Warming the World

Economic Models of Global Warming

William D. Nordhaus and Joseph Boyer

The MIT Press Cambridge, Massachusetts London, England

Contents

List of Tables vii List of Figures ix Preface xi

I Developing the RICE and DICE Models 1

- 1 Introduction 3
- 2 The Structure and Derivation of RICE-99 9
 Overview of Approach 9
 Model Description 10
 Derivation of the Equations of RICE-99 14
 Equilibrium in the Market for Carbon-Energy 24
 Policy in RICE-99 24
- Calibration of the Major Sectors 27
 Regional Specification 27
 Calibration of Production Function 41
 Exogenous Trend Parameters 46
 Carbon Supply 53
 The Carbon Cycle and Other Radiative Forcings 56
 The Climate Module 62
- 4 The Impacts of Climate Change 69 Early Impact Studies 69 The Present Approach 71 Discussion of Individual Sectors 74 Impact Indices as Functions of Temperature 89 Calibration of the RICE-99 Damage Function 94 Major Results and Conclusions 95

- 5 The DICE-99 Model 99 Model Structure 99 Calibration 101
- 6 Computational Procedures 107
 Computer Programs for RICE and DICE 107
 Solution Approach in EXCEL—RICE-99 107
 Solution Approach in GAMS—RICE-99 109
 DICE 114
 GAMS versus EXCEL 114

II Policy Applications of the RICE Model 119

- 7 Efficient Climate-Change Policies 121
 Alternative Approaches to Climate-Change Policy 121
 Detailed Description of Different Policies 123
 Major Results 127
- 8 Economic Analysis of the Kyoto Protocol 145
 Climate-Change Policy and the Kyoto Protocol 145
 Economic Analysis of the Kyoto Protocol 147
 Major Results 149
 Findings and Conclusions 166
- 9 Managing the Global Commons 169 Background 169 Summary of the Model and Analysis 170 Major Results 174 Analysis of the Kyoto Protocol 176 Concluding Thoughts 178

Appendix A: Equations of RICE-99 Model 179 Appendix B: Equations of DICE-99 Model 181 Appendix C: Variable List 183 Appendix D: GAMS Code for RICE-99, Base Case and Optimal Case 189 Appendix E: GAMS Code for DICE-99 207 References 217 Index 227

Tables

Table 1.1	Reference case output across model generations 5
Table 1.2	Difference in radiative forcing across models, reference case, 2100 7
Table 3.1	Regional details of the RICE-99 model 28
Table 3.2	Major regional aggregates in RICE-99 regions 39
Table 3.3	Growth rates of per capita GDP: Regional averages 40
Table 3.4	Growth rates of commercial energy/GDP ratio: Regional averages 40
Table 3.5	Growth rates of CO ₂ -GDP ratio: Regional averages 41
Table 3.6	Comparison of RICE-99 with Maddison projections 48
Table 3.7	Growth in per capita output in RICE-99 regions: Historical rates and projections 49
Table 3.8	Comparison of RICE-99 reference case with IIASA scenario B 52
Table 3.9	Non-CO ₂ radiative forcings according to IPCC-90, MAGICC/IPCC-99, and RICE-99 63
Table 4.1	Estimated impact from IPCC report, 1996 70
Table 4.2	Regions in impact analysis 72
Table 4.3	Subregional mean temperature 73
Table 4.4	Estimated damages on agriculture from CO ₂ doubling 76
Table 4.5	Coastal vulnerability 78
Table 4.6	Vulnerability of economy to climate change 79
Table 4.7	Years of life lost from climate-related diseases 81
Table 4.8	Impact of global warming on climate-related diseases 83

Table 4.9	Willingness to pay to eliminate risk of catastrophic impact 90
Table 4.10	Summary of impacts in different sectors 91
Table 4.11	Comparison of recent impact studies, United States 97
Table 5.1	Comparison of RICE-99 and DICE-99 results, reference case 103
Table 5.2	Comparison of RICE-99 and DICE-99 results, optimal case 105
Table 6.1	The Basic policies of the RICE model 110
Table 6.2	Comparison between GAMS and EXCEL solutions 113
Table 7.1	Alternative policies analyzed in RICE-99 and DICE-99 models 122
Table 7.2	Global net economic impact of policies 128
Table 7.3	Abatement cost and environmental benefits of different policies 130
Table 7.4	Regional net economic impact of policies 131
Table 7.5	Carbon taxes in alternative policies 133
Table 7.6	Emissions control rates in alternative policies 137
Table 7.7	Industrial CO ₂ emissions in alternative policies 137
Table 7.8	Temperature in alternative policies 141
Table 8.1	Runs for the analysis of Kyoto Protocol 147
Table 8.2	Industrial carbon emissions for alternative approaches to Kyoto Protocol 151
Table 8.3	Comparison of global mean temperature increase in different approaches to Kyoto Protocol 153
Table 8.4	Comparison of carbon taxes, 2015 and 2105, in different approaches to Kyoto Protocol 155
Table 8.5	Discounted abatement costs in different strategies 157
Table 8.6	Abatement costs in different regions for different policies 159
Table 8.7	Net economic impacts in different regions for different policies 160
Table 8.8	Benefits, costs, and benefit-cost ratios of different approaches 164

Figures

Industrial CO_2 -output ratios for thirteen RICE
Growth in per capita output 50
Rates of growth in CO_2 emissions/GDP ratio 51
Carbon supply function in RICE-99 model 55
Impulse response functions for different models 61
Comparison of projections of CO ₂ concentrations from RICE-99 and Bern models for IS92a emissions projection 62
Comparison of temperature simulation of RICE-99 model with IPCC-96 66
Agricultural damage function 92
Health damages from model and Murray-Lopez study 94
Global damage function 95
Regional damage functions 96
Calibration error in DICE reference case 102
Calibration error in DICE optimal case 104
Global net economic impact 128
Carbon taxes: Alternative policies 132
Carbon taxes: Alternative policies 134
Emission control rates: Alternative policies 135
Optimal emissions control rate by region 136
Industrial CO ₂ emissions: Alternative policies 138

Figure 7.7	Regional industrial CO ₂ emissions in base case 138
Figure 7.8	CO ₂ concentrations: Alternative policies 139
Figure 7.9	Global mean temperature 140
Figure 7.10	Per capita income in base run 143
Figure 7.11	Industrial carbon intensity: Base case 144
Figure 8.1	Global industrial CO ₂ emissions 150
Figure 8.2	Atmospheric CO ₂ concentration 152
Figure 8.3	Global temperature increase 153
Figure 8.4	Carbon taxes in different policies 154
Figure 8.5	Abatement costs in different strategies 157
Figure 8.6	Impact of policy on world GDP 158
Figure 8.7	Regional impacts of alternative strategies 161
Figure 8.8	Overall impacts of alternative strategies 163
Figure 8.9	Net economic impact by region 165

Preface

Dealing with complex scientific and economic issues has increasingly involved developing scientific and economic models that help analysts and decision makers understand likely future outcomes as well as the implications of alternative policies. This book presents the details of a pair of integrated-assessment models of the economics of climate change. The models, called RICE-99 (for the Regional Dynamic Integrated model of Climate and the Economy) and DICE-99 (for the Dynamic Integrated model of Climate and the Economy), build upon earlier work by Nordhaus and collaborators, particularly the DICE and RICE models constructed in the early 1990s. The purpose of this book is to lay out the logic and details of RICE-99 and DICE-99. Like an anatomy class, this description highlights internal structure of the models and the ways different segments are connected.

The book is organized into two parts. The first part describes RICE-99 and its globally aggregated companion, DICE-99. This part contains an introduction (chapter 1) and a brief description of RICE-99 (chapter 2) that includes all the model equations. The details of the derivation of these equations and their parameterization are presented in chapters 3 and 4. Chapters 1 through 4 present RICE-99, leaving explicit discussion of DICE-99 to chapter 5. Chapter 6 explains how the models are solved. Part II presents the major results of RICE-99 and applies it to the questions surrounding climate change. The appendixes provide a summary listing of the equations, a variable list, and the programs for the RICE-99 and DICE-99 models. The models and spreadsheets are also available on the Web.

Those interested in this exciting field will recognize that this book builds on earlier work of the authors and of many others. Although it bears the names of two authors, the intellectual inspiration and contribution of many should be recognized. Among those we thank for contributing directly or indirectly are Jesse Ausubel, Howard Gruenspecht, Henry Jacoby, Dale Jorgenson, Charles Kolstad, Alan Manne, Robert Mendelsohn, Nebojsa Nakicenovic, John Reilly, Richard Richels, Thomas Schelling, Richard Schmalensee, Stephen Schneider, Leo Schrattenholzer, Robert Stavins, Ferenc Toth, Karl Turekian, Paul Waggoner, John Weyant, Zili Yang, and Gary Yohe. Megan McCarthy and Ben Gillen provided valuable research assistance. This research was supported by the National Science Foundation and the Department of Energy. None of these is responsible for the errors, opinions, or flights of fancy in this work.