Matthew D. Wood • Sarah Thorne Daniel Kovacs • Gordon Butte • Igor Linkov

Mental Modeling Approach

Risk Management Application Case Studies

Foreword

Effective risk communication requires contributions from subject matter experts, who know the issues; analysts, who can identify the essential ones; behavioral scientists, who can address audience members' information needs; and specialists, who can create channels for trusted two-way communication between the parties. The mental models approach provides a framework for organizing the information needed to accomplish this task. However, it takes deep personal and organizational commitment to bring and keep the parties together. *Mental Modeling* shows how to make that happen, integrating theory and practice.

The range of its applications is remarkably broad, including plastic surgery, climate change, dairy farming, deep mining, biosolids, nuclear power, and carbon capture and sequestration. So is the range of stakeholders and audiences, including physicians, patients, regulators, laborers, engineers, land use planners, and river managers. And, so are the methods, including community workshops, in-depth interviews, expert elicitation sessions, computer models, worker training, and broad and narrowband communication. These ranges of topics, audiences, and method show the generality of the approach and the creativity of the authors in its use.

Readers of *Mental Modeling* will acquire an understanding of the theory underlying the approach, with its basic principles illustrated in diverse, practical examples. Readers will learn methods that they can apply directly and strategies for generating their own. And they will come away with an appreciation of the diligence needed to create communications worthy of the stakes riding on them. Although not easy, the work is exciting—and gratifying.

> Baruch Fischhoff, PhD Pittsburgh, PA

Dr. Fischhoff is Howard Heinz University Professor with the Departments of Social and Decision Science and of Engineering and Public Policy at Carnegie Mellon University, and Decision Partners' Chief Scientist. Dr. Fischhoff is a Fellow of the American Psychological Association and a Fellow of the Society of Risk Analysis, as well as recipient of its Distinguished Achievement Award (1991). He is a member of the Institute of Medicine (IOM) and of the National Academies and has participated in some two dozen committees of the IOM and National Research Council. Baruch is a coauthor of several books including *Acceptable Risk (1981), Risk Communication—a Mental Models Approach (2002),* and *Intelligence Analysis: Behavioral and Social Science Foundations (2011).* He has also coauthored *Communicating Risks and Benefits: An Evidence-Based User's Guide (2011).* He holds a PhD in psychology from the Hebrew University of Jerusalem.

Perspective on Mental Modeling

Throughout the U.S. Army Corps of Engineers (USACE), leaders at all levels and across all mission areas face increasingly complex demands. Projects are more technically challenging than ever before, regulatory requirements are more difficult, economic pressures are greater, and the universe of stakeholders is broader and more engaged than even a decade ago. At USACE's Engineer Research and Development Center's (ERDC's) Environmental Lab, one of our key charges is to develop, test, and disseminate practical tools and methods throughout USACE, including those designed to better align and integrate ecological, engineering, and social sciences considerations that result in more socially acceptable, economically viable, and environmentally sustainable projects. The stakes are high for the USACE's activities, as all projects USACE undertakes are done through different degrees of collaboration with agency partners and key stakeholders, with potential for both positive and negative impacts on local ecology and environment, socioeconomic health of the community and region, etc. As we have learned, the quality of our stakeholder engagement processes from project design through implementation affects both the efficiency and quality of project decision making and, often, project success or failure.

The USACE's typical agency partners and external stakeholders are wide ranging and include a number of other federal agencies. Often lead agency partners have overlapping, or sometimes conflicting, regulatory authorities. They and other stakeholders may have competing objectives, interests, values, and priorities. "Social friction" arises in the planning process when different agency and key stakeholder perceptions, goals, values, and capacities lead to different judgments about a proposed project's value (Chap. 10). This means that partner and stakeholder interaction is often difficult, complicated, highly scrutinized, and under pressure due to lack of alignment on goals and desired outcomes. A recent internal USACE assessment documented the need for better, more flexible stakeholder collaboration processes, more internal training, and ready access to resources and specialized skills. Identified concerns included perceptions that some stakeholders believe they are engaged too late for their input to be valued in decision-making processes, that their input is not valued, and that USACE is not really concerned about the environment. These difficulties increase completion time and operational costs of infrastructure projects. Lack of clear process, increasing time constraints, and diminishing financial and human resources within USACE and agency partners compound these challenges.

The need to find and apply science-informed, evidence-based stakeholder engagement and communication processes in order to take into account the varying goals, values, and priorities of the many stakeholders with an interest in a USACE project led us to explore Mental Modeling TechnologyTM over a decade ago. The Mental Modeling approach starts with engaging experts to develop a system model, or *expert model*. An expert model is a formal, comprehensive graphic representation that summarizes and integrates the current knowledge and understanding of experts about the key factors of the topic being studied. It can be thought of as an *expert's mental model*, as it typically comprises a composite of the knowledge and beliefs—mental models—of several experts. That model then serves as the foundation to systematically engage a wide range of stakeholders through formal or informal research. This approach has provided the base for developing a number of initiatives at ERDC, in collaboration with other USACE colleagues. Examples of challenges that have benefited from this approach are described in the chapters that follow.

We have found for complex topics, especially those where the science is uncertain or incomplete, bringing together experts in a workshop setting and using Mental Modeling tools and techniques to elicit a broad range of expertise and experience is highly beneficial. In the case studies that follow on Flood Risk Management (Chap. 4) and Adaptive Management for Climate Change, as well as our work on beneficial use of dredged material (Chap. 5), we did just that. In each case, the focused expert elicitation resulted in the development of a comprehensive system picture, or expert model, which was then validated with the respective expert participants. Not only did this approach build shared understanding of the system and the critical influences on the desired outcomes, but it also served as a focal point for bringing diverse experts from across USACE, along with those from agency partner and stakeholder organizations, together to share insight and expertise on the subject matter at hand in a neutral forum. The resulting models were then used to establish strategic priorities, research agendas, and, in the case of Flood Risk Management (Chap. 4), the analytical framework for the follow on *mental models* research.

The application of Mental Modeling to Technology Infusion and Marketing (Chap. 6) was a different application and one of major significance to ERDC. A critical challenge for any research organization, including ERDC, is the ability to get new technology out of the lab and applied in the field. With pressure on budgets, time, and resources, this challenge was increasingly becoming a barrier. The Mental Modeling approach was used to first understand the current situation for technology transfer and adoption, then to develop, with USACE stakeholders, a recommended Technology Infusion and Marketing approach, along with the critical success criteria. This streamlined approach is producing results for the Environmental Lab and beyond.

We continue to apply the Mental Modeling process, methods, and tools to a range of complex challenges across the USACE's mission areas. With our first applications in Navigation and Flood Risk Management, we've since broadened its application across Civil Works and, to a small degree, our Military mission, bringing our internal and external stakeholders together to solve multidimensional problems using this integrated approach.

Perhaps the strongest case for the Mental Modeling approach is it application in the design, implementation, and measurement of our groundbreaking Engineering with Nature (EWN) initiative. Since early 2011, a core team of scientists and engineers at ERDC have been applying the fundamental concepts and approaches of Mental Modeling to develop EWN. Collaboration with key internal USACE stakeholders and with external agency partners and stakeholders was a critical component of its design. Now a USACE Program, EWN represents a paradigm shift from USACE's traditional decision-making model, perceived by some agency partners and stakeholders as confrontational, to one of more effective decision making through early and ongoing collaboration with partners and stakeholders. And as the demonstration projects are showing, it produces triple win results, typically faster, more efficiently, and without the social friction typical of many previous USACEled projects. EWN is seen as enabling transformation across USACE and beyond, with and through the Corps' agency partners and stakeholders. It is noteworthy that EWN was recently recognized with two awards, USACE 2014 Green Innovation Award and Western Dredging Association (WEDA) 2015 Environment Award, and the publication of the North Atlantic Coast Comprehensive Study (NACCS) Natural and Nature-Based Features Report.

Our application of Mental Modeling continues to add value across USACE and beyond as we apply it to a range of increasingly complex challenges, while building our skills and stakeholder engagement capacity in the process.

> Todd Bridges, PhD Vicksburg, MS

Todd Bridges is Senior Research Scientist, U.S. Army Corps of Engineers (USACE), Engineer Research & Development Center (ERDC). He currently leads USACE's Engineering with Nature Initiative, which includes a network of research projects, field demonstrations, and communication activities to promote environmentally sustainable infrastructure development. He has chaired international working groups for the London Convention and Protocol which have developed technical guidance for assessing sediments as well as managing risks associated with CO₂ sequestration operations in the oceans. As U.S. representative to the Environmental Commission of the International Navigation Association (PIANC), Dr. Bridges has led efforts to develop new international standards for managing environmental risks, while promoting environmental benefits, related to navigation infrastructure.

He has served on the editorial boards of the journals of *Integrated Environmental Assessment and Management, Environmental Toxicology and Chemistry,* and *Dredging Engineering.* He is an active member of the Society for Risk Analysis, The Society of Environmental Toxicology and Chemistry, The Ecological Society of America, and the International Navigation Association. Over the last 20 years, Dr. Bridges has published more than 60 journal articles and book chapters and numerous technical reports. He received his B.A. (1985) in Biology/Zoology from California State University, Fresno, and his PhD (1992) in Biological Oceanography at North Carolina State University.

From a Practitioner's Perspective

Prior to first hearing about Mental Modeling, I had spent several years developing and implementing reputation management processes for various private industry organizations. I was working on a new, large-scale project that I knew would be challenging—challenging not just because we were building significant energy infrastructure in farm country but also because we were dealing with many different stakeholder viewpoints. Recognizing that we as an organization needed to change the way we approached infrastructure development, I was searching for a tool that would take into account the values and interests of engineers, business people, landowners, environmentalists, and government, find the alignments among all these stakeholders and, based on that, enable us to develop a respectful, collaborative process. A chance meeting with Decision Partners at an industry event led me to that tool—Mental Modeling TechnologyTM.

Since then, I have used Mental Modeling not only in stakeholder consultation on infrastructure development but also in strategic plan development for industry associations undergoing intense change. In each instance, the systematic, science-based Mental Modeling approach enabled us to dive deeply into the thinking of a range of stakeholders and truly understand what's in their hearts and minds, and what forms that.

The Mental Modeling interviewing process is a very deep process that gets not only at what people think and believe but why they think and believe it. Having this insight enables the industry practitioner to identify trends in these thoughts and beliefs as to how they influence stakeholder judgment. To me and many of my colleagues, this critical insight is what makes Mental Modeling the ideal strategic tool to formulate an appropriate consultation strategy and respectful dialogue with stakeholders that enables them to participate in the decision-making process in a way that is meaningful to them.

Ultimately, it doesn't matter whether you're a corporate CEO, a government person, or a landowner. It's about respecting stakeholder beliefs and values and working within the confines of those beliefs and values so that you understand all of those different stakeholders.

My advice to other private industry practitioners would be: if you're looking for a truly systematic and science-based approach to understand the decision making of both industry leaders and their key stakeholders, Mental Modeling offers great value.

> Denise Carpenter Toronto, ON

Denise Carpenter is Chief Executive Officer of the Neighbourhood Pharmacy Association of Canada. Her diverse leadership experience spans key economic sectors and organizations. As an applied management and social sciences professional, Denise has used Mental Modeling in varied organizational contexts: corporate governance, strategic planning and implementation, systematic behavior change, integrated risk management, public policy and public affairs. She also has expertise in leadership development, change management, and culture change through innovative communications.

Preface

Purpose of the Book

The goal of this book is to introduce readers to *Mental Modeling*, an evidence-based process to facilitate decision making by describing the values and knowledge of individuals involved in the decision-making process. The book is tailored to students and practitioners in environmental and risk management domains who have some experience with the complex, often difficult projects that require engagement and understanding of the thoughts and beliefs of different stakeholder groups. Mental Modeling is ideally suited to contexts in which (a) the issues of interest are complex with a significant degree of consequence, (b) disparate viewpoints related to the issue or opportunity gaps must be synthesized, (c) decisions are required among multiple potential alternative risk management options, and/or (d) transparency is required when characterizing the issue, incorporating stakeholder input, designing appropriate risk management solutions, and justifying risk management actions. It is particularly well suited to identifying relationships among influences that may not be easily anticipated and providing a basis for developing or comparing solution alternatives for complex real-world problems.

How to Read This Book

This book is designed as an introduction to students and practitioners in public policy, risk communication, and related disciplines. The first sections provide an introduction to the process historically and as it stands today, and should be reviewed first to provide context to the other content in the book. Subsequent chapters, in contrast, are intended as a showcase of the different application domains where Mental Modeling

has been successfully applied to address complex problems. These chapters can be read piecemeal depending on the reader's needs and interests. Commentaries and testimonials are dispersed throughout the text to highlight some of the method's strengths and future directions for using the Mental Modeling approach.

Concord, MA, USA Mississagua, ON, CAN Pittsburgh, PA, USA Pittsburgh, PA, USA Concord, MA, USA Matthew D. Wood Sarah Thorne Daniel Kovacs Gordon Butte Igor Linkov

Contents

1	An Introduction to Mental Modeling	1
	Matthew D. Wood, Sarah Thorne, Daniel Kovacs, Gordon Butte,	
	and Igor Linkov	
	Supporting Evidence-Based Strategies and Communications	2
	Understanding People's Mental Models	4
	Mental Modeling: Critical to Effective Risk Communication	4
	Key Benefits of the Mental Modeling	5
	Applied Mental Modeling	6
	Who Should Use Mental Modeling?	7
	Overview of the Chapters	7
	Part I: The Mental Modeling Approach	7
	Part II: Applications in USACE	7
	Part III: Applications in Other Contexts and Industries	8
	Part IV: Mental Modeling Software Support	9
	References	9
Par	t I The Mental Modeling Approach	
2	Mantal Madaling Descende Technical Annuageh	12

2	Mental Modeling Research Technical Approach	13
	Sarah Thorne, Gordon Butte, Daniel Kovacs, and Matthew D. Wood	
	Introduction	13
	Overview of Mental Modeling Research Methodology	14
	Key Benefits of Mental Modeling	15
	Mental Modeling Core Technique	16
	Key Steps in the Mental Modeling Process	17
	Step 1: Define the Opportunity	18
	ASPS Opportunity Statement Example	19
	Step 2: Develop the Expert Model	19
	ASPS Expert Model Example	20
	Drivers	21
	Outcomes	22

	Step 3: Design, Conduct, and Analyze Mental Models Interviews	22
	ASPS Protocol Example	24
	ASPS Top Line Findings	24
	Step 4 (Optional): Design, Conduct, and Analyze Qualitative	
	and/or Quantitative Research, Building on Foundational	
	Mental Models Research	2
	Step 5: Use Research Results to Design and Pretest Strategies,	
	Policies, Interventions, and Communications.	2
	ASPS Strategy Example	2
	Step 6: Implement and Evaluate Strategies	2
	ASPS Case: Implementation Results	2
	References	3
2	Science of Montal Modeling	2
3	Matthew D. Wood and Igor Linkov	3
	Mental Modeling as Evidence Based Practice	3
	Mental Model Theory	3
	Mental Model Diagrams	3
	Mental Modeling History and Method	3
	Other Methods for Representing Mental Models	3
	Concept Mapping	3
	Semantic Web	3
	System Dynamics Diagramming	3
	Conclusions	3
	References	3
		5
Par	t II Applications at U.S. Army Corps of Engineers (USACE)	
4		4
4	Flood Risk Management.	4
	Matthew D. Wood, Igor Linkov, Daniel Kovacs, and Gordon Butte	4
	Introduction	4
	Literature Review of Layperson Stakeholder Perceptions	4
	Literature Keview Kesults	4
	Expert Modeling	4
	Expert Modeling Results.	2
	Mental Models Interviews and Comparative Analysis	2
	Interview Results	5
	Discussion	5

	References	54
5	Adaptive Management for Climate Change Matthew D. Wood, Sarah Thorne, Gordon Butte, Igor Linkov, and David Kauges	57
	Introduction Expert Modeling	57 60

	Results	61
	Conclusions	64
	References	65
6	Technology Infusion and Marketing	69
	Matthew D. Wood, Sarah Thorne, and Gordon Butte	
	The Opportunity	69
	Base Model of the TIM Approach	71
	Step One: Opportunity Formulation	71
	Critical Definitions	72
	Step Two: Validation	73
	Step Three: Implementation	73
	Workshop: Technology Infusion and Marketing (TIM):	
	Guided Thinking on Three Technologies	74
	Preworkshop with EL Sponsors and Project Leads	74
	Facilitators' Protocol	75
	Workshop Agenda Overview	75
	Breakout Group Results	76
	TREECS: Training Range Environmental Evaluation	
	and Characterization System	76
	Computational Chemistry	77
	Risk	77
	Key Learnings and Applying the Results	78
	TIM Path Forward Considerations/Action Options	79
	An Example of Project-Specific Successes and Learnings: TREECS	80
	References	82

Part III Applications in Other Contexts and Industries

7	Farmers' Decision Making to Avoid Drug Residues	
	in Dairy Cows: A Mental Modeling Case Study	85
	Sarah Thorne and Gordon Butte	
	The Opportunity	85
	Expert Modeling	87
	Mental Modeling	91
	Sample Development	92
	Protocol Design	92
	Sampling Process	92
	Coding and Analysis	93
	Key Results	94
	Improving Risk Communication	99
	Variances Between Violators and Non-violators	99
	Considerations on Next Steps for Strategic Risk Communications	
	with Dairy Farmers	102
	Key Learnings and Applying the Results	103
	References	104

8	Influence of the CHEMM Tool on Planning, Preparedness, and Emergency Response to Hazardous Chemical Exposures:	
	A Customized Strategic Communications Process Based	
	on Mental Modeling	105
	Daniel Kovacs, Sarah Thorne, and Gordon Butte	
	The Opportunity	105
	Mental Modeling Approach	107
	Expert Models	107
	Mental Models Research	107
	Expert Models of Influences on CHEMM Effectiveness	108
	Expert Model Narrative	108
	Influence of the CHEMM Tool on Planning, Preparedness,	
	and Emergency Response to Hazardous Chemical Exposures:	
	System Perspective	108
	Influences of the CHEMM Tool on Planning, Preparedness,	
	and Emergency Response to Hazardous Chemical Exposures:	
	User Perspective	114
	User Matrices for CHEMM Optimization	120
	Deeper Insight into CHEMM Users' Mental Models	121
	Research Sample	121
	Interview Topics	122
	Summary Mental Models Research Findings	123
	CHEMM Uses and Information Needs	124
	CHEMM Information Quality Criteria	126
	CHEMM Functionality	127
	Stakeholder Engagement and Continuing CHEMM Development	127
	Interview Wrap-Up and Interviewees' Closing Thoughts	128
	Building on the Mental Models Research Results	128
	Client Perspectives on Mental Models Research.	
	Key Learnings, and Applying the Results	129
~		
9	The Chamber of Mines of South Africa Leading Practice	100
	Adoption System	133
	John Stewart and Gordon Butte	100
	Background to Development of the System	133
	Leadership Commitment and Exploratory Work	134
	Key Outcomes	134
	A Residual Communication Challenge	137
	The Road Ahead	138
	Appendix	139
	Reference	151

10	Conducting Effective Outreach with Community	
	Stakeholders About Biosolids: A Customized Strategic	
	Risk Communications Process [™] Based on Mental Modeling	153
	Sara Eggers and Sarah Thorne	
	Introduction	153
	The Global Opportunity for Biosolids Professionals	154
	The Strategic Risk Communications Process	156
	Applying the Strategic Risk Communications Process TM :	
	Two Case Studies	158
	Step 1: Define the Opportunity	159
	Sample Opportunity Statement	159
	Step 2: Characterize the Situation	160
	Technical Assessment, Using Expert Modeling	160
	Preliminary Stakeholder Analysis	160
	Step 3: Assess Stakeholders' Interests, Priorities,	
	and Communications Needs, Through Mental Models Research	163
	Sample Development and Recruitment	164
	Protocol Outline	164
	Conducting Interviews	165
	Coding and Analysis	165
	Sample Characteristics	166
	Highlights from the Mental Models Research	167
	Step 4: Develop and Pretest Communications Plan and Materials	172
	Pretesting Communication Plan and Materials	174
	Implementation and Evaluation	174
	Developing Guidance for Biosolids Professionals	175
	Key Learnings and Demonstrated Value	175
	References	177
		177
11	Using Mental Modeling to Systematically Build Community	
	Support for New Coal Technologies for Electricity Generation	179
	Sarah Thorne and Megan Young	
	Opportunity for New Coal-Based Power Generation Technology	179
	Opportunity at Genesee	181
	Key Challenges	182
	Project Steps	183
	Draft the Opportunity Statement and Guiding Principles	183
	Opportunity Statement	184
	Guiding Principles	184
	Develop Expert Model	185
	Conduct Mental Models Research	186
	Key Learnings from the Mental Models Research	186
	Hold a Series of Community Advisory Task Group Workshops	187
	Draft a Community Engagement Strategy	189
	Community Workshop to Draft the Environmental Impact	
	Assessment Terms of Reference	190

	Finalize Community Engagement Strategy and Plan	191
	Conclusions	193
	References	194
12	Saving Lives from a Silent Killer: Using Mental Modeling	
14	to Address Homeowners' Decision Making	
	About Carbon Monovide Poisoning	195
	Sarah Thorne Gordon Butte and Sarah Hailey	175
	Introduction	105
	Communicating the Risk of Carbon Monovide in the Home	195
	Applying the Mental Modeling Research Approach	107
	Step 1: Define the Opportunity	108
	Step 2: Characterize the Situation	190
	Development of the Expert Model	199
	Expert Model Nerrotive	200
	Expert Model Workshop	200
	Detailed Expert Model of Deducing Corbon Manavide Dick	201
	in the Home	202
	III UIE FIOIRE	202
	Expert Model validation	204
	Step 5: Assess Stakenoiders Interests, Priorities	204
	and Communications Needs, Inrough Mental Models Research	204
	Sample Development	204
	Can hasting Interviews	205
	Conducting Interviews	205
	Coding and Analysis	205
	Weighted Mental Model.	207
	Key Results	207
	Mental Models Analysis	212
	Step 4: Develop and Pretest Communications Plan and Materials	212
	Communication Goal and Strategic Objectives	212
	Key Communities of Interest and Potential Partners	214
	Message Platforms	215
	TSSA Action Plan	216
	Implementation and Evaluation	220
	Key Learnings and Demonstrated Value	221
	References	221
13	U.S. Census Bureau Integrated Communications Services	
	for Data Dissemination: Mental Modeling Case Study	
	with Key Internal Expert Stakeholders	223
	Daniel Kovacs and Sarah Thorne	
	The Opportunity	223
	Mental Modeling Approach	224
	Developing the Expert Models	225
	Developing the Sample	226
	Conducting Mental Models Research	220
	Conducting montal models resource	/

Research Highlights	227
Key Census Bureau Stakeholders	227
Modes of Communications and Engagement	228
What Is Working Well	228
Current Challenges	230
Improving Communication and Engagement	232
Preliminary Considerations on Key Components	
of the Communications Research and Analytics Roadmap (CRAR)	233
Strategic Framework for CRAR	234
Strategic Framework for the Communications Research	
and Analytics Roadmap	235

Part IV Mental Modeling Software Support

Supporting and Expanding the Scope and Application of Mental	
Modeling: Current and Future Software Developments	23
Daniel Kovacs, Alex Tkachuk, Gordon Butte, and Sarah Thorne	
Introduction	23
CASS Support Software for Mental Modeling Technology TM	
(MMT TM) Research Processes	23
eCASS Software for Modeling	240
cCASS Coding and Analysis Module	244
CASS Module Integration (eCASS and cCASS)	243
CASS Development	24
Case Study: IDST TM used by Enersource Hydro Mississauga	
to Fulfill Customer Engagement Regulatory Requirements	24
The Customer Engagement Challenge	249
New Technology for Customer Engagement	250
IDST TM Experience	25
The Results	25
Advantages over Conventional Customer Engagement Methods	25.
Considerations on Future Applications of the IDST TM	25.
Mental Modeling Technology TM with Quantitative	
Risk Analysis Tools	25
References	254
ex	25