ISSUES IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY EDITORS: R.E. HESTER AND R.M. HARRISON

27 Electronic Waste Management

RSCPublishing

Contents

Martin Goosey

Introduction			
2 WEEE – The Scale of the Problem	4		
3 Legislative Influences on Electronics			
Recycling	4		
3.1 Producer Responsibility Legislation	4		
3.2 The WEEE Directive	6		
3.3 The RoHS Directive	7		
3.4 Other Examples of Legislation	8		
4 Treatment Options for WEEE	10		
5 Material Composition of WEEE	11		
6 Socio-economic Factors			
7 Logistics of WEEE	15		
8 WEEE – the International Perspective	18		
8.1 European Perspective	18		
8.2 Japan	20		
9 Barriers to Recycling of WEEE	24		
10 The Recycling Hierarchy and Markets			
for Recyclate	25		
11 WEEE Health and Safety Implications	30		
12 Future Factors That May Influence Electronic			
Waste Management	35		
13 Summary and Conclusions			
References and Further Reading	37		

Issues in Environmental Science and Technology, 27

Electronic Waste Management

© Royal Society of Chemistry 2009

Edited by R.E. Hester and R.M. Harrison

Published by the Royal Society of Chemistry, www.rsc.org

Chapter 2	Materials Used in Manufacturing Electrical and Electronic
	Products

Gary C. Stevens and Martin Goosey

1	Perspective 4			
2	2 Impact of Legislation on Materials Used in Electronics			
	2.1 Overview	40		
	2.2 The RoHS Directive and Proscribed Materials	42		
3	Where do RoHS Proscribed Materials Occur?	44		
	3.1 Lead	44		
	3.2 Brominated Flame Retardants	44		
	3.3 Cadmium, Mercury and Hexavalent Chromium	45		
4	Soldering and the Move to Lead-free Assembly	46		
	4.1 Introduction	46		
	4.2 Lead-free Solder Choices	46		
5	Printed Circuit Board Materials	47		
	5.1 Introduction	47		
	5.2 PCB Materials	48		
	5.3 Provision of Flame Retardancy in PCBs	50		
	5.4 Non-ferrous and Precious Metals	52		
6	Encapsulants of Electronic Components	53		
7	Indium Tin Oxide and LCD Screens	54		
8	Polymeric Materials in Enclosures, Casings and Panels	55		
	8.1 Product-related Plastic Content	55		
9	WEEE Engineering Thermoplastics	59		
	9.1 Polycarbonate (PC)	59		
	9.2 ABS (Acrylonitrile-Butadiene-Styrene)	61		
	9.3 High Impact Polystyrene (HIPS)	62		
	9.4 Polyphenyleneoxide (PPO)	62		
	9.5 PC/ABS Blends	62		
	9.6 Flame Retardants in Engineering Thermoplastics	63		
10	Materials Composition of WEEE	65		
	10.1 Introduction	65		
	10.2 Mobile Phones	66		
	10.3 Televisions	68		
	10.4 Washing Machines	71		
11	Conclusions	72		
Re	eferences	73		

Chapter 3 Dumping, Burning and Landfill

Ian Holmes

1	Introduction			
	1.1	England: Site Inputs 2002–2003	77	

Contents

	1.2 Waste Inputs to Different Management Options			
		in 2005	77	
2	Landfill			
	2.1	Historical	77	
	2.2	Pollution from Landfills	79	
	2.3	Landfill Gas	79	
	2.4	Leachate	79	
	2.5	Landfill-site Construction	80	
3	3 Burning			
	3.1	Historical	82	
	3.2	Incineration	82	
	3.3	Mass Burn	82	
	3.4	Energy Recovery/Energy from		
		Waste (EFW)	83	
	3.5	Advanced Thermal Processing	84	
	3.6	Pollution from Incineration	85	
4	Legi	slation Summary	88	
	4.1	Current UK Legislation	88	
Re	References 89			

Chapter 4 Recycling and Recovery Darren Kell

1	Introduction					
2	Sepa	Separation and Sorting				
3	Trea	atment	92			
	3.1	Mixed WEEE	93			
	3.2	Refrigeration Equipment	95			
	3.3	Cathode Ray Tubes	96			
	3.4	Individual Processes	97			
4	Out	puts and Markets	102			
	4.1	Metals	103			
	4.2	Glass	103			
	4.3	Plastics	103			
5	Eme	erging Technologies	104			
	5.1	Separation	104			
	5.2	Thermal Treatments	105			
	5.3	Hydrometallurgical Extraction	106			
	5.4	Sensing Technologies	106			
	5.5	Plastics to Liquid Fuel	107			
	5.6	Plastics Containing Brominated Flame				
		Retardents	107			
6	Ack	nowledgements	108			
Re	eferen	ices	108			

ix

Chapter 5	Integrated Approach to e-Waste Recycling
	Rod Kellner

	1 2	Introduction Recycling and Recovery Technologies 2.1 Sorting/Disassembly	111 113 114
		2.2 Crushing/Diminution	115
		2.3 Separation	115
	3	Emerging Recycling and Recovery Technologies	117
		3.1 Automated Disassembly	117
		3.2 Comminution	117
		3.3 Separation	118
		3.4 Thermal Treatments	119
		3.5 Hydrometallurgical Extraction	119
		3.6 Dry Capture Technologies	119
		3.7 Biotechnological Capture	119
		3.8 Sensing Technologies	120
		3.9 Design for Recycling and Inverse	
		Manufacturing	120
	4	Printed Circuit Boards	121
		4.1 Overview	121
		4.2 Recycling	124
		4.3 Current Disposal Hierarchy	126
		4.4 Economics of Recycling	127
		4.5 Future Developments	128
		4.6 Characteristics of PCB Scrap	129
		4.7 Emerging Technologies	132
	5	Sector-based Eco-design	141
		5.1 Disassembly	142
		5.2 Fasteners	143
		5.3 RFIDs (Radio Frequency Identification Tags)	145
		5.4 Active Disassembly	146
		5.5 Design Methodology and Resource Efficiency	147
		5.6 Recycling	147
		5.7 Constraints on Materials Selection	148
		5.8 Eco-design Guidelines for Manufacturing	150
	Re	eferences	160
Chapter 6	Eu So Sc	ropean Recycling Platform (ERP): a Pan-European lution to WEEE Compliance ott Butler	
	1	Brief Introduction to WEEE	161
	I		101

1.1	The WEEE Directive	161
1.2	Producer Responsibility	162
1.3	Household and Non-household WEEE	162

Contents

		1.4 Marking EEE Products	163
		1.5 WEEE Collection Points	164
		1.6 Product Categories and Waste Streams	164
		1.7 Producer Compliance Schemes	164
		1.8 Variations in National WEEE Laws	164
	2	Introduction to European Recycling Platform (ERP)	165
		2.1 European Recycling Platform	165
		2.2 Founder Members	165
		2.3 Timeline	165
		2.4 Founding Principles	166
		2.5 Structure	166
		2.6 Scope of services	168
		2.7 The Operational Model – General	
		Contractor Approach	168
		2.8 Euro PLUS	170
	3	ERP in Operation	170
		3.1 Country Summaries	170
		3.2 Key Performance Indicators	170
		3.3 Members	170
	4	ERP – Beyond Compliance	172
		4.1 Implementation of Individual Producer	
		Responsibility (IPR)	172
		4.2 ERP UK WEEE Survey	173
	5	Summary	175
		5.1 Key Achievements	175
		5.2 Final Thoughts: Interviews with Two	
		Founding Members	177
	Re	eferences	179
Chapter 7	Li A	quid Crystal Displays: from Devices to Recycling vtar S. Matharu and Yanbing Wu	
	1	Introduction	180
	2	Overview of Liquid Crystals	183
	-	2.1 Definition and Classification of Liquid Crystals	184
		2.2 Molecular and Chemical Architecture of	101
		Liquid Crystals	185
		2.3 The Mesophase: Types of Intermediate State	
		of Matter	186
		2.4 Physical Properties of Liquid Crystals and	
		Material Requirements	188
	3	Overview of Liquid Crystal Displays Based on	
		Nematic Mesophase	190
		3.1 Basic LCD Operating Principles	190
		3.2 Types of Electro-optic LCD Devices	191
	4	LCD Manufacturing Process	195
		=	

xi

5	Enviro	nmental Legislation and Lifecycle Analysis	197
	5.1 T	he WEEE Directive and LCDs	197
	5.2 R	OHS and REACH	199
	5.3 F	ar East Environmental Measures	199
	5.4 L	ifecycle Analysis	199
6	Potenti	ally Hazardous Constituents: Toxicity	
	of LCI	D Constituents	201
	6.1 T	oxicity of Mercury and Backlighting	201
	6.2 T	oxicity of Liquid-crystal Mixture	203
	6.3 D	Demanufacture and Recycling	204
7	Future	Outlook	208
	7.1 L	CD Panels	208
	7.2 S	mart Disassembly	209
	7.3 L	egislation	209
Re	ferences	5	209

Chapter 8 The Role of Collective versus Individual Producer Responsibility in e-Waste Management: Key Learnings from Around the World

Mark Dempsey and Kirstie McIntyre

1	Introduction		
	1.1	E-waste and Its Environmental Impacts	212
	1.2	Background to Producer Responsibility	213
	1.3	Defining Individual and Collective Producer	
		Responsibility	215
2	The WEEE Directive in Europe		
	2.1	The WEEE Directive's Approach to Individual	
		and Collective Producer Responsibility	216
	2.2	Implementation of Individual and Collective	
		Producer Responsibility in the EU	218
	2.3	ICT Milieu, The Netherlands	219
3	E-waste Laws and Voluntary Agreements in Other		
	Cou	ntries	220
	3.1	Japanese Electronics Take-back Directive	220
	3.2	Product Take-back in the USA	221
	3.3	Product Stewardship in Australia	222
4	Discussion		
	4.1	Competition in E-Waste Management	223
	4.2	Collective Producer Responsibility: Benefits and	
		Disadvantages	225
	4.3	Individual Producer Responsibility: Benefits and	
		Disadvantages	225
	4.4	Evaluating Collective versus Individual Producer	
		Responsibility	227

	5	Recommendations to Implement IPR	230
		5.1 Recommendation #1: Ensure Article 8.2 of the	
		WEEE Directive is Fully Transposed	230
		5.2 Recommendation #2: Adopt a Phased Approach	
		to IPR	231
		5.3 Recommendation #3: Member States to	
		Implement IPR	232
	6	Conclusions	233
	Re	ferences	234
Chantor 0	Da	nid Assessment of Floatronics Englosure Plastics	
Chapter 9		trick I Baird Henryk Herman and Gary C Stevens	
	1 a	unek J. Band, Henryk Herman and Gary C. Stevens	
	1	Introduction	236
	2	Instrumental Techniques	237
	3	Visible-NIR Spectroscopy of Engineering	
		Thermoplastics	239
		3.1 Discrimination of Enclosure Materials	241
		3.2 Base Polymer Identification	243
		3.3 Selected Thermoplastics for Processing	244
		3.4 Controlled Degradation Experiments	245
		3.5 Analysis of Processed Thermoplastics	245
	4	Analysis of Plastics Containing Flame-retardant	
		Additives	248
		4.1 Visible-NIR Spectroscopy	249
		4.2 X-Ray Fluorescence and Optical Emission	
		Spectroscopy	251
		4.3 Infrared and Raman Spectroscopy	253
	5	Conclusions	255
	Re	ferences	256

Subject Index

258

xiii