Digital Communication over Fading Channels

A Unified Approach to Performance Analysis

Marvin K. Simon Mohamed-Slim Alouini

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Digital Communication over Fading Channels: A Unified Approach to Performance Analysis. Marvin K. Simon, Mohamed-Slim Alouini Copyright © 2000 John Wiley & Sons, Inc. Print ISBN 0-471-31779-9 Electronic ISBN 0-471-20069-7

CONTENTS

XV

Preface

PART 1 FUNDAMENTALS

Introduction			3
1.1	System	Performance Measures	4
	1.1.1	Average Signal-to-Noise Ratio	4
	1.1.2	Outage Probability	5
	1.1.3	Average Bit Error Probability	6
1.2	Conclus	sions	12
Refer	rences		13
Fadi	ng Chan	nel Characterization and Modeling	15
2.1	Main C	haracteristics of Fading Channels	15
	2.1.1	Envelope and Phase Fluctuations	15
	2.1.2	Slow and Fast Fading	16
	2.1.3	Frequency-Flat and Frequency-Selective	
		Fading	16
2.2	Modelir	ng of Flat Fading Channels	17
	2.2.1	Multipath Fading	18
	2.2.2	Log-Normal Shadowing	23
	2.2.3	Composite Multipath/Shadowing	24
	2.2.4	Combined (Time-Shared)	
		Shadowed/Unshadowed Fading	25
2.3	Modelir	ng of Frequency-Selective Fading	
	Channe	ls	26
Refer	rences		28
	Intro 1.1 1.2 Refer Fadin 2.1 2.2 2.3 Refer	Introduction 1.1 System 1.1.1 1.1.2 1.1.3 1.2 Conclus References Fading Chan 2.1 Main C 2.1.1 2.1.2 2.1.3 2.2 Modelin 2.2.2 2.2.3 2.2.4 2.3 Modelin Channe References	 Introduction System Performance Measures Average Signal-to-Noise Ratio Outage Probability Average Bit Error Probability Average Bit Error Probability Average Bit Error Probability Conclusions References Fading Channel Characterization and Modeling Main Characteristics of Fading Channels Intervelope and Phase Fluctuations Sow and Fast Fading Slow and Fast Fading Conclusions 2.2 Modeling of Flat Fading Channels Composite Multipath/Shadowing Composite Multipath/Shadowing Adowed/Unshadowed Fading Andeling of Frequency-Selective Fading Modeling of Frequency-Selective Fading

Chapter 3	Туре	s of Co	mmunication	31
	3.1	Ideal Coherent Detection		31
		3.1.1	Multiple Amplitude-Shift-Keying or	
			Multiple Amplitude Modulation	33
		3.1.2	Quadrature Amplitude-Shift-Keying or	
			Quadrature Amplitude Modulation	34
		3.1.3	M-ary Phase-Shift-Keying	35
		3.1.4	Differentially Encoded <i>M</i> -ary	
			Phase-Shift-Keying	39
		3.1.5	Offset QPSK or Staggered QPSK	41
		3.1.6	<i>M</i> -ary Frequency-Shift-Keying	43
		3.1.7	Minimum-Shift-Keying	45
	3.2	Nonide	al Coherent Detection	47
	3.3	Noncol	nerent Detection	53
	3.4	Partiall	y Coherent Detection	55
		3.4.1	Conventional Detection: One-Symbol	
			Observation	55
		3.4.2	Multiple Symbol Detection	57
	3.5	Differe	ntially Coherent Detection	59
		3.5.1	M-ary Differential Phase Shift Keying	59
		3.5.2	π /4-Differential QPSK	65
	References			65

PART 2 MATHEMATICAL TOOLS

Chapter 4	Alternative Representations of Classical Functions 69				
	4.1 Gaussian <i>Q</i> -Function				
	4.1.1 One-Dimensional Case	70			
	4.1.2 Two-Dimensional Case	72			
	4.2 Marcum <i>Q</i> -Function	74			
	4.2.1 First-Order Marcum <i>Q</i> -Function	74			
	4.2.2 Generalized (<i>mth-Order</i>) Marcum				
	Q-Function	81			
	4.3 Other Functions	90			
	References	94			
	Appendix 4A: Derivation of Eq. (4.2)	95			
Chapter 5	Useful Expressions for Evaluating Average Error				
	Probability Performance				
	5.1 Integrals Involving the Gaussian Q-Function	99			
	5.1.1 Rayleigh Fading Channel	101			

		5.1.2	Nakagami-q (Hoyt) Fading Channel	101
		5.1.3	Nakagami- <i>n</i> (Rice) Fading Channel	102
		5.1.4	Nakagami- <i>m</i> Fading Channel	102
		5.1.5	Log-Normal Shadowing Channel	104
		5.1.6	Composite Log-Normal	
			Shadowing/Nakagami-m Fading Channel	104
	5.2	Integra	ls Involving the Marcum Q-Function	107
		5.2.1	Rayleigh Fading Channel	108
		5.2.2	Nakagami-q (Hoyt) Fading Channel	109
		5.2.3	Nakagami-n (Rice) Fading Channel	109
		5.2.4	Nakagami- <i>m</i> Fading Channel	109
		5.2.5	Log-Normal Shadowing Channel	109
		5.2.6	Composite Log-Normal	
		_	Shadowing/Nakagami- <i>m</i> Fading Channel	110
	5.3	Integra	ls Involving the Incomplete Gamma	
		Functio	on	111
		5.3.1	Rayleigh Fading Channel	112
		5.3.2	Nakagami-q (Hoyt) Fading Channel	112
		5.3.3	Nakagami- <i>n</i> (Rice) Fading Channel	112
		5.3.4	Nakagami- <i>m</i> Fading Channel	113
		5.3.5	Log-Normal Shadowing Channel	114
		5.3.6	Composite Log-Normal	114
			Shadowing/Nakagami- <i>m</i> Fading Channel	114
	5.4	Integra	ls Involving Other Functions	114
		5.4.1	M-PSK Error Probability Integral	114
		5.4.2	Arbitrary Two-Dimensional Signal	
			Constellation Error Probability Integral	116
		5.4.3	Integer Powers of the Gaussian	
			Q-Function	117
		5.4.4	Integer Powers of <i>M</i> -PSK Error	101
			Probability Integrals	121
	Refer	rences		124
	Appe	ndix 5A:	Evaluation of Definite Integrals	
	Asso	ciated wi	th Rayleigh and Nakagami- <i>m</i> Fading	124
Chapter 6	New	Repres	entations of Some PDF's and CDF's	
	for C	orrelati	ve Fading Applications	141
	6.1	Bivaria	te Rayleigh PDF and CDF	142
	6.2	PDF ar	nd CDF for Maximum of Two Rayleigh	
		Randor	n Variables	146
	6.3	PDF ar	nd CDF for Maximum of Two	
		Nakaga	umi- <i>m</i> Random Variables	149
	Refer	ences		152

PART 3 OPTIMUM RECEPTION AND PERFORMANCE EVALUATION

Chapter 7	Optimum Receivers for Fading Channels			157
	7.1	Case of	Known Amplitudes, Phases, and Delays:	
		Coheren	nt Detection	159
	7.2	The Ca	se of Known Phases and Delays,	
		Unknow	vn Amplitudes	163
		7.2.1	Rayleigh Fading	163
		7.2.2	Nakagami- <i>m</i> Fading	164
	7.3	Case of	Known Amplitudes and Delays,	
		Unknow	vn Phases	166
	7.4	Case of	Known Delays and Unknown	
		Amplitu	ides and Phases	168
		7.4.1	One-Symbol Observation: Noncoherent	
			Detection	168
		7.4.2	Two-Symbol Observation: Conventional	101
		712	N Symbol Observation: Multiple Symbol	181
		7.4.3	Differentially Coherent Detection	186
	75	Case of	Unknown Amplitudes Phases and	100
	7.5	Delays	Chknown Amphtudes, Thases, and	188
		7 5 1	One-Symbol Observation: Noncoherent	100
		7.3.1	Detection	188
		7.5.2	Two-Symbol Observation: Conventional	100
			Differentially Coherent Detection	190
	Refer	rences	-	191
Chapter 8	Perfe	ormance	of Single Channel Receivers	193
	8.1	Perform	nance Over the AWGN Channel	193
		8.1.1	Ideal Coherent Detection	194
		8.1.2	Nonideal Coherent Detection	206
		8.1.3	Noncoherent Detection	209
		8.1.4	Partially Coherent Detection	210
		8.1.5	Differentially Coherent Detection	213
		8.1.6	Generic Results for Binary Signaling	218
	8.2	Perform	nance Over Fading Channels	219
		8.2.1	Ideal Coherent Detection	220
		8.2.2	Nonideal Coherent Detection	234
		8.2.3	Noncoherent Detection	239
		8.2.4 8.2.5	Partially Coherent Detection	242
	D-f	0.2.3	Differentially Concretient Detection	243
	Kerer	ences		231

	Appe Proba Syste	ndix 8A: ability Pe ms	: Stein's Unified Analysis of the Error erformance of Certain Communication	253
Chapter 9	Perf	ormance	e of Multichannel Receivers	259
	9.1	Diversity Combining		260
	,	911	Diversity Concept	260
		9.1.2	Mathematical Modeling	260
		9.1.3	Brief Survey of Diversity Combining	
			Techniques	261
		9.1.4	Complexity-Performance Trade-offs	264
	9.2	Maxim	al-Ratio Combining	265
		9.2.1	Receiver Structure	265
		9.2.2	PDF-Based Approach	267
		9.2.3	MGF-Based Approach	268
		9.2.4	Bounds and Asymptotic SER	
			Expressions	275
	9.3	Cohere	nt Equal Gain Combining	278
		9.3.1	Receiver Structure	279
		9.3.2	Average Output SNR	279
		9.3.3	Exact Error Rate Analysis	281
		9.3.4	Approximate Error Rate Analysis	288
		9.3.5	Asymptotic Error Rate Analysis	289
	9.4	Noncol	herent Equal-Gain Combining	290
		9.4.1	DPSK, DQPSK, and BFSK: Exact and	
		0.4.0	Bounds	290
		9.4.2	M-ary Orthogonal FSK	304
	9.5	Outage	Probability Performance	311
		9.5.1	MRC and Noncoherent EGC	312
		9.5.2	Coherent EGC	313
		9.5.3	Numerical Examples	314
	9.6	Impact	of Fading Correlation	316
		9.6.1	Model A: Two Correlated Branches with	
		0.60	Nonidentical Fading	320
		9.6.2	Model B: D Identically Distributed	222
		063	Model C: D Identically Distributed	525
		9.0.3	Branches with Exponential Correlation	324
		9.6.4	Model D: D Nonidentically Distributed	527
		2.0.1	Branches with Arbitrary Correlation	325
		9.6.5	Numerical Examples	329
	9.7	Selectio	on Combining	333
		9.7.1	MGF of Output SNR	335

	9.7.2	Average Output SNR	336
	9.7.3	Outage Probability	338
	9.7.4	Average Probability of Error	340
9.8	Switche	ed Diversity	348
	9.8.1	Performance of SSC over Independent	
		Identically Distributed Branches	348
	9.8.2	Effect of Branch Unbalance	362
	9.8.3	Effect of Branch Correlation	366
9.9	Perform	nance in the Presence of Outdated or	
	Imperfe	ect Channel Estimates	370
	9.9.1	Maximal-Ratio Combining	370
	9.9.2	Noncoherent EGC over Rician Fast	
		Fading	371
	9.9.3	Selection Combining	373
	9.9.4	Switched Diversity	374
	9.9.5	Numerical Results	377
9.10	Hybrid	Diversity Schemes	378
	9.10.1	Generalized Selection Combining	378
	9.10.2	Generalized Switched Diversity	403
	9.10.3	Two-Dimensional Diversity Schemes	408
Refere	ences		411
Apper	ndix 9A:	Alternative Forms of the Bit Error	
Proba	bility for	a Decision Statistic that is a Quadratic	
Form	of Com	plex Gaussian Random Variables	421
Apper	ndix 9B:	Simple Numerical Techniques for the	
Invers	sion of th	ne Laplace Transform of Cumulative	
Distri	bution F	unctions	427
	9B.1	Euler Summation-Based Technique	427
	9B.2	Gauss-Chebyshev Quadrature-Based	
		Technique	428
Apper	ndix 9C:	Proof of Theorem 1	430
Apper	ndix 9D:	Direct Proof of Eq. (9.331)	431
Apper	ndix 9E:	Special Definite Integrals	432

PART 4 APPLICATION IN PRACTICAL COMMUNICATION SYSTEMS

Chapter 10	Optin Com Prese	Optimum Combining: A Diversity Technique for Communication Over Fading Channels in the Presence of Interference 43°			
	10.1	Performance of Optimum Combining Receivers	438		

		10.1.1	Single Interferer, Independent Identically	
			Distributed Fading	438
		10.1.2	Multiple Interferers, Independent	
			Identically Distributed Fading	454
		10.1.3	Comparison with Results for MRC in the	
			Presence of Interference	466
	Refer	rences		470
Chapter 11	Direct-Sequence Code-Division Multiple Access			473
	11.1	Single-	Carrier DS-CDMA Systems	474
		11.1.1	System and Channel Models	474
		11.1.2	Performance Analysis	477
	11.2	Multica	urrier DS-CDMA Systems	479
		11.2.1	System and Channel Models	480
		11.2.2	Performance Analysis	483
		11.2.3	Numerical Examples	489
	Refer	ences		492

PART 5 FURTHER EXTENSIONS

Chapter 12	Code	ed Com	munication Over Fading Channels	497
	12.1	Cohere	nt Detection	499
		12.1.1	System Model	499
		12.1.2	Evaluation of Pairwise Error Probability	502
		12.1.3	Transfer Function Bound on Average Bit	
			Error Probability	510
		12.1.4	Alternative Formulation of the Transfer	
			Function Bound	513
		12.1.5	Example	514
	12.2	Differe	ntially Coherent Detection	520
		12.2.1	System Model	520
		12.2.2	Performance Evaluation	522
		12.2.3	Example	524
	12.3	Numer	ical Results: Comparison of the True	
		Upper	Bounds and Union-Chernoff Bounds	526
	References			530
	Appe	ndix 12A	A: Evaluation of a Moment Generating	
	Function Associated with Differential Detection of			
	M-PS	SK Seque	ences	532