
Pragmatic Unit Testing
in Java 8 with JUnit

Jeff Langr

with Andy Hunt
Dave Thomas

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Foreword ix

Preface xi

Part I — Unit-Testing Foundations

1. Building Your First JUnit Test 3
Reasons to Write a Unit Test 3
Learning JUnit Basics: Our First Passing Test 4
Arrange, Act, and Assert Your Way to a Test 10
Is the Test Really Testing Anything? 12
After 12

2. Getting Real with JUnit 13
Understanding What We’re Testing: The Profile Class 13
Determining What Tests We Can Write 15
Covering One Path 17
Tackling a Second Test 19
Initializing Tests with @Before Methods 19
How Ya Feelin’ Now? 22
After 23

3. Digging Deeper into JUnit Assertions 25
Assertions in JUnit 25
Three Schools for Expecting Exceptions 31
After 34

4. Organizing Your Tests 35
Keeping Tests Consistent with AAA 35
Testing Behavior Versus Testing Methods 36
Relationship Between Test and Production Code 37

www.it-ebooks.info

http://www.it-ebooks.info/

The Value of Focused, Single-Purpose Tests 40
Tests as Documentation 41
More on @Before and @After (Common Initialization and
Cleanup) 43
Green Is Good: Keeping Our Tests Relevant 45
After 47

Part II — Mastering Manic Mnemonics!

5. FIRST Properties of Good Tests 51
FIRST It Helps to Remember That Good Tests Are FIRST 51
[F]IRST: [F]ast! 52
F[I]RST: [I]solate Your Tests 56
FI[R]ST: Good Tests Should Be [R]epeatable 57
FIR[S]T: [S]elf-Validating 59
FIRS[T]: [T]imely 61
After 62

6. What to Test: The Right-BICEP 63
[Right]-BICEP: Are the Results Right? 63
Right-[B]ICEP: Boundary Conditions 65
Remembering Boundary Conditions with CORRECT 67
Right-B[I]CEP: Checking Inverse Relationships 68
Right-BI[C]EP: Cross-Checking Using Other Means 70
Right-BIC[E]P: Forcing Error Conditions 71
Right-BICE[P]: Performance Characteristics 71
After 73

7. Boundary Conditions: The CORRECT Way 75
[C]ORRECT: [C]onformance 76
C[O]RRECT: [O]rdering 77
CO[R]RECT: [R]ange 78
COR[R]ECT: [R]eference 85
CORR[E]CT: [E]xistence 86
CORRE[C]T: [C]ardinality 87
CORREC[T]: [T]ime 89
After 91

Contents • vi

www.it-ebooks.info

http://www.it-ebooks.info/

Part III — The Bigger Design Picture

8. Refactoring to Cleaner Code 95
A Little Bit o’ Refactor 95
Finding Better Homes for Our Methods 98
Automated and Manual Refactorings 100
Taking Refactoring Too Far? 102
After 105

9. Bigger Design Issues 107
The Profile Class and the SRP 107
Extracting a New Class 109
Command-Query Separation 114
The Cost of Maintaining Unit Tests 115
Other Design Thoughts 118
After 121

10. Using Mock Objects 123
A Testing Challenge 123
Replacing Troublesome Behavior with Stubs 125
Changing Our Design to Support Testing 128
Adding Smarts to Our Stub: Verifying Parameters 128
Simplifying Testing Using a Mock Tool 130
One Last Simplification: Introducing an Injection Tool 131
What’s Important to Get Right When Using Mocks 133
After 134

11. Refactoring Tests 135
Searching for an Understanding 135
Test Smell: Unnecessary Test Code 137
Test Smell: Missing Abstractions 138
Test Smell: Irrelevant Information 140
Test Smell: Bloated Construction 142
Test Smell: Multiple Assertions 143
Test Smell: Irrelevant Details in Test 144
Test Smell: Misleading Organization 146
Test Smell: Implicit Meaning 147
Adding a New Test 148
After 149

Contents • vii

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV — The Bigger Unit-Testing Picture

12. Test-Driven Development 153
The Primary Benefit of TDD 153
Starting Simple 154
Adding Another Increment 157
Cleaning Up Our Tests 158
Another Small Increment 161
Supporting Multiple Answers: A Small Design Detour 162
Expanding the Interface 164
Last Tests 166
Tests As Documentation 167
The Rhythm of TDD 169
After 169

13. Testing Some Tough Stuff 171
Testing Multithreaded Code 171
Testing Databases 180
After 186

14. Testing on a Project 187
Coming up to Speed 187
Getting on the Same Page with Your Team 188
Convergence with Continuous Integration 190
Code Coverage 192
After 196

A1. Setting Up JUnit in IntelliJ IDEA and NetBeans 197
IntelliJ IDEA 198
NetBeans 202

Index 207

Contents • viii

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword
Some time after Dave Thomas and I (Andy Hunt) wrote The Pragmatic Program-
mer and the first edition of Programming Ruby, we turned our attention to
the most basic needs of modern software developers.

We came up with the idea of The Pragmatic Starter Kit, three books covering
the most fundamental needs of a team: version control, unit testing, and
automated build and test. These were the first three books we’d write and
publish as the Pragmatic Bookshelf.

These topics are still fundamental and critical to any team’s success, but a
lot has changed over the last dozen years or so. Version-control technology
has moved from centralized CVS and Subversion to a distributed model in
Git. Automated build and related tools have become more scripted and more
sophisticated, and testing has evolved from a hard-sell afterthought to a
widely embraced approach via test-driven development.

Now Jeff Langr has taken on the task of updating and expanding our original
unit-testing treatise for the modern world. The principles are the same, but
the tools have gotten better, and I’d like to think the whole approach to soft-
ware development has become more realistic, more professional, and—dare
I say it?—more pragmatic. Jeff will show you the way.

Testing was always a poor name for this particular programming activity. The
very name makes it sound like it’s something separate from coding, separate
from design, and separate from debugging.

It’s not.

Your programming-language compiler/interpreter verifies that your source
code is syntactically valid: that it makes at least some sort of sense according
to the syntax of the language. But the compiler can’t really tell what your
code does and so can’t help to determine if the code is correct or not.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Unit testing lets you specify what the code does and verifies that the code
does it. Unit testing has become a marvelous intersection of design, coding,
and debugging.

If you haven’t gotten huge value from your testing yet, then this book will
help you. Whether you’re brand-new to the ideas here, or just trying to get
the most benefit from unit testing, this book will help you.

Enjoy!

Andy Hunt
Publisher, The Pragmatic Bookshelf

Raleigh, NC

Foreword • x

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

