Floating Gate Devices: Operation and Compact Modeling

by

Paolo Pavan

DII – Università di Modena e Reggio Emilia, Italy

Luca Larcher

DISMI – Università di Modena e Reggio Emilia, Italy

and

Andrea Marmiroli

STMicroelectronics, Central R&D, Italy

Contents

ix
xi
XV
1
1 2 4 6 7 9 10 12 12 13 14
17
17 17 18 21 22 22

2. CELL OPERATION	24
2.1 Charge injection mechanisms	24
2.2 Channel Hot Electron current	25
2.3 CHannel Initiated Secondary ELectron current	27
2.4 Fowler-Nordheim Tunneling Current	27
3. DISTURBS AND RELIABILITY	29
3.1 Programming Disturbs	30
3.2 Retention	30
3.3 Endurance	32
3.4 Erase Distribution	32
3.5 Scaling issues	33
REFERENCES	34
3. DC CONDITIONS: READ	37
1. TRADITIONAL FG DEVICE MODELS	37
1.1 The classical FG voltage calculation method	38
1.2 Drain current calculation	39
1.3 Limits of the capacitive coupling coefficient method	40
1.3.1 The capacitive coupling coefficient extraction procedure	41
1.3.2 The bias dependence of the capacitive coupling coefficients	42
2. THE CHARGE BALANCE MODEL	43
2.1 The Floating Gate voltage calculation procedure	45
2.2 Advantages and scalability	46
2.3 Parameter extraction	46
3. SIMULATION RESULTS	47
REFERENCES	54
4. TRANSIENT CONDITIONS: PROGRAM AND ERASE	57
1. MODELS PROPOSED IN THE LITERATURE	57
2. THE CHARGE BALANCE MODEL: THE EXTENSION	
TO TRANSIENT CONDITIONS	60
3. FOWLER-NORDHEIM CURRENT	61
3.1 Theory and compact modeling	61
3.1.1 Charge quantization effects on oxide barrier height	63
3.1.2 The oxide field calculation	65
3.2 Simulation Results	70
4. CHANNEL HOT ELECTRON CURRENT	74
4.1 Theory and Compact Modeling	74
4.1.1 The "lucky-electron" model	75
4.1.2 Alternative CHE current models	77
4.2 Simulation Results	80
4.3 CHISEL current modeling	82
REFERENCES	83

5. FURTHER POSSIBILITIES OF FG DEVICE COMPACT MODELS 87

1. RELIABILITY PREDICTION	87
1.1 SILC impact on FG memory reliability	88
1.1.1 SILC models proposed in the literature	89
1.2 Examples of FG memory device reliability predictions:	
EEPROM data retention	91
2. STATISTICS	97
REFERENCES	99
6. NON VOLATILE MEMORY DEVICES	103
1. BASIC ELEMENTS	103
1.1 Read biasing	104
1.2 Program biasing	105
1.3 Erase biasing	106
2. MAIN BUILDING BLOCKS OF THE DEVICE	107
3. MATRIX AND DECODERS	113
4. OPERATING MODES	116
4.1 Read	116
4.2 Redundancy Read	118
4.3 Program	120
4.4 Erase	120
5. DMA TEST	122
Acknowledgement	125
References	126
	101

Acknowledgments

131