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Foreword
Some time after Dave Thomas and I (Andy Hunt) wrote The Pragmatic Program-
mer and the first edition of Programming Ruby, we turned our attention to
the most basic needs of modern software developers.

We came up with the idea of The Pragmatic Starter Kit, three books covering
the most fundamental needs of a team: version control, unit testing, and
automated build and test. These were the first three books we’d write and
publish as the Pragmatic Bookshelf.

These topics are still fundamental and critical to any team’s success, but a
lot has changed over the last dozen years or so. Version-control technology
has moved from centralized CVS and Subversion to a distributed model in
Git. Automated build and related tools have become more scripted and more
sophisticated, and testing has evolved from a hard-sell afterthought to a
widely embraced approach via test-driven development.

Now Jeff Langr has taken on the task of updating and expanding our original
unit-testing treatise for the modern world. The principles are the same, but
the tools have gotten better, and I’d like to think the whole approach to soft-
ware development has become more realistic, more professional, and—dare
I say it?—more pragmatic. Jeff will show you the way.

Testing was always a poor name for this particular programming activity. The
very name makes it sound like it’s something separate from coding, separate
from design, and separate from debugging.

It’s not.

Your programming-language compiler/interpreter verifies that your source
code is syntactically valid: that it makes at least some sort of sense according
to the syntax of the language. But the compiler can’t really tell what your
code does and so can’t help to determine if the code is correct or not.
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Unit testing lets you specify what the code does and verifies that the code
does it. Unit testing has become a marvelous intersection of design, coding,
and debugging.

If you haven’t gotten huge value from your testing yet, then this book will
help you. Whether you’re brand-new to the ideas here, or just trying to get
the most benefit from unit testing, this book will help you.

Enjoy!

Andy Hunt
Publisher, The Pragmatic Bookshelf

Raleigh, NC
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