilibrium, we follow the solution

method suggested by Farmer et al. (2015) when the forecast error for the deviations of

inflation from its steady state is included as newly defined fundamental shock. Defining

ε̃t = (εt, η2,t)
T , then the LRE can be written as

Γ0Xt = Γ1Xt−1 +Ψf ε̃t +Πnη1,t. (H.1)

The same steps as in Section F are also applied here. First, by pre-multiplying (H.1)

by Γ−1
0 , we obtain the following equations
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xt = Et−1(xt) + η1,t (H.2)

πt = Et−1(πt) + η2,t (H.3)

ξt = Aξt−1 +



τ τ

(
ψ − 1

β

)

0 1
β


 ε̃t +



1 + κτ

β

−κ
β


 η1t (H.4)

where the matrix A is the same as for the determinate case as defined in (G.10) and

therefore also its Jordan decomposition delivers the same matrices J and Λ as in (G.11) and

(G.12) and reported below

Λ =



λ1 0

0 λ2


 , λ1,2 =

(1 + β + κτ)± φ

2β
(H.5)

and

J−1 =



−κ
φ

− a2
2φ

κ
φ

β+φ+κτ−1
2φ


 .

However, the difference with the determinate case is that, while in the latter both roots

are outside the unit circle, under indeterminacy it is the case that |λ1| > 1 and |λ2| < 1.

This implies that in the third step the restrictions imposed on the system to guarantee a

bounded solution are also distinct from the determinate case. In particular, the restrictions

are imposed on the first equation of (H.4), thus obtaining the following conditions

Et(xt+1) = −
a2
2κ
Et(πt+1) (H.6)

η1,t =

[
−2βτ

a3

2κτ(1−βψ)−a2
a3κ

]


εR,t

η2,t


 (H.7)

where a1 = (β − φ + κτ + 1), a2 = (a1 − 2), a3 = (a1 + 2φ) and φ = [(1 + β + κτ)2 −

4β(1 + κτψ)]−1/2.
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Fourth, using these restrictions, the solution obtained with the methodology of Farmer

et al. (2015) is




xt

πt

Et(xt+1)

Et(πt+1)




= G
4×1
Et−1(πt) + H

4×2



εR,t

η2,t


 (H.8)

where

G
4×1

≡




− a2
2κ

1

−a1a2
4βκ

a1
2β




H
4×2

≡




−2βτ
a3

2κτ(1−βψ)−a2
a3κ

0 1

− τa2
a3

−a2(1+κτψ)
a3κ

2κτ
a3

−2(1+κτψ)
a3




.

d) The derivation of the solution provided by the proposed methodology when the model is

indeterminate closely follows the one described in Appendix B, part b). In particular,

the first two steps of the solution method are equivalent and, recalling the definition

of ξ̂t ≡ (ξt, ωt)
T = (Et(xt+1), Et(πt+1), ωt)

T and ε̂t ≡ (εt, vt)
T = (εR,t, vt)

T , equation

(G.21) is reported below as (H.9)

Ĵ−1ξ̂t = Λ̂Ĵ−1ξ̂t−1 + Ĵ−1




τ 0

0 0

0 1



ε̂t + Ĵ−1




A2×2 0

0 −1



ηt, (H.9)

where

Ĵ−1 ≡




01×2 1

J−1 02×1



, Λ̂ =



λ3 0

0 Λ


 =




λ3 0

λ1

0 λ2



.

It is however important to note that under indeterminacy not only |λ1| > 1 and |λ2| < 1

as in representation c), but also |λ3| = (1/α) = (1/ψ) > 1. Hence, the third steps imposes
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restrictions on the first two equations of (H.9), which result in the following conditions

ωt = 0 (H.10)

Et(xt+1) = −
a2
2κ
Et(πt+1) (H.11)

ηt =



−2βτ

a3

2κτ(1−βψ)−a2
a3κ

0 1






εR,t

νt


 (H.12)

Fourth, using these restrictions, the solution of the LRE model for the endogenous vari-

ables takes the following form




xt

πt

Et(xt+1)

Et(πt+1)




= G
4×1
Et−1(πt) + H

4×2



εR,t

νt


 . (H.13)
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I Appendix III.A

The Reduced Forms of the NK and FM Models

In Appendix I we find solutions to simplified versions of the two models and we show how

they are different from each other. To find closed form solutions, we set ρ = 0, η = 0, a = 1,

r̄ = 0 and ρR = 0. These simplifications allow us to solve the models by hand using a Jordan

decomposition. For more general parameter values we rely on numerical solutions that we

compute using Christopher Sim’s code, GENSYS Sims (2001b).

Solving the NK Model

Consider the following stripped down version of the NK model

yt = Et[yt+1]− (Rt −Et[πt+1])

Rt = λπt + µyy + zR,t

πt = βEt−1(πt+1) + φyt

ν1,t = yt −Et−1(yt)

ν2,t = πt − Et−1(πt)

The model can be written in the following matrix form

Γ0Xt = Γ1Xt−1 +Ψεt +Πνt, (I.1)

where Xt ≡ (yt, πt, Et(yt+1), Et(πt+1))
⊤, εt = (zR,t) and νt = (ν1,t, ν2,t)

⊤.

Defining the matrix Γ∗

1 ≡ Γ−1
0 Γ1 we may rewrite this equation,

Xt = Γ∗

1Xt−1 +Ψ∗εt +Π∗νt. (I.2)

The existence of a unique bounded solution to Equation (I.2) requires that two roots of
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the matrix Γ∗

1 are outside the unit circle. This condition is satisfied when the following

generalized form of the Taylor Principle holds,

∣∣∣∣λ+
1− β

φ
µ

∣∣∣∣ > 1.

In this case, the reduced form is an equation,

Xt = GNKXt−1 +HNKzR,t (I.3)

where HNK is a 5× 1 vector of coefficients and GNK is a 5× 5 matrix of zeros.

When the Taylor Principle breaks down, one or more elements of the vector of non-

fundamental shocks, νt, can be reclassified as fundamental. In the case considered in this

paper and favored by the data, the reduced form can be represented as

Xt = GNKXt−1 +HNK



zR,t

ν2,t


 (I.4)

where HNK is a 5× 2 vector of coefficients and GNK is a 5× 5 matrix of rank 4.

Solving the FM model

The equivalent stripped-down version of the FM model is represented by the equations,

yt = Et[yt+1]− (Rt − Et[πt+1]) ,

Rt = λπt + µyt + zR,t,

xt = Et[xt+1],

xt = yt − yt−1 + πt,

νx,t = xt − Et−1(xt).

Using the definition of xt and the Taylor Rule to eliminate πt and Rt. this can be
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rewritten as a system of three equations in the variables xt, yt and Et[xt+1],

Et[xt+1]− λxt − (µ− λ)yt = λyt−1 + zR,t

Et[xt+1]− xt = 0,

xt = Et−1(xt) + νx,t.

In matrix notation

Γ0Xt = Γ1Xt−1 +Ψεt +Πνx,t,

where Xt ≡ (Et[xt+1], xt, yt), εt = (zR,t)
⊤ and

Γ0 =




1 λ λ− µ

1 −1 0

0 1 0



, Γ1 =




0 0 λ

0 0 0

1 0 0



, Ψ =




1

0

0




Π =




0

0

1



. (I.5)

For this example the matrix Γ0 is non-singular and the system can be written as

Xt = Γ∗

1Xt−1 +Ψ∗εt +Π∗νx,t

where Γ∗

1 ≡ Γ−1
0 Γ1,Ψ

∗ ≡ Γ−1
0 Ψ and Π∗ ≡ Γ−1

0 Π.

The matrix Γ∗

1 is given by the expression

Γ∗

1 =




1 0 0

1 0 0

− 1+λ
λ−µ

0 λ
λ−µ



,

which has eigenvalues {0, 1, λ
λ−µ

}. Since the model has one non-fundamental shock, νx,t, the
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analog of the Taylor Principle requires one root of Γ∗

1 to lie outside the unit circle, that is

∣∣∣∣
λ

λ− µ

∣∣∣∣ > 1.

When the Taylor Principle holds, the reduced form is an equation of the form

Xt = GFMXt−1 +HFMzR,t (I.6)

where GFM is constructed by choosing νx,t to eliminate the unstable root. The resulting

matrix, GFM two zero roots and a root of unity.

J Appendix III.B

Dynamic Properties for generalized IS curve

We now show that the dynamic properties of the FM model depend not only on the pa-

rameters of the monetary policy reaction function but importantly also on the parameter of

relative risk aversion a. To simplify the notation, we consider the case of ρR = 0 and proceed

to solve the model as in Appendix A. The roots of the system are λ1 = λ2 = 0, λ3 = 1 and

λ4,5 =
−(λ− µ− a + 1)±

√
(λ− µ− a+ 1)2 + 4λ(a− 1)

2(a− 1)
.

Given the posterior mean of the parameter λ = 0.92 and µ = 0.99, we focus on the

approximated roots for (λ− µ) = 0. Thus, we obtain

λ4,5 =
(a− 1)±

√
(−a + 1)2 + 4λ(a− 1)

2(a− 1)
=

1

2
±

1

2

√
1 +

4λ

(a− 1)
.

We first show that the eigenvalue λ4 = 1
2
+ 1

2

√
1 + 4λ

(a−1)
is always unstable for realistic

values of the parameter λ and a. If (a− 1) > 0, then λ4 > 1. If (a− 1) < 0, then 0 < λ4 < 1
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if and only if 4λ < (1 − a) or equivalently a < 1− 4λ. For realistic values of the parameter

λ, this is never the case, implying that λ4 is always an unstable root of the model.

Given that the FM model has two forward-looking variables and that λ4 > 1, the model

is dynamically determinate if λ5 =
[
1
2
− 1

2

√
1 + 4λ

(a−1)

]
< −1. Simplifying, this condition can

be written as

a < 1 +
λ

2
.

The posterior means reported in Table 3 and 4 for both the pre- and post-Volcker period

indicate that this condition is violated, and that the dynamic properties of the FM model

crucially depend on the value of the parameter a.
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K Appendix IV.A

Appendix A reports the prior distributions of the structural parameters and volatility of the

shocks used for the estimation of the SW model.

Coefficient Description Distr. Mean Std. Dev

φ Adjustment cost Normal 4.00 1.50

σc IES Normal 1.50 0.37

h Habit Persistence Beta 0.70 0.10

σl Labor supply elasticity Normal 2.00 0.75

ξw Wage stickiness Beta 0.50 0.10

ξp Price Stickiness Beta 0.50 0.10

ιw Wage Indexation Beta 0.50 0.15

ιp Price Indexation Beta 0.50 0.15

ψ Capacity utilization elasticity Beta 0.50 0.15

Φ Share of fixed costs Normal 1.25 0.12

α Share of capital Normal 0.30 0.05

π̄ S.S. inflation rate (quart.) Gamma 0.62 0.10

100(β−1 − 1) Discount factor Gamma 0.25 0.10

l̄ S.S. hours worked Normal 0.00 2.00

γ̄ Trend growth rate Normal 0.40 0.10

rπ Taylor rule inflation Normal 1.00 0.35

ry Taylor rule output gap Normal 0.12 0.05

r∆y Taylor rule ∆(output gap) Normal 0.12 0.05

ρ Taylor rule smoothing Beta 0.75 0.10

Table K.1: Prior distributions for the structural parameters of the model.
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Coefficient Description Distr. Mean Std. Dev

σa Technology shock Invgamma 0.10 2.00

σb Risk premium shock Invgamma 0.10 2.00

σg Government sp. shock Invgamma 0.10 2.00

σI Investment-specific shock Invgamma 0.10 2.00

σr Monetary policy shock Invgamma 0.10 2.00

σp Price mark-up shock Invgamma 0.10 2.00

σw Wage mark-up shock Invgamma 0.10 2.00

σν Sunspot shock Uniform[0,1] 0.50 0.29

ρa Persistence technology Beta 0.50 0.20

ρb Persistence risk premium Beta 0.50 0.20

ρg Persistence government sp. Beta 0.50 0.20

ρI Persistence investment-specific Beta 0.50 0.20

ρr Persistence monetary policy Beta 0.50 0.20

ρp Persistence price mark-up Beta 0.50 0.20

ρw Persistence wage mark-up Beta 0.50 0.20

µp Mov. Avg. term, price mark-up Beta 0.50 0.20

µw Mov. Avg. term, wage mark-up Beta 0.50 0.20

ρga Cov(σa , σg) Normal 0.50 0.25

ρνp Corr(σν , σp) Uniform[-1,1] 0 0.57

Table K.2: Prior distributions for the exogenous processes of the model.

L Appendix IV.B

Figure L.1 plots the historical decomposition of the output gap for two alternative specifica-

tions. The panel at the top decomposes the output gap for the case of a failure to stabilize

the economy, as shown in Section 5.1. The bottom panel reports the decomposition that

results from the assumption of equilibrium uniqueness as conducted in SW. The two plots

indicate minor differences and attribute the recessions of the late 1950s to demand shocks

and the contractions of the early 1970s to a combination of mark-up and demand shocks.

Also, non-fundamental disturbances had almost no effect on the observed fluctuations in the

output gap. The similarity of the decomposition should not come as a surprise. Indeed, the

analysis conducted in Section 5.2 shows that the transmission of the structural shocks on the
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output gap is roughly invariant to the of monetary policy stance, given that the differences in

the magnitudes are due to the larger size of the estimated standard deviations of the shocks

for the pre-Volcker period.

Figure L.1: Sample 1955-1969. Historical decomposition of the output gap under indetermi-
nacy (top) and determinacy (bottom).

194



Figure L.2: Sample 1970-1979. Historical decomposition of the output gap under indetermi-
nacy (top) and determinacy (bottom).
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