# Handbooks in Operations Research and Management Science

Advisory Editors

M. Florian Université de Montréal A.M. Geoffrion

University of California at Los Angeles R.M. Karp

University of California at Berkeley

T.L. Magnanti Massachusetts Institute of Technology

D.G. Morrison University of California at Los Angeles

S.M. Pollock University of Michigan at Ann Arbor

A.F. Veinott, Jr. Stanford University

P. Whittle University of Cambridge Editors

J.K. Lenstra Centrum voor Wiskunde en Informatica, Amsterdam G.L. Nemhauser Georgia Institute of Technology J.G. Dai Georgia Institute of Technology

Volume 15



Amsterdam – Boston – Heidelberg – London – New York – Oxford Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo North-Holland is an imprint of Elsevier



# Financial Engineering

Edited by

John R. Birge University of Chicago, IL, USA

Vadim Linetsky Northwestern University, IL, USA



Amsterdam – Boston – Heidelberg – London – New York – Oxford Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo North-Holland is an imprint of Elsevier



## Contents

### I. Introduction

| Introduction to the Handbook of Financial Engineering            |     |
|------------------------------------------------------------------|-----|
| John R. Birge and Vadim Linetsky                                 | 3   |
| References                                                       | 11  |
| CHAPTER 1                                                        |     |
| An Introduction to Financial Asset Pricing                       |     |
| Robert A. Jarrow and Philip Protter                              | 13  |
| 1 Introduction                                                   | 13  |
| 2 Introduction to derivatives and arbitrage                      | 14  |
| 3 The core of the theory                                         | 21  |
| 4 American type derivatives                                      | 60  |
| Acknowledgements                                                 | 67  |
| References                                                       | 67  |
| II. Derivative Securities: Models and Methods                    |     |
| CHAPTER 2                                                        |     |
| Jump-Diffusion Models for Asset Pricing in Financial Engineering |     |
| S.G. Kou                                                         | 73  |
| 1 Introduction                                                   | 73  |
| 2 Empirical stylized facts                                       | 75  |
| 3 Motivation for jump-diffusion models                           | 84  |
| 4 Equilibrium for general jump-diffusion models                  | 89  |
| 5 Basic setting for option pricing                               | 92  |
| 6 Pricing call and put option via Laplace transforms             | 94  |
| 7 First passage times                                            | 96  |
| 8 Barrier and lookback options                                   | 100 |
| 9 Analytical approximations for American options                 | 103 |
| References                                                       | 108 |
|                                                                  | 110 |
| CHAPTER 3                                                        |     |
| Modeling Financial Security Returns Using Lévy Processes         |     |
| Liuren Wu                                                        | 117 |
| 1 Introduction                                                   | 117 |

#### Contents

| 2 Modeling return innovation distribution using Lévy processes         | 120 |
|------------------------------------------------------------------------|-----|
| 3 Generating stochastic volatility by applying stochastic time changes | 127 |
| 4 Modeling financial security returns with time-changed Lévy processes | 133 |
| 5 Option pricing under time-changed Lévy processes                     | 144 |
| 6 Estimating Lévy processes with and without time changes              | 155 |
| 7 Concluding remarks                                                   | 159 |
| Acknowledgements                                                       | 159 |
| References                                                             | 160 |

# CHAPTER 4 Pricing with Wishart Risk Factors Christian Gourieroux and Razvan Sufana

| 1 Introduction       | 163 |
|----------------------|-----|
| 2 Wishart process    | 167 |
| 3 Pricing            | 172 |
| 4 Examples           | 175 |
| 5 Concluding remarks | 181 |
| References           | 181 |
|                      |     |

163

#### CHAPTER 5

| Volatility                                                          |     |
|---------------------------------------------------------------------|-----|
| Federico M. Bandi and Jeffrey R. Russell                            | 183 |
| 1 Introduction                                                      | 183 |
| 2 A model of price formation with microstructure effects            | 184 |
| 3 The variance of the equilibrium price                             | 186 |
| 4 Solutions to the inconsistency problem                            | 191 |
| 5 Equilibrium price variance estimation: directions for future work | 202 |
| 6 The variance of microstructure noise: a consistency result        | 210 |
| 7 The benefit of consistency: measuring market quality              | 210 |
| 8 Volatility and asset pricing                                      | 216 |
| Acknowledgements                                                    | 217 |
| References                                                          | 217 |
|                                                                     |     |

| CHAPTER 6<br>Spectral Methods in Derivatives Pricing                     |     |
|--------------------------------------------------------------------------|-----|
| Vadim Linetsky                                                           | 223 |
| 1 Introduction                                                           | 224 |
| 2 Self-adjoint semigroups in Hilbert spaces                              | 230 |
| 3 One-dimensional diffusions: general results                            | 237 |
| 4 One-dimensional diffusions: a catalog of analytically tractable models | 253 |
| 5 Symmetric multi-dimensional diffusions                                 | 285 |
| 6 Introducing jumps and stochastic volatility via time changes           | 288 |
| 7 Conclusion                                                             | 294 |
| References                                                               | 294 |

vi

#### CHAPTER 7 Variational Methods in Derivatives Pricing Liming Feng, Pavlo Kovalov, Vadim Linetsky and Michael Marcozzi 301 1 Introduction 302 2 European and barrier options in the Black-Scholes-Merton model 305 3 American options in the Black-Scholes-Merton model 315 4 General multi-dimensional jump-diffusion models 320 5 Examples and applications 329 6 Summary 339 References 340

#### CHAPTER 8

Discrete Barrier and Lookback Options

| S.G. Kou                                                                    | 343 |
|-----------------------------------------------------------------------------|-----|
| 1 Introduction                                                              | 343 |
| 2 A representation of barrier options via the change of numeraire argument  | 348 |
| 3 Convolution, Broadie-Yamamoto method via the fast Gaussian transform, and |     |
| Feng–Linetsky method via Hilbert transform                                  | 350 |
| 4 Continuity corrections                                                    | 355 |
| 5 Perturbation method                                                       | 361 |
| 6 A Laplace transform method via Spitzer's identity                         | 363 |
| 7 Which method to use                                                       | 365 |
| Appendix A. Proof of (1)                                                    | 366 |
| Appendix B. Calculation of the constant $\beta$                             | 368 |
| References                                                                  | 370 |

#### III. Interest Rate and Credit Risk Models and Derivatives

#### CHAPTER 9

| Topics in Interest Rate Theory        |     |
|---------------------------------------|-----|
| Tomas Björk                           | 377 |
| 1 Introduction                        | 377 |
| 2 Basics                              | 378 |
| 3 Forward rate models                 | 381 |
| 4 Change of numeraire                 | 387 |
| 5 LIBOR market models                 | 390 |
| 6 Notes                               | 400 |
| 7 Geometric interest rate theory      | 400 |
| 8 Consistency and invariant manifolds | 401 |
| 9 Existence of nonlinear realizations | 411 |
| 10 Potentials and positive interest   | 419 |
| References                            | 434 |

| CHAPTER 10                                         |                    |
|----------------------------------------------------|--------------------|
| Calculating Portfolio Credit Risk                  |                    |
| Paul Glasserman                                    | 437                |
| 1 Introduction                                     | 437                |
| 2 Problem setting                                  | 439                |
| 3 Models of dependence                             | 444                |
| 4 Conditional loss distributions                   | 451                |
| 5 Unconditional loss distributions                 | 457                |
| 6 Importance sampling                              | 462                |
| 7 Summary                                          | 467                |
| References                                         | 468                |
| CHAPTER 11                                         |                    |
| Valuation of Packet Credit Derivatives in the Cred | it Migratians Envi |

| Valuation of Basket Credit Derivatives in the Credit Migrations Envi- |     |
|-----------------------------------------------------------------------|-----|
| ronment                                                               |     |
| Tomasz R. Bielecki, Stéphane Crépey, Monique Jeanblanc and Marek      |     |
| Rutkowski                                                             | 471 |
| 1 Introduction                                                        | 472 |
| 2 Notation and preliminary results                                    | 476 |
| 3 Markovian market model                                              | 481 |
| 4 Changes of measures and Markovian numeraires                        | 485 |
| 5 Valuation of single name credit derivatives                         | 492 |
| 6 Valuation of basket credit derivatives                              | 497 |
| 7 Model implementation                                                | 500 |
| References                                                            | 507 |

#### **IV. Incomplete Markets**

**CHAPTER 12 Incomplete Markets** Jeremy Staum 511 1 Introduction 511 2 The over-the-counter market 513 3 Causes of incompleteness 516 4 Pricing and optimization 518 5 Issues in pricing and expected utility examples 528 6 Quadratics 533 7 Entropy and exponential utility 536 8 Loss, quantiles, and prediction 537 9 Pricing kernel restrictions 540 10 Ambiguity and robustness 544 11 Calibration 550 12 Conclusion 551 Acknowledgements 554 Appendix A. Definition of incompleteness and fundamental theorems 554 Appendix B. Financial perspectives on incompleteness 556 References 558

viii

#### CHAPTER 13

Option Pricing: Real and Risk-Neutral Distributions

| George M. Constantinides, Jens Carsten Jackwerth and Stylianos Per        | rrakis 565 |
|---------------------------------------------------------------------------|------------|
| 1 Introduction                                                            | 566        |
| 2 Implications of the absence of arbitrage                                | 567        |
| 3 Additional restrictions implied by utility maximization                 | 570        |
| 4 Special case: one period without transaction costs                      | 574        |
| 5 Special case: one period with transaction costs and general payoffs     | 578        |
| 6 Special case: two periods without transaction costs and general payoffs | 579        |
| 7 Special case: two periods with transaction costs and general payoffs    | 580        |
| 8 Multiple periods without transaction costs and with convex payoffs      | 581        |
| 9 Multiple periods with transaction costs and with convex payoffs         | 583        |
| 10 Empirical results                                                      | 585        |
| 11 Concluding remarks                                                     | 588        |
| Acknowledgements                                                          | 589        |
| References                                                                | 589        |

#### CHAPTER 14

| Total Risk Minimization Using Monte Carlo Simulations          |     |
|----------------------------------------------------------------|-----|
| Thomas F. Coleman, Yuying Li and Maria-Cristina Patron         | 593 |
| 1 Introduction                                                 | 593 |
| 2 Discrete hedging criteria                                    | 599 |
| 3 Total risk minimization in the Black–Scholes framework       | 603 |
| 4 Total risk minimization in a stochastic volatility framework | 618 |
| 5 Shortfall risk minimization                                  | 625 |
| 6 Conclusions                                                  | 632 |
| References                                                     | 634 |

| CHAPTER 15<br>Queuing Theoretic Approaches to Financial Price Fluctuations |     |
|----------------------------------------------------------------------------|-----|
| Erhan Bayraktar, Ulrich Horst and Ronnie Sircar                            | 637 |
| 1 Introduction                                                             | 638 |
| 2 Agent-based models of financial markets                                  | 639 |
| 3 Microstructure models with inert investors                               | 649 |
| 4 Outlook and conclusion                                                   | 671 |
| Acknowledgements                                                           | 674 |
| References                                                                 | 674 |

#### V. Risk Management

| CHAPTER 16                                                |     |
|-----------------------------------------------------------|-----|
| Economic Credit Capital Allocation and Risk Contributions |     |
| Helmut Mausser and Dan Rosen                              | 681 |
| 1 Introduction                                            | 682 |
| 2 Credit portfolio models and general framework           | 684 |

| 0   |     |    |
|-----|-----|----|
| Con | ten | ts |

| <ul> <li>3 Capital allocation and risk contributions</li> <li>4 Credit risk contributions in analytical models</li> <li>5 Numerical methods to compute risk contributions</li> <li>6 Case studies</li> <li>7 Summary and further research</li> <li>Appendix A</li> <li>References</li> </ul>                                                                                                | 688<br>693<br>701<br>706<br>717<br>721<br>724                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| CHAPTER 17<br>Liquidity Risk and Option Pricing Theory<br>Robert A. Jarrow and Philip Protter                                                                                                                                                                                                                                                                                               | 727                                                                       |
| <ol> <li>Introduction</li> <li>The model</li> <li>The extended first fundamental theorem</li> <li>The extended second fundamental theorem</li> <li>Example (extended Black–Scholes economy)</li> <li>Economies with supply curves for derivatives</li> <li>Transaction costs</li> <li>Examples of supply curves</li> <li>Conclusion</li> <li>Acknowledgement</li> <li>Appendix A</li> </ol> | 727<br>729<br>733<br>735<br>741<br>743<br>745<br>747<br>751<br>751<br>751 |
| References                                                                                                                                                                                                                                                                                                                                                                                  | 761                                                                       |

## CHAPTER 18 Financial Engineering: Applications in Insurance Phelim Boyle and Mary Hardy

| 1 Introduction                         | 763 |
|----------------------------------------|-----|
| 2 Insurance products and markets       | 765 |
| 3 Premium principles and risk measures | 768 |
| 4 Risk management for life insurance   | 770 |
| 5 Variable annuities                   | 775 |
| 6 Guaranteed annuity options           | 781 |
| 7 Conclusions                          | 784 |
| Acknowledgements                       | 784 |
| References                             | 785 |

763

#### VI. Portfolio Optimization

| CHAPTER 19                                 |     |
|--------------------------------------------|-----|
| Dynamic Portfolio Choice and Risk Aversion |     |
| Costis Skiadas                             | 789 |
| 1 Introduction                             | 789 |
| 2 Optimality and state pricing             | 793 |
| 3 Recursive utility                        | 804 |
| 4 Modeling risk aversion                   | 814 |
|                                            |     |

х

| Cor | nter | nts |
|-----|------|-----|
| 001 | ww   | 220 |

| 5 Scale-invariant solutions | 821 |
|-----------------------------|-----|
| 6 Extensions                | 833 |
| Acknowledgements            | 839 |
| References                  | 839 |
|                             |     |

#### CHAPTER 20

| Optimization Methods in Dynamic Portfolio Manage | ement |
|--------------------------------------------------|-------|
| John R. Birge                                    | 845   |
| 1 Introduction                                   | 845   |
| 2 Formulation                                    | 846   |
| 3 Approximation methods                          | 849   |
| 4 Solution methods                               | 857   |
| 5 Extensions and conclusions                     | 860   |
| Acknowledgements                                 | 861   |
| References                                       | 861   |

### CHAPTER 21

| Simulation Methods for Optimal Portfolios            |     |
|------------------------------------------------------|-----|
| Jérôme Detemple, René Garcia and Marcel Rindisbacher | 867 |
| 1 Introduction                                       | 867 |
| 2 The consumption-portfolio choice problem           | 869 |
| 3 Simulation methods for portfolio computation       | 878 |
| 4 Asymptotic properties of portfolio estimators      | 887 |
| 5 Performance evaluation: a numerical study          | 903 |
| 6 Conclusion                                         | 907 |
| Acknowledgement                                      | 909 |
| Appendix A. An introduction to Malliavin calculus    | 909 |
| Appendix B. Proofs                                   | 915 |
| References                                           | 922 |

#### CHAPTER 22

Duality Theory and Approximate Dynamic Programming for Pricing American Options and Portfolio Optimization Martin B. Haugh and Leonid Kogan

| 1 Introduction             | 925 |
|----------------------------|-----|
| 2 Pricing American options | 927 |
| 3 Portfolio optimization   | 937 |
| References                 | 947 |
|                            |     |

#### CHAPTER 23

| Asset Allocation with Multivariate Non-Gaussian Returns |     |
|---------------------------------------------------------|-----|
| Dilip B. Madan and Ju-Yi J. Yen                         | 949 |
| 1 Introduction                                          | 949 |
| 2 Non-Gaussian investment                               | 951 |
| 3 Modeling distributions                                | 953 |

#### xi

925

| Content | s |
|---------|---|
| Conton  | v |

| 4 Exponential utility and investment in zero cost VG cash flows                                                                                                                                                                                                                                      | 955                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 5 Identifying the joint distribution of returns                                                                                                                                                                                                                                                      | 958                             |
| 6 Non-Gaussian and Gaussian investment compared                                                                                                                                                                                                                                                      | 960                             |
| 7 Conclusion                                                                                                                                                                                                                                                                                         | 962                             |
| Appendix A. Formal analysis of skewness preference and kurtosis aversion                                                                                                                                                                                                                             | 963                             |
| Appendix B. Proof of Theorem 4.1                                                                                                                                                                                                                                                                     | 964                             |
| Appendix C. Proof of Theorem 4.2                                                                                                                                                                                                                                                                     | 966                             |
| References                                                                                                                                                                                                                                                                                           | 968                             |
| <ul> <li>CHAPTER 24</li> <li>Large Deviation Techniques and Financial Applications</li> <li>Phelim Boyle, Shui Feng and Weidong Tian <ol> <li>Introduction</li> <li>Large deviation techniques</li> <li>Applications to portfolio management</li> <li>Tail risk of portfolios</li> </ol> </li> </ul> | 971<br>971<br>972<br>979<br>986 |
| 5 Application to simulation                                                                                                                                                                                                                                                                          | 987                             |
| 6 Incomplete markets                                                                                                                                                                                                                                                                                 | 992                             |
| 7 Conclusions and potential topics for future research                                                                                                                                                                                                                                               | 997                             |
| Acknowledgements                                                                                                                                                                                                                                                                                     | 998                             |
| References                                                                                                                                                                                                                                                                                           | 998                             |
|                                                                                                                                                                                                                                                                                                      |                                 |

Subject Index

1001

xii