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A B S T R A C T

In order to be able to classify financial chart patterns through machine learning, we introduced
and applied a novel classification algorithm on time series data of different financial assets
through SAX (Symbolic Aggregate approXimation), a transformation algorithm. After applying a
linear regression model on the features of a dataset to reduce the number of parameters needed,
converting real valued data to strings of characters through Piecewise Aggregate Approximation
(PAA) and labelling each level increasingly with Latin alphabets characters, the new algorithm
called CPC-SAX (Chart Pattern Classification) compares vectors describing the ASCII value changes
along the string and classifies them using already labelled SAX-transformed data. The results show
satisfying accuracy scores on data of different time windows and types of assets. We also obtain
information on the appearance of said patterns. By reaching our goal of properly classifying chart
patterns as they appear, we can have a better indication of the future price trend, allowing the
investor/trader to make better informed decisions.
1. Introduction

In the field of finance, chart patterns play an important role as the building blocks of technical analysis. They are a visual repre-
sentation of the forces of supply and demand behind stock price movements, helping traders identify if more buying or selling is
happening, which can help make entry and exit decisions. Finance chart patterns have been thoroughly examined and their research has
expanded throughout the years thanks to efforts such as of Bulkowski (2022), whose Encyclopedia of Chart Patterns has been a main
source of knowledge and inspiration for our research. This material shows how the appearance of chart patterns can be linked with a
probability of either an upward or downward trend, therefore assisting the investor in making a more sound active short-term strategy.

The world of Machine Learning on the other hand is still a relatively new field of science, which came of age in the last decade or so,
and has revolutionised the way scientific research and analytical procedure is executed. As Machine Learning can be quite invasive, it
has made itself a powerful tool in many aspects of financial analysis, such as asset price forecasting, and the extraction/classification of
chart patterns is no different.

This paper looks to expand on the research of financial chart pattern classification, a method that can significantly improve the way
we invest by assisting the financial analyst. It uses dimensionality reduction in order to process a large amount of data multiple times,
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and while previous research was focused on feature extraction on real-valued data, either using shapelets, as did Ye L. (2011) or
Perceptually Important Points (PIPs), shown in Chung et al. (2002), this paper, uses the tried and tested method of Symbolic Aggregate
approXimation transformation (SAX), with a sliding window (Lin et al., 2007).

SAX uses a Piecewise Aggregate Approximation (PAA) (Zhang et al., 2018) with indexing, to transform a time series snippet into a
string of characters with varying length and set of indexes, eg. ‘aabcba’. A sliding window means that the algorithm starts transforming
from the first index, index 1 to index k. Then it repeats but moves one step forward, from index 2 to index kþ1, and so on and so forth.
SAX is the brainchild of Eamonn Keogh, who has been behind its creation and adaptations/improvements over the last 25 years, and it
gives us an alternative to the PIPmethod, where we still keep the principal components of the time series and turn this problem from real
values to language processing.

For the purpose of having enough labelled data to use in a supervised learning manner, an extraction pseudocode was developed that
goes over an already SAX transformed train set and classifies each string, using a rule-based approach for each pattern.

While there are numerous established methods for solving natural language problems concerning classification, this one has a
particularity; it doesn't revolve around a corpus of words that are meaningfully combined to form sentences, but around what seems to
be incomprehensible. The usefulness of similarity metrics like Hamming distance and neural network models dissipates in such
outlandish features.

Therefore a new algorithm was developed, which instead of comparing the similarity of SAX strings, it compares the movement of
PAA levels (from ‘a’ to ‘b’, or from ‘b’ to ‘d’ etc.). In this way, it accounts for the symmetry of strings that describe the same pattern, as for
example ‘aba’ and ‘bcb’ represent the same up-down pattern.

After movement vectors are created out of test SAX strings, they are compared one-on-one with the training data using cosine
distance, by picking a test string and scanning all labelled strings in all bags. If their vectors aren't identical, then their difference
(element-by-element) is added in a sum. This iterates for the entire bag, or until an identical vector has been found. If it is not, an average
difference is derived (using harmonic mean) for the bag in question. This iterates for all bags. In the end, the test string is matched with
the pattern whose bag has the least average distance. The whole algorithm is explained thoroughly in Section 2.

Of course, the existence of a cosine distance implies the existence of a distance threshold, which would become an extra parameter of
the algorithm. This makes sense, since even if a test sample string has the least mean cosine distance, for example, being 1.8 out of 2 (the
maximum cosine distance) that doesn't make it a valid match since it is objectively quite dissimilar. We need a threshold after which a
test sample string doesn't fit any of the patterns.

In order to account for this threshold parameter which can have different values per dataset, we formulated a linear regression model
with the threshold parameter as dependent variable and different attributes of a dataset as independent variables. Thus automatically
giving us estimations of the threshold parameter, and ridding us of the need to adjust it for every dataset.

Then, we go over the appearance of chart patterns by type of asset and time frame, using the pseudocode that detects patterns using
SAX transformation. After the training bags have been filled, we test our algorithm on test datasets.

The data used are oldest available historical prices of daily frequency of Stocks, ETFs, Foreign Exchange Rates (FOREXs), Mutual
Funds and Cryptocurrencies, from Yahoo Finance.

Overall our findings show great accuracy for most datasets, for two time windows of 30 and 60 days, even when compared to existing
machine learning methods. Therefore showcasing how effective SAX transformation with mathematically-simple methods can be, while
still allowing room for improvement over current model architecture.

Our goal was to develop a new approach to chart pattern classification that is as efficient, if not more, than the existing literature.
Justifiably, since such a method of feature extraction has not been used before on classification of financial chart patterns, and deserves
to be compared to already highly developed existing methods. Furthermore, we are troubled by a certain lack of literature about
machine learning on financial chart pattern classification, especially at the time the research question was posed. Considering the excess
of research on finance using Artificial Intelligence, this sector, while quite open to applications, appears to be overlooked. We aspire to
encourage more Machine Learning-oriented research on the topic with this paper.

The rest of the paper is structured as follows: Section 2 contains a review of existing literature concerning the main academic subject.
Section 3 describes the necessary background on Financial Chart Patterns and SAX transformations. Section 4 describes the CPC al-
gorithm created for this research. Section 5 presents the research methodology and data used. Section 6 describes the results and
findings, while Section 7 concludes.

2. Relevant literature

First, Bagnall et al. (2017) greatly summarized time series classification algorithms for general problems. When it comes to pattern
extraction, a part of the procedure followed in this paper, the rule-based approach used in our data sets is inspired by Yuqing Wan
(2017), who created rules for real-valued data. Also, Chung et al. (2002) introduced the concept of Perceptually Important Points (PIPs)
that Chen CH. (2013) used to solve various time series procedures including classification. Liu and Kwong (2007) used a novel algorithm
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called PXtract to identify chart patterns from real-valued data using wavelet multi-resolution analysis and radial basis function neural
networks. Recently, Zheng Y. (2021) introduced a different approach to extract chart patterns, based on hierarchical shape-features
rather than rules. Cartwright et al. (2021) introduced the Matrix Profile algorithm for time series applications.

When it comes to artificial intelligence, most recent advances applied Deep Learning Neural Networks. Liu et al. (2021) reviewed
basic machine learning algorithms for various time series tasks, including classification. Karmelia et al. (2022) used Feedforward Neural
Networks to classify candlestick chart patterns, while Liu and Si (2022) used 1D Convolutional Neural Networks (CNNs), and so did
Jearanaitanakij and Passaya (2019) and Kusuma et al. (2019). Lin et al. (2021) implement a pattern recognition method for informed
stock trading using one-day candlestick patterns and a set of simple machine learning methods. Hu et al. (2019) used another ensemble
of machine learning methods for candlestick pattern classification. Xu (2021) used a similar method of machine learning models and
neural networks for candlestick pattern classification. Finally, Hung and Chen (2021) used a CNN and an Autoencoder to extract features
from candlestick patterns and a Recurrent Neural Network (RNN) to make prediction on stock prices.

3. Theoretical background

3.1. Financial chart patterns

Chart Patterns are distinct motifs found in price charts of financial assets, able to assist professionals on predicting the future trend of
an asset's price, as explained in the Encyclopedia of Chart Patterns where each pattern is associated with a probability of an upward or
downward breakout. In this way, they are separated into continuation (the price continues with its current trend) or reversal (the price
reverses to the opposite direction) patterns. They can also be separated into bullish (upward) or bearish (downward) behaviours.

When analysing a chart pattern, we look for specific graphical features that help us distinguish them amongst the chaotic, Brownian-
esque movements observed in financial time series. One of these features is called the neckline, which is a horizontal line that signifies a
level of support or resistance, and connects two or more swing lows or highs. Inclining lines do indicate levels of support or resistance in
chart patterns, and in a way funnel the chart between them.

In this paper, we will include most of the basic chart patterns, those that can be distinguished when transformed into strings of
characters through SAX. Keep in mind that some patterns do look very similar to others, making them hard to include into this first
attempt. Out of 53 chart patterns we will be classifying 32 of them, although the SAX approximation does combine some variants into
one, specifically in the case of double bottom and double top patterns.

Below we showcase the patterns included in this paper. Another form of representation of financial charts are candlestick charts.
Candlestick charts, unlike typical bar or point and figure charts, display the size of change in an object's price, and the direction of the
change (up or down) in a green or red colour, respectively. They are very common for day-to-day trading, and have distinct patterns of
their own. In a candlestick, the bar signifies the open and close, while the sticks signify the high and low price.

It is important to note that the complex version of the Head and Shoulders patterns are not explicitly included in the approach, but
some of them might get classified as well, depending on their shape. The candlestick chart representations are taken from the Ency-
clopedia of Chart Patterns by Bulkowski (2022).
3.2. SAX transformation

Initially, we have to transform all of our data into strings of characters using the Symbolic Aggregate approXimation algorithmwith a
sliding window. A short explanation of its function is in order (see Fig. 1).

For a sequence S of real-valued data, the algorithm performs a Piecewise Aggregate Approximation (PAA), essentially breaking S into
a number of approximately equally sub sets on the x-axis defined by input, and computes the aggregate of each sub set. Then, it denotes a
character on each sub set, depending on each value level on the y-axis. Usually the characters used are from the Latin alphabet (a being
the lowest, then b, then c etc) and their range, meaning the value levels, are defined by input. Therefore, sequence S is now a string of
words, reducing dimensionality and noise. This procedure is visualised in Fig. 2.

4. The CPC-SAX algorithm

The CPC-SAX algorithm was created specifically for this paper, but follows a very simple procedure.
We start by using SAX with a sliding window function. For time series T, with N points, we define a window of sizeM. Starting in the

beginning of T, the window transforms a set S1 with SAX, and then “slides”, or moves by a number of positions A into set S2 which has
dropped the first A points of S1, and added the next A points of time series T. This goes on for the entire time series, which reduces its
length from N to N-M þ A. In this paper, the move size of the window is 1, and the window size will be 30 and 60, representing days,
since our data points are Adjusted Close Prices for each day. We will look for chart patterns in different time windows, for a position
trading standpoint, though chart patterns can appear in day-to-day, and in buy-and-hold trading.
3



Fig. 1. Part of the patterns included.
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For transforming the datasets, a GitHub repository called saxpy (Nathan Hoffman, 2018) was used.
Afterwards, the novel algorithm calculates the difference of ASCII values for corresponding characters in a string, creating a

‘movement’ vector, as displayed in Algorithm 1. Since some position are more important for pattern discovery, eg. what happens in the
middle of the window for set Si is more important than what happens at the edges, we have assigned a normalized weight vector, with a
different weight value for each position.

The code created has different weight vectors. In this paper the “centroid” vector was used, whereW¼ [0.10, 0.15, 0.25, 0.25, 0.15,
0.10], for strings of length seven.

Assume a problem with N different bags of words B1, B2, …, BN, all with a different label, and M unlabelled strings W1,W2, …, WM.
The algorithm takes the first word W1, and performs a “scan” for each string of each bag Bi.

When comparing two vectors (one labelled and another unlabelled), the weighted cosine distance is calculated, as in Algorithm 2. If
it is zero, the strings display the same pattern& the unlabelled string is given the same label as the labelled one. That can also mean that
they express the same pattern for different levels of prices on the y-axis. For example, aba and bcb are symmetrical (they express the same
up-down movement), so are bcbd and cdce and abac. Using movement vectors, we disregard the price level of each string. If the above
does not occur, then the cosine distance is added up to a sum, and the next string in the bag is examined. If a string isn't labelled until the
end of the bag Bi, the harmonic mean of the sum of cosine distances is calculated. If the mean is less than a given threshold Z, then the
unlabelled string is given the label of bag Bi. If not, the algorithm proceeds to the next bag.

This continues for all bags. If at the end, the string remains unlabelled, then it is labelled as None, meaning it does not represent any
pattern, and the algorithm continues to the next word. This happens for all unlabelled words W.
4
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A function was created that extracts patterns with a bag of words as an input.
After transforming real-valued data with SAX, they are split into a training and a test set. The training set is simply put through the

pattern extracting pseudocode which uses the rule based approach to put each string to an array (or bag of words), if it fits the criteria for
a pattern, and returns these bags-of-words, one for each pattern. We give priority to more complex variants, which have more strict
restrictions. For example, an ascending triangle is more likely to be mistaken for a rising wedge since the latter's conditions are more lax,
and their movement is similar. Therefore triangles go first. It is very unlikely for the opposite to happen, with the rules/conditions in
place.

If we input the training part of each dataset, the output are labelled bags-of-words that shall be used to make predictions on the test
set. For datasets of over 1500 samples, the train/test split was 80/20, while in the other case it was 65/35.

The prediction function takes as input the labelled bags, the unlabelled test set, already transformed by SAX, while the threshold
hyperparameter, the word and alphabet size were part of the initialisation of the Python 3.x class CPC-SAX, which contains all the
algorithms listed in this paper.

It is important to note that the prediction process has two features. One is called prioritywhich, if stated as true, sorts the labelled bags
of words by length, in order to speed up the prediction process (by probability). The other is calledmake up. If a bag has no words, which
means that a pattern wasn't extracted at all during training, it is extended with three template strings that fit the corresponding rules. In
this way, we make sure the prediction algorithm has the samples it needs to find all patterns. If a bag was empty, it would be impossible
for any algorithm to detect a corresponding pattern, since it (the “machine”) would not have “learned” anything relevant.

In our case we have thirty three labels therefore thirty three bags-of-words. We take the output of the pattern extraction algorithm as
a tuple, and use it as an input on the prediction algorithm. The output of the prediction function is a list, containing the name of the
pattern found in the respective position of a string in the test set (if the string doesn't correspond to a pattern, in its place is the string
“None”). These are the predicted labels, with the procedure displayed in Algorithm 3.

Then the test set is used as an input in the pattern extraction algorithm, but the output is again a list with the corresponding labels of
each string. These are considered the true labels.

Finally, we use different metrics such as an accuracy score to judge our results.
5
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In this section only the most basic functions were included. All of the code is stored in this GitHub repository.
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5. Methodology

We have to explicitly state the rules used for extracting patterns from the transformed strings of words. These rules compare the
characters of each string in a boolean fashion, looking for “rough” representations of each pattern. This is why more complex patterns
were hard to include in this paper. We set the size of each string to 7, since most patterns are composed of 7 or 5 PIPs, and the alphabet
size to 6. This was donemostly intuitively, as a way to reduce noise but not over-aggregate and lose features for the patterns. By reducing
the alphabet size to 3, we received very high prediction accuracy, but this probably attributed to the patterns being oversimplified.

For string S of length seven, examples of the rules used are in Algorithms 4, 5, 6 and 7.
7
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Fig. 2. Visualisation of the SAX transformation.
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We start the procedure by creating a linear regression model to estimate the threshold parameter. The value of the parameter
is the target variable, and is dependent on the size, mean, and standard deviation of each data set. We used the Bayesian In-
formation Criterion (BIC) to judge the model. This was performed on 63 data sets, of which 24 were cryptocurrencies, 5 were
FOREXs and the rest were stocks. After using the CPC algorithm on the training sample of the datasets in hand, where the
sample is used to create bags of strings, we use our testing sample to check the accuracy of the CPC algorithm. Meanwhile, we
test for changes in percentages of train/test splitting, and we obtain the runtime of the algorithm and the error rate by dataset
size.

Finally, we extract all patterns from the same entire datasets using the label pseudocode, to examine the appearance of patterns for
different time periods.

6. Results

First of all, applying a linear regression model on all assumed variables, y~ sizeþmeanþ variance, we obtain that not all variables fit
well with the target sample. This is why by using a stepwise selection method for the linear regression model, we obtain the following:

y ¼ 6.959151e � 02 þ 4.885355e � 06*size

with a BIC score of �426.42 and a Residual Sum of Squares of 0.063485.
The main assumptions need to hold, and indeed we observe that the mean of the residuals of the model is 5.31e � 19 which ap-

proximates to zero. Also the variance of the model is 0.001023. The model's residuals do pass the Jarque-Bera normality test (p¼ 0.17),
as well as multiple Goldfield-Quandt heteroskedasticity tests for all 0.1 intervals (p ¼ 0.11–0.17), therefore it is a suitable enough as a
regressor. It is worth mentioning that the deviations in terms of BIC score between this and the null model is slim. It would make little
difference if we used either of them. However, we need the optimal solution and thus we will proceed.

The above model is used for the classification of chart patterns of different sizes. By applying the algorithm for 30 and 60 day time
windows, we obtain the following average metrics (Accuracy Score and Matthews’ Correlation Coefficient-MCC):

By observing Table 1 and Appendix I, we notice over 85% accuracy for nearly all datasets and categories, and satisfying values for
Matthews’ Correlation Coefficient, or R33 statistic since our problem has multiple labels, in most cases. The reasoning behind choosing
the latter metric is its ability to rank our classifier (þ1 as perfect prediction, 0 as no better than a random guess,�1 as total disagreement
between prediction and observation).

We notice stocks have the highest level of accuracy, followed closely by FOREXs, thenMutual Funds, with ETFs and Cryptocurrencies
standing at the lowest levels. This has to do with what patterns are more likely to appear for each asset (more/less complex), as well as
over what time periods these are formed.

Also, we notice that the 60-day time window has slightly better accuracy scores. This could be attributed to the quantization (length)
of the window. Which means that different string lengths would be able to capture patterns differently, affecting accuracy for different
time windows.

We obtain the error over dataset size plot for the 30-day time frame, shown in Fig. 3. Likewise, for the 30-day time window, we
display the runtime for each dataset, in Fig. 4.

Due to the many comparisons and calculations the algorithm makes, it becomes computationally expensive for larger datasets.
Other than performance metrics, it is important to display characteristics of the algorithm. The most important procedure before

measuring performance, was regressing the threshold parameter with dataset size and maximum accuracy. The intuition behind this is
displayed in Fig. 5.

We notice how the accuracy is optimal at a specific range and then begins to drop off. The difference for parameter value zero
(meaning no leniency in predictions) is small but leads to optimal results in nearly every case. This confirms the existence of patterns
similar but not identical to the target, and the use of our algorithm. These similar patterns definitely outweigh any loss in accuracy from
faulty pattern classification due to leniency in distance measurements.

Another important and arbitrary parameter was the train/test split percentage (since the splitting is done randomly) and how the
random states affect accuracy. The results for two different datasets are in Fig. 6.

There are noteworthy fluctuations per state, which increase in amplitude as size decreases, since smaller datasets are more sensitive
to these changes.
Table 1
Resulting Average Metrics for each Category of Asset, per time window. We observe overall satisfying scores, and a distinct difference in performance
between assets, that changes when the time window widens. The MCC is also not tightly correlated to the Accuracy Score, showing a different ranking
in the case of the 60-day window.

Category Acc. Score-30 MCC-30 Acc. Score-60 MCC-60

Stocks 0.8950 0.8010 0.9115 0.8333
FOREX 0.8895 0.7916 0.9160 0.8296
Mutual Funds 0.8748 0.7499 0.9218 0.8430
ETFs 0.8626 0.7312 0.9196 0.8470
Cryptocurrencies 0.8397 0.6419 0.8953 0.7686

9



Fig. 5. Accuracy Score per Threshold Parameter for Different Dataset Sizes. The use of a threshold parameter gives out at least slightly optimal
results. However, the high accuracy at near-zero range indicates many vectors are reappearing.

Fig. 4. Runtime over Data Size, with a polynomial fit of the second order displayed. Runtime exponentially increases over time, reducing scalability
of the algorithm.

Fig. 3. Error for Data Size, with a polynomial fit of the second order displayed. We notice the error has negative correlation with the size of data, that
begins to plateau at larger values.
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Last but not least we need to observe the appearance of patterns for different time windows, displayed in Table 2.
We can observe a quality of information: First, that more patterns generally appear on 30-day than 60-day periods, both as an absolute

number and as a percentage. Actually Stocks and Mutual Funds display the appearance of more patterns (34,92%/33,62% and 36,00%/
34,68%). This can be interpreted in many ways. In reality, it is mainly about the ability of the pseudocode to perform depending on asset
and time window, since chart patterns appear on every time frame. It may have to do with how discernible patterns are in each case.
10



Table 2
Number of Patterns per Asset, per Time Window. It is more important to look at the
percentage of patterns per Asset. This displays how capable the extraction pseudo-
code is for different scenarios.

Time Window 30 60

Stocks
Total Patterns 43,081 41,275
None 80,285 81,490
ETFs
Total Patterns 23,966 23,190
None 43,196 43,370
Mutual Funds
Total Patterns 21,054 20,125
None 37,429 37,907
FOREXs
Total Patterns 17,969 16,176
None 34,311 35,804
Cryptos
Total Patterns 5947 5640
None 11,714 11,721

Fig. 6. Accuracy fluctuations for changing random states, for two different data sizes. The smaller the data set, the smaller the fluctuations as ex-
pected. Different random states do have a noticeable on accuracy.
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Finally we can compare our model's results with existing literature. Each model's potential is displayed in Table 3, and we must note
that all of them use historical daily stock price data from different markets and all used candlestick patterns.

The above and our average metrics show that our method can achieve similar or superior results, while using far more simple
methods and being one of the few research models to use charts and not candlestick patterns. It may be not the optimal method in this
comparison, however Hu et al. (2019) uses synthetic datasets on candlestick patterns to measure accuracy scores, meaning close
comparisons are harder to make. Considering its novelty and potential, it is at the very least a worthy start for future research.
11



Table 3
Summary of research results for existing methods, displaying similar performance against far more advanced methods.

Authors (Year) Method(s) Best Result

Jearanaitanakij and Passaya (2019) Convolutional Neural Network Accuracy: 65.62%
Kusuma et al. (2019) Convolutional Neural Network Accuracy: 92.2%
Hu et al. (2019) Bagging, Random Committee, Random Sub Space, PART,

Random Forest, Artificial Neural Network, Support Vector
Machine

Accuracy: 95.3% (Random Forest)

Xu (2021) AdaBoost, Random Forest, XGBoost, Multi Layer Perceptron,
Convolutional Neural Network

Accuracy: 90.4% (XGBoost)

Lin et al. (2021) Ensemble of Machine Learning methods (Random Forest,
Gradient Boosting Decision Tree, Logistic Regression, k-Nearest
Neighbors, Support Vector Machine, Long Short-Term Memory)

Accuracy: 91% (k-Nearest Neighbors)

Hung and Chen (2021) Convolutional Neural Network, Autoencoder, Recurrent Neural
Network

Accuracy: 82.78% (TX dataset)
Accuracy: 67.08% (NI225 dataset)

Karmelia et al. (2022) Feedforward Neural Network Accuracy: 93%, F1-score: 72%
This paper CPC-SAX Accuracy: 93.23% (30 days-Stocks), 93.62% (60

days-Stocks), 94.88% (60 days-Overall)
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7. Conclusion

All in all, we have created an algorithm capable of taking an input of SAX strings in bags representing chart patterns, as well as
unlabelled SAX strings, and running a multilabel classification.

This algorithm should be applied to datasets labelled perhaps more accurately and definitely more completely, with the use of
different algorithms like the PXtract algorithm that was cited, or even by human hand if feasible. In that way, our algorithm can be even
better tested, since the extracting process is crucial to learning and verification, and the pseudocode implemented has restrictions and
conditionalities on the forming of rules and in the order the bags are processed. Even still, since the pseudocode is used on creating both
training and test labels, it puts verification on equal grounds of scrutiny and should not affect the efficiency of our model.

Another shortcoming that should be explored is the procedure's inability to include patterns with more intricate details, such as
symmetric triangles and gaps/islands, that have breaks of prices that cannot be expressed in approximations easily. Perhaps these gaps
could be flagged before the SAX procedure and carried through classification. The quantification of SAX strings could be redefined, if we
need to include more intricate patterns.

Also, the model assumes fixed time windows, which can be an obstacle when wanting to process multiple time windows. Finally,
computation time increases exponentially for higher numbers of data points. This could be addressed with the use of Graphics Pro-
cessing Units (GPUs), faster compilers such as Numba or even Cython, a superset of Python with comparable performance to C.

Overall, chart pattern classification still has research topics left to be explored. For example, by predicting the appearance of a
specific pattern, one can use the chart pattern theory to have an indication (probability) of whether the price will rise, fall or hold. In
another example through Machine Learning, clustering methods can be used to identify patterns.

Concluding, we restate our hope that more researchers will attempt and without a doubt succeed in making advancements on chart
pattern classification and Machine Learning.
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Appendix I. Full Results
Table 4
Results of Stocks for different time windows.

Title 30 days 60 days
12
Accuracy Score
 MCC
 Accuracy Score
 MCC
TSLA
 0.8898
 0.7922
 0.9097
 0.8356
(continued on next page)
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Table 4 (continued )
Title
 30 days
13
60 days
Accuracy Score
 MCC
 Accuracy Score
 MCC
AAPL
 0.9121
 0.8422
 0.9252
 0.8642

AMC
 0.8625
 0.7528
 0.9056
 0.8104

F
 0.9172
 0.8438
 0.9272
 0.8609

BBD
 0.8955
 0.8034
 0.9047
 0.8286

LCID
 0.7748
 0.6170
 0.8857
 0.7371

AMD
 0.9048
 0.8290
 0.9362
 0.8808

NIO
 0.8357
 0.6506
 0.8696
 0.7535

BAC
 0.9323
 0.8741
 0.9290
 0.8591

NVDA
 0.9134
 0.8336
 0.9264
 0.8614

LU
 0.8857
 0.7970
 0.8586
 0.7470

WBD
 0.8870
 0.7874
 0.8897
 0.7820

RIG
 0.8958
 0.8012
 0.9224
 0.8534

INTC
 0.9267
 0.8541
 0.9246
 0.8555

T
 0.9177
 0.8311
 0.9179
 0.8355

MSFT
 0.9130
 0.8379
 0.9214
 0.8554

AAL
 0.9017
 0.8053
 0.9022
 0.8023

SOFI
 0.8144
 0.5873
 0.8242
 0.7242

NFLX
 0.8986
 0.7966
 0.9164
 0.8452

AMZN
 0.8982
 0.8147
 0.9329
 0.8731
Table 5
Results for FOREXs for different time windows.

Title 30 days 60 days
Accuracy Score
 MCC
 Accuracy Score
 MCC
EURUSD¼X
 0.8854
 0.7784
 0.8857
 0.7730

JPY¼X
 0.9010
 0.8127
 0.9258
 0.8463

GBPUSD¼X
 0.8898
 0.7847
 0.9095
 0.7992

AUDUSD¼X
 0.8978
 0.8142
 0.9298
 0.8522

NZDUSD¼X
 0.8945
 0.8102
 0.9041
 0.8041

EURJPY¼X
 0.8846
 0.7701
 0.9268
 0.8373

GBPJPY¼X
 0.8958
 0.8127
 0.9003
 0.7958

EURGBP¼X
 0.8941
 0.7923
 0.9016
 0.8040

EURCAD¼X
 0.8774
 0.7587
 0.9174
 0.8200

EURCHF¼X
 0.8885
 0.7967
 0.9317
 0.8630
Table 6
Results for Mutual Funds for different time windows.

Title 30 days 60 days
Accuracy Score
 MCC
 Accuracy Score
 MCC
FELAX
 0.8840
 0.7784
 0.9262
 0.8572

FELTX
 0.8803
 0.7706
 0.9216
 0.8476

FELIX
 0.8794
 0.7689
 0.9243
 0.8534

FIKGX
 0.7799
 0.6204
 0.9113
 0.8269

FSELX
 0.9038
 0.8278
 0.9488
 0.9039

FELCX
 0.8821
 0.7756
 0.9289
 0.8608

BCSFX
 0.8726
 0.7831
 0.9211
 0.8736

BCSVX
 0.8726
 0.7817
 0.9155
 0.8656

FSERX
 0.8274
 0.6536
 0.8699
 0.7058

FREEX
 0.9059
 0.8329
 0.9255
 0.8626

MYIMX
 0.8815
 0.7481
 0.9225
 0.8175

MRIMX
 0.8571
 0.7256
 0.8983
 0.8038

MCIMX
 0.8065
 0.5815
 0.9195
 0.7888

MAIMX
 0.8780
 0.7361
 0.9102
 0.7932

NOMIX
 0.8855
 0.7890
 0.9311
 0.8618
Table 7
Results of ETFs for different time windows.

Title 30 days 60 days
Accuracy Score
 MCC
 Accuracy Score
 MCC
BLCN
 0.7959
 0.6621
 0.9289
 0.8742

BLOK
 0.8320
 0.7150
 0.8950
 0.8336

XSD
 0.8772
 0.7733
 0.9310
 0.8559
(continued on next page)
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Table 7 (continued )
Title
 30 days
14
60 days
Accuracy Score
 MCC
 Accuracy Score
 MCC
KBND
 0.8756
 0.7536
 0.8990
 0.8418

SMH
 0.8887
 0.8044
 0.9183
 0.8437

PSI
 0.8861
 0.7826
 0.9243
 0.8309

CNRG
 0.8068
 0.6470
 0.9304
 0.8714

CHIS
 0.8100
 0.6118
 0.8866
 0.8003

SOXX
 0.8941
 0.7978
 0.9280
 0.8568

EWD
 0.9086
 0.8255
 0.9201
 0.8498

FLTW
 0.8273
 0.6668
 0.9177
 0.8672

EWT
 0.8840
 0.7767
 0.9083
 0.8168

PTF
 0.8855
 0.7713
 0.9007
 0.8158

KCE
 0.9079
 0.8146
 0.9237
 0.8583

PDBC
 0.8719
 0.7776
 0.9050
 0.8173

SPHB
 0.8628
 0.7303
 0.8787
 0.7485

IYW
 0.8995
 0.8111
 0.9344
 0.8799

LIT
 0.8424
 0.7037
 0.9269
 0.8573

KARS
 0.8115
 0.6315
 0.9286
 0.8526

QLD
 0.8973
 0.8120
 0.9282
 0.8735
Table 8
Results for Cryptocurrencies for different time windows.

Title 30 days 60 days
Accuracy Score
 MCC
 Accuracy Score
 MCC
BTC-USD
 0.8688
 0.7666
 0.9329
 0.8814

ETH-USD
 0.6912
 0.4881
 0.8443
 0.8314

USDT-USD
 0.8468
 0.4988
 0.8934
 0.5470

BNB-USD
 0.8790
 0.7655
 0.8934
 0.7973

XRP-USD
 0.8737
 0.7731
 0.8913
 0.7877

BUSD-USD
 0.8686
 0.4415
 0.8853
 0.5497

ADA-USD
 0.8629
 0.7675
 0.9262
 0.7893

DOGE-USD
 0.8763
 0.7790
 0.8765
 0.8500

MATIC-USD
 0.8000
 0.6000
 0.8421
 0.7423

SOL-USD
 0.8010
 0.6550
 0.9049
 0.7407
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