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A B S T R A C T   

Lending activities, especially for small and medium enterprises (SMEs), are increasingly based on 
financial technologies, facilitated by the availability of advanced machine learning (ML) methods 
that can accurately predict the financial performance of a company from the available data 
sources. However, despite their high predictive accuracy, ML models may not give users sufficient 
interpretation of the results. Therefore, it may not be adequate for informed decision-making, as 
stated, for example, in the recently proposed artificial intelligence (AI) regulations. To fill the gap, 
we employed Shapley values in the context of model selection. Thus, we propose a model se
lection method based on predictive accuracy that can be employed for all types of ML models, 
those with a probabilistic background, as in the current state-of-the-art. We applied our proposal 
to a credit-scoring database with more than 100,000 SMEs. The empirical findings indicate that 
the risk of investing in a specific SME can be predicted and interpreted well using a machine- 
learning model which is both predictively accurate and explainable.   

1. Introduction 

The advent of financial technologies (fintech) has led to the emergence of several new companies in financial markets (Fasano and 
Cappa, 2022). Thanks to technologies such as Artificial Intelligence (AI), Blockchain, and Cloud computing, these companies offer 
additional services to compete with traditional banks (Kendall, 2017; Temelkov, 2018). In fact, in fintech platforms, such as 
crowdfunding, peer-to-peer lending, and robot advisory, based on digitalised business models, finance and technology meet (Ayadi 
et al., 2021), improving customer experience, lowering costs and increasing transparency (Romānova and Kudinska, 2016). 

Fintech platforms have substantially changed several financial services. Among them, online lending platforms such as the Lending 
Club, one of the largest peer-to-peer lending organisations, have increased financial inclusion, allowing credit allocation to borrowers 
typically not funded by traditional banks while providing highly attractive returns for investors. 

However, lending platforms bear high risks for investors, as borrowers are typically small and medium enterprises (SMEs) or low- 
income individuals (Correia and Martins, 2022), which, in addition, are largely interconnected. It follows that future perspectives of 
lending platforms largely depend on assessing credit risk and determining the causal drivers of such risks (Milne and Parboteeah, 
2016). 

This study contributes to fintech credit risk assessment for lending to SMEs. Providing credit to SMEs is a key research topic for 
policymakers (Berger and Udell, 2006; Ferri and Murro, 2015). Fintech lending facilitates credit services and financial inclusion, 
directly connecting individual lenders with company borrowers through a credit assessment platform that analyses all available data 
on borrowers to learn and continuously update their scores and classes of scores (ratings). Compared to traditional bank lending, 
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fintech lending improves customer experience and provides more credit to companies. However, they can suffer from information 
asymmetry between borrowers and lenders (Giudici and Hadji-Misheva, 2020; Bracke et al., 2019; Kumari and Kaur, 2021), possibly 
leading to inaccurate creditworthiness estimates. 

To solve this problem, ML models, a combination of statistical models and computational algorithms able to learn from large 
databases regularities and relationships between a large number of variables, can be applied to lending data to obtain estimates of 
creditworthiness more accurate than those obtained with classical credit scoring models. 

ML models have been widely used in many financial studies, such as credit scoring (Bastani and Asgari, 2019; Lee and Chen, 2005; 
Shen and Zhao, 2020), portfolio optimization (Guo et al., 2016), and profit scoring (Serrano-Cinca and Gutiérrez-Nieto, 2016; Babaei 
and Bamdad, 2020). These studies demonstrate that ML models perform well in terms of predictive accuracy. However, their pre
dictions are not easily interpretable because the underlying model is a nontransparent black box. 

To solve this problem, explainable Artificial Intelligence (XAI) methods, in which humans can understand the results of the so
lution, have recently been proposed (Lundberg and Lee, 2017; Ribeiro and Singh, 2016b; Bussmann et al., 2021; Sachan et al., 2020; 
Giudici and Raffinetti, 2021). 

The XAI models achieve a good trade-off between explainability and predictive accuracy. However, massive computation may be 
involved when the number of explanatory variables is large. To reduce the computational burden, we propose to apply XAI models and, 
specifically, Shapley values to interpret ex-post the predictive power of each variable and as an ex-ante variable selection criterion. 
This leads to more parsimonious models, which, while maintaining a good predictive accuracy, can be better interpreted by users while 
maintaining good predictive accuracy. 

Our proposed model can thus support banks and fintechs in developing an AI-based credit scoring model which is ‘trustworthy’, 
accurate, and explainable, with the potential of being validated by supervisory authorities and regulators. 

From a statistical viewpoint, the proposed variable selection method combines predictive accuracy with explainability. Variable 
selection methods are well known in the literature and relate to Occam’s Razor principle: ‘Among competing hypotheses, the ones with 
the fewest assumptions should be selected.’ When many explanatory variables are available, applying this principle leads to the 
diffusion of stepwise variable selection algorithms that compare models comprising different sets of variables in terms of their sta
tistical likelihood. 

However, most ML models are non-probabilistic, and likelihoods are unavailable, preventing the use of stepwise selection algo
rithms. Alternative ML models, such as neural networks with different layers and hidden nodes or random forests with different input 
variables, can be compared in terms of predictive accuracy. This suggests that a different stepwise procedure is currently unavailable. 

We propose to fill the gap by employing the Shapley value associated with each explanatory variable as the underlying metric to 
perform stepwise variable selection. Specifically, the variables that contributed the least to the predictions regarding their Shapley 
values were removed from the model. Variables were removed if the predictive accuracy of the model was not significantly reduced. 
Thus, both explainability and predictive accuracy were achieved. 

We applied our methodological proposal to compare alternatives; we used random forest models that aimed to build credit scores 
that accurately predicted the probability of default (PD) for a set of companies. This helped to leverage the value of the data and the 
nonlinear relationships present in the data, leading to a more accurate and transparent credit scoring model that can be employed in 
fintech lending platforms. 

From a managerial viewpoint, our proposal allows us to identify the variables that explain the credit risk of lending investments in 
SMEs. 

To the best of our knowledge, this is the first methodological study to employ the XAI as a variable selection tool within the credit 
scoring context. 

The rest of the paper is organised as follows. Section 2 contains a literature review on applying ML and AI to credit scoring. Section 
3 introduces the proposed method. Section 4 presents the data and the main empirical findings. Finally, Section 5 concludes the study. 

2. Literature review 

Credit scoring is a research topic which has attracted many researchers, who have employed different statistical learning models to 
measure it (Bücker et al., 2022; Liu and Fan, 2022; Dushimimana et al., 2020). The modern ML methods have found one of their first 
fields of application to economics in credit scoring: among the first studies, we can mention (Srinivasan and Kim, 1987) in which 
decision trees are used; (Henley and Hand, 1996) in which k-nearest neighbours are employed; (West, 2000; Yobas and Crook, 2000), 
in which neural networks and support vector machines are applied; (Djeundje and Hamid, 2021), in which a range of ML models are 
applied to both traditional and alternative credit scoring data. See (Hand and Mannila, 2001) for a review of the data mining methods 
for credit scoring. 

In the last few years, the emergence of ensemble methods, which aggregate results from different models, has substantially 
improved the performance of scoring models based on ML (Finlay, 2011; Lessmann et al., 2015). In this respect, Li and Chen (2020) 
provides a comparison of different ensemble methods: random forests, adaptive boosting, gradient boosting, and light gradient 
boosting, applied to five alternative credit scoring models: neural networks, classification trees, logistic regression, naïve Bayes, and 
support vector machines. Our study shows that the performance of ensemble credit scores was better than that of individual scores. We 
also show that the ensemble random forest model achieved the best accuracy metrics, such as the Area Under the ROC Curve, the 
Kolmogorov-Smirnov statistic, and the Brier score. In another study, Chopra and Bhilare (2018) compared random forests and gradient 
boosting using a credit-scoring model based on a classification tree. They showed that for their credit scoring application, ensemble 
methods (gradient boosting and random forest) outperformed individual classification tree models, thereby adding further evidence to 
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the higher accuracy of ensemble methods. A third study, Tripathi et al. (2022), undertook a comparative analysis of nine ensemble 
methods applied to different scoring models, such as logistic regression, naïve Bayes, and classification trees. As in previous studies, 
they found that ensemble scoring methods improve the performance of single-credit scoring methods. 

The previous discussion indicates a consensus on the superior predictive accuracy of ensemble credit scoring models concerning 
single models. However, the increased accuracy comes with a cost: while most single scoring models, such as logistic regression, tree 
models and naïve Bayes are ‘explainable’, as they can identify the contribution of each explanatory variable to the credit scores, 
ensemble methods are ‘black boxes’, and cannot explain the determinants of credit scores to their users (Bracke et al., 2019; Giudici 
and Hadji-Misheva, 2020). This is a problem from a regulatory viewpoint because the application of ML AI to credit scoring, a high-risk 
application, must be accurate and explainable, as stated in the recently proposed European Artificial Intelligence Act (https://arti
ficialintelligenceact.eu). 

To overcome this problem, ensemble methods should be complemented with explainable AI methods that are to be applied a 
posteriori on the obtained credit scores. Explainable AI methods can be classified into model-specific and model-agnostic (Adadi and 
Berrada, 2018). In contrast to model-specific methods, model-agnostic methods can be applied to any ML model. Local methods such as 
Local Interpretable Model agnostic explanations (LIME) (Ribeiro and Singh, 2016a) and Shapley values (Lundberg and Lee, 2017) are 
of particular interest, both explaining each specific credit score based on the additional contribution of each explanatory variable to 
their values. 

Local methods have been recently applied to explain credit scores based on ML. For instance, Bussmann et al. (2021) propose a 
methodology based on Shapley values as a post-processing analysis to explain the credit scores obtained from ensemble models applied 
to data that concern a sample of Italian SMEs, which apply for peer-to-peer lending. Their empirical results demonstrated the capability 
of explainable AI methods to achieve predictive accuracy and explainability. A related study, Moscato and Picariello (2021), proposed 
a credit scoring model to predict whether a loan will be repaid on a P2P platform. It compared different ML models and explainability 
methods, including LIME and SHAP, showing their advantages. Similarly, Xia et al. (2021) showed how credit scores obtained with 
gradient boosting can be interpreted using Shapley values, and Tyagi (2022) compared various ML models for credit scoring in terms of 
Shapley values to develop new investment models and portfolio strategies. All these studies provide evidence of the advantage of using 
explainable AI methods in combination with ML models in credit scoring. Our study falls into this research stream. It proposes a 
credit-scoring model based on an ensemble machine-learning method that can be explained using the Shapley value approach. Our 
original contribution is that we propose achieving explainability, not a posteriori, by applying the Shapley value to the obtained credit 
scores but ex-ante as a variable selection criterion. 

Our proposal is inspired by the acknowledged advantage of variable selection in improving the predictive accuracy of ML models. 
For example, Laborda and Ryoo (2021) discussed the performance of three variable selection models: a filter method (based on sta
tistical tests) and two wrapper methods (based on stepwise model selection) to obtain a more parsimonious credit scoring model based 
on logistic regression, support vector machine, K-nearest neighbours, or random forest. They concluded that stepwise selection yielded 
a superior predictive performance for all models. A related study, Trivedi (2020) employed chi-square testing as a filter method for ML 
classifiers, such as naïve Bayes, random forest, classification trees, and support vector machines, to improve credit scoring predictions. 
They found that chi-square testing with credit scoring improved the predictive accuracy of all classifiers. 

In this study, we combined variable selection with explainability, proposing a variable selection model that chooses the most 
explainable variables as model predictors. Thus, variable selection improves the predictive accuracy and interpretability of the credit 
scores obtained with an ML model. It does so before reaching a final model (ex-ante perspective) rather than after a model has been 
selected (as in the available applications of XAI models), thereby reducing the computational burden. 

To achieve explainability, we considered traditional Shapley values (Shapely, 1953), implemented by following the Conditional 
Expectations approach (Lundberg and Lee, 2017). However, what is presented can be extended, without loss of generality, to more 
advanced approaches, such as the Integrated Gradients Shapley (Sundararajan and Taly, 2017) and the Baseline Shapley value 
(Sundararajan and Najmi, 2020). The integrated Gradients Shapley method extends Shapley values to the continuous setting. It can be 
applied to credit lending problems in which the response variable is continuous (such as when the loss-given default is considered the 
target variable). The Baseline Shapley value overcomes some counterintuitive results of the traditional Shapley approach, such as the 
assignment of nonzero values to features not used by the model, with a more general approach in which a missing feature for an 
observation is modelled randomly by drawing it from the sample feature distribution. 

3. Methodology 

3.1. Credit risk assessment 

The evaluation of a company’s credit risk depends mainly on its estimated probability of default (PD); that is, the probability that a 
company will fail to repay its financial obligations. This problem is usually addressed by estimating each company’s credit score and 
setting a threshold to classify it predictively into two main classes: non-default and default. Imagine that information from T 
explanatory variables of N firms (usually balance sheet indicators) is available. For each firm, we also have a response variable Y, 
which indicates whether the company has defaulted or is still active (usually in the following period); that is, Y = 1 in the case of 
default and Y = 0 otherwise. In the credit scoring model, we aim to find a model that can describe the relationship between T 
explanatory variables and the response variable Y. 

Credit scoring models can be classified into two main categories: black and white boxes. In the former, the relationship between the 
explanatory variables and the response is not transparent, and only the final classification is observed. Complex ML models such as 
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neural networks, random forests or gradient boosting belong to this category, providing high predictive accuracy at the expense of 
explainability. In contrast, statistical learning models such as linear and logistic regression are transparent and considered white-box 
models. These simple models explain how they behave and how predictions are obtained. 

3.1.1. Logistic regression 
The most commonly used method for credit scoring is logistic regression, a ’white-box’ statistical learning method that finds 

application in many studies (Murdoch et al., 2019). Logistic regression models classify the response variable into two groups char
acterised by different statuses (default vs active). More formally, the logistic regression is specified as follows: 

ln((pn)∕(1 − pn)) = α +
∑T

t=1
βtxnt , (1)  

where pn is the probability of default for the nth firm, xn = (xn1, …, xnT) is the T-dimensional vector of the borrower-specific 
explanatory variables, parameter α is the model intercept, and βt is the tth regression coefficient. It follows that the probability of 
default can be found as 

pn = exp(α +
∑T

t=1
βtxnt)(1 + exp(α +

∑T

t=1
βtxnt))

− 1
(2) 

Although the high interpretability of a logistic regression model follows from its explicit functional form, which is linear in the 
logarithm of odds, its predictive accuracy may be low because of its linear nature. When the available data are large and complex, the 
predictive accuracy of logistic regression may be inferior to that of a more complex ML model. 

3.1.2. Random forests 
ML models are increasingly used in complex credit risk assessments (Bussmann et al., 2021). Among them, the random forest 

classifier, an ensemble of classification trees (Breiman, 2001), performs well in many credit risk classification problems. Like logistic 
regression, in a classification random forest model, each observation-Ťfor example, a company with its corresponding vector of 
explanatory variables xn-Ťis mapped to a default response variable. A random forest classifier merges the rules obtained from a set of 
classification trees, each based on a training data sample and explanatory variables. 

Although each classification tree has explicit rules of construction and allows us to understand how different credit scores are 
generated, a random-forest model aggregates the scores from each tree on a single average, thereby losing interpretability. A random 
forest is a black box model which cannot meet the need for explainability in the finance sector (Murdoch et al., 2019). To overcome this 
limitation, explainable AI models that provide details or reasons to make the functioning of AI clear or easy to understand can be 
employed. 

3.2. Explainable artificial intelligence 

Financial institutions and markets are subject to many regulations to maintain the stability of the financial system and protect 
consumers and investors. An important aspect of financial regulation concerns the supervision of risk management models, particu
larly credit risk models, for which regulators may seek assurance on the key drivers (Giudici and Hadji-Misheva, 2020). This suggests 
that black-box AI is unsuitable for credit risk measurement, which motivated the development of XAI models. 

The most commonly employed explainable AI model is the Shapley values approach, a model-agnostic post-processing tool used to 
explain and interpret ML predictions. The Shapley value approach was introduced by Shapely (1953), who leveraged concepts from 
game theory to map predictive inferences to a linear space. 

Specifically, we assumed a game exists for predicting each observation (row). For each game, the players were model predictors 
(explanatory variables), and the total gain is equal to the predicted value, obtained as the sum of the contributions of each predictor. 

Following these assumptions, the Shapley value algorithm calculates the contribution of each variable to each prediction by 
considering its additional effect on all possible coalitions (groups) of other variables. Specifically, the effect of each variable Xk, for 
each credit score i = 1, …, n, is calculated as follows: 

ϕ( f̂ (Xi)) =
∑

X′
⊆C (X)⧹Xk

|X ′

|!(K − |X ′

| − 1)!
K!

[ f̂ (X ′

∪ Xk)i − f̂ (X ′

)i], (3)  

where K represents the number of predictors, X′ is a subset that contains |X′

| predictors, ̂f (X′

∪ Xk)i and ̂f (X′

)i are the predictions of the 
i-th observation obtained with all possible subset configurations, respectively including variable Xk and not including variable Xk. Once 
Shapley values are calculated for each observation to be predicted, the overall contribution of each predictor, the ‘global’ Shapley 
value, is obtained as their sum. 

3.3. Proposal 

We propose employing the global Shapley values of each explanatory variable as the basis of a stepwise variable selection algorithm 
valid for all models, whether white box or black box. 

The algorithm begins with a complete model containing all the available variables. It then removed the variable with the lowest 
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global explainability from the model and evaluated whether the removal significantly decreased predictive accuracy. If so, it stops; 
otherwise, it proceeds with the deletion of variables until it stops. 

A key element of our proposal is a significance test that compares the Area Under the Curve (AUC) of two alternative models 
differing in the presence of one variable. We recall that the AUC of a model is the most employed predictive accuracy measure for 
binary variables and is obtained as the area underlying the Receiver Operating Curve (ROC) of a model. The ROC curve was obtained 
by joining a set of coordinates which represented, for a given set of cutoff points (percentiles), the True Positive Rate against the False 
Positive Rate. While an ideal model should always have TPR= 1, FPR= 0, and an AUC equal to 1, the higher the AUC, the better the 
model. 

The significance test for the AUC was based on DeLong’s test (DeLong and DeLong, 1988). It calculated the Area Under the ROC 
Curve for each pair of models compared: to model Mk(k = 1, …, K) against model Mk− 1. The test statistic was based on the difference 
between two AUC values. 

More formally, the null hypothesis of the statistical tests is the equivalence of models Mk and Mk− 1. If the pvalue is more significant 
than a threshold significance level, such as 5%, we fail to reject the null hypothesis; therefore, model simplification is accepted: 
variable k is not statistically significant in predicting the response variable. 

The stepwise variable selection process continues until the p-value exceeds the set threshold significance level (e.g. 5%). When this 
occurs, H0 is rejected such that Mk cannot be simplified to Mk− 1. Consequently, the procedure stops, and Mk is selected as the final 
model. 

Note that the outlined procedure fully aligns with Occam’s razor parsimony principle. If two models have similar predictive ac
curacy, we choose the simplest of the two (i.e. the one with the lowest number of predictors). 

Finally, the choice of the AUC or other test statistics depended on the response variable. For a binary response, AUC is the most 
commonly employed measure. We employed the Mean Squared Error (MSE) and the corresponding Diebold-Mariano test (Diebold and 
Mariano, 2002) for a continuous response. 

4. Application 

4.1. Data 

We illustrate the application of our proposal to a large data sample which contains the balance sheet data for over 100,000 SMEs, 
referred to as the 2020 reporting year. The data were supplied by Modefinance (modefinance.com), a rating agency in a European 
Credit Assessment Institution (ECAI) supervised by the European Securities and Markets Authority (ESMA), specialising in credit 
scores for P2P platforms focused on SME commercial lending. The presence of SMEs is a common trait in many countries; therefore, the 
data can be considered an instance of a more general situation. The companies in the available sample are headquartered in the largest 
European Union (EU) countries: Italy, France, Spain, and Germany. Their distribution across countries for 2020 is described in Table 1. 

From Table 1, note that most companies (49.37%) are located in Italy, with several SMEs. Italy is followed by France, where 
27.93% of the companies are headquartered. Germany has the least number of companies in the table, containing only 1.30% of the 
companies. This is consistent with the fact that although Germany has a larger population than other countries, it does not require 
public deposits on company balance sheets. Although Germany has a limited number of companies in the sample, limiting its 
contribution, we prefer not to alter the supplied sample and keep all companies. 

Examining the distribution of companies in the sample by ‘Industry Sector’, which shows to which industrial sector each SME 
belongs, is interesting. Table 2 lists the five most populated industries. 

From Table 2 note that ‘Retailing’ is the most populated industry, followed by ‘Capital Goods’, ‘Materials’, and ‘Commercial and 
Professional Services’. 

To estimate a credit scoring model from the data, we need a binary response variable that describes whether a company is in distress 
(indicating a likely default); and a set of explanatory variables, which may be considered likely causes (or not) of such distress. In the 
available data, such response variables can be obtained from the variable ‘MScore’, which is the rating assigned to each company by 
the rating agency modefinance. MScore can assume a set of ordered values that correspond to ratings of A, AA, AAA, B, BB, BBB, C, CC, 
CCC, and D, in which ‘A′ is assigned to companies with the lowest level of credit risk (lowest probability of default), whereas ‘D′ to 
those with the highest level (highest probability of default). 

To convert the variable ‘Mscore’ into a binary default variable, as in the credit scoring context described in Section 3.1, we 
associated each company’s rating to one of two alternative classes. On the one hand, we associated rating levels C, CC, CCC, and D with 
a perceived state of default (class 1); on the other, we associated rating levels A, AA, AAA, B, BB, and BBB with a perceived state of non- 
default (class 0). The resulting percentage of defaulting companies in the available SME sample was 14%. 

Table 1 
Distribution of Small and Medium Enterprises in the sample by Countries.  

Country No.of.Companies Percentage 

Italy 59,864  49.37 
Spain 25,949  21.40 
France 33,865  27.93 
Germany 1575  1.30  
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The distributions of the sample default variable for any given country and industry sector are presented in Figs. 1 and 2. In both 
figures, the total height of each bar is proportional to the number of companies in each group (country or industry sector), and at the 
top of each bar, we report the observed default percentages. 

From Fig. 1, we can conclude that France is the riskiest country, with the highest default probability of approximately 17.5%. This 
is followed by Germany, with a 12.9% probability of default; however, its impact on the system is limited, as its frequency is low 
compared to those of more populated countries such as Italy and Spain. Similar conclusions can be obtained from Fig. 2: ‘Consumer 
services’, ‘Diversified financials’, and ‘Media and entertainment’ are the riskiest industries, but the impact of the ‘Commercial and 
professional services’ sector is higher, being much more populated. 

To complete the description of the variables in the sample data, Table 3 shows the considered explanatory variables, which are all 
financial ratios calculated by modefinance from the 2020 balance sheets of the available companies. 

Table 3 indicates that the available explanatory variables are six financial variables which measure, respectively: the operating 
revenues (Turnover); the financial structure (Leverage); the size (Total Assets), and the profitability (EBIT, Profit and Losses after Tax, 
Return on Equity) of each considered company, based on the 2020 balance sheets. 

Table 4 provides, as summary statistics, the mean of each explanatory variable, separately for the defaulted and the non-defaulted 
companies. 

Comparing the conditional means of each variable in Table 4 EBIT, PLTax, and Leverage present the largest difference between 
defaulted and non-defaulted companies: they are likely to be the most impactful on the credit scores. Conversely, Turnover and Total 
Assets show a small difference between the conditional means. 

Table 2 
Small and Medium Enterprises distribution in the sample by Industry sectors.  

Industry Sector No. Of Companies Percentage 

Retailing 30,201  24.91 
Capital Goods 17,536  14.46 
Materials 11,969  9.87 
Commercial and professional services 10,861  8.96 
Food and Staples Retailing 8844  7.29  

Fig. 1. Distribution of default and non-default SME by country.  
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Fig. 2. Distribution of default and non-default SME by industry sector.  

Table 3 
Description of the Explanatory Variables.  

Variable Description 

Turnover Operating revenues in Thousands of Euro 
Leverage Leverage (ratio) 
PLTax Profit/Loss after tax in Thousands of Euro 
TAsset Total assets in Thousands of Euro 
EBIT Earnings Before Income Tax and Depreciation in Thousands of Euro 
ROE Return on Equity (percentage)  

Table 4 
Conditional means of the financial variables.  

Class Turnover.2020 EBIT.2020 PLTax.2020 Leverage.2020 ROE.2020 TAsset.2020 

Non-Default (Class Zero) 10,950.948104 717.148144 521.539610 4.617414 13.895101 12,560.865164 
Default (Class One) 10,261.416051 -828.175527 -1003.877095 994.987954 -4.896900 15,836.216495  

Table 5 
Estimated coefficients using a full logistic regression credit scoring model.  

Variable Coefficient Z-value p-value 

Turnover  -0.001231  -64.568443  0.000001 
Leverage  0.000163  3.945933  0.000074 
EBIT  -0.001479  -33.018932  0.000001 
PLTax  -0.001799  -35.065625  0.000001 
ROE  0.000012  2.972022  0.002958 
Country  0.130159  -5.213115  0.000001 
Industry  -0.552089  -25.116592  0.000001 
TAsset  -0.000001  -8.50125  0.003952  
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4.2. Results 

We first build a ‘classic’ credit scoring model based on the logistic regression model in Section 3.1.1. Therefore, we randomly split 
the data into training (70% of the data) and validation samples (the remaining 30% of the data). For comparison, the same data 
partitioning was used when applying the random forest model. 

Initially, we considered, as explanatory variables, a full model, with all the six financial ratios described in Table 3, along with the 
Country and Industry sector classes. Applying a logistic regression model to predict a company’s default and a full logistic regression 
model to the training data led to the estimated coefficients shown in Table 5, along with their corresponding Z and pvalues. 

From Table 5, we see that all variables are significant, as may be expected, given a large amount of considered training data (more 
than seventy thousand), which leads to high goodness of fit. Note that Country and Industry have the highest coefficients, but this does 
not mean they mostly impact the predictions because the variable scales differ. To understand the effect of each variable on the 
predictions, we employed the estimated model to predict the scores of the companies in the validation sample (30% of all data) and 
then calculated the Global Shapley values for each variable, summing the Shapley values for the observations in the test set (30% of the 
observations). The results are presented in Fig. 3. 

Fig. 3 shows that ‘PLTax’ has the largest Global Shapley value: it is the variable that mostly impacts the predictions, followed by 
‘EBIT’. This result partially aligns with that observed in Table 4, as it consistently indicates the two profitability variables that present 
the highest difference in conditional means (PLTax and EBIT) but give low importance to financial leverage. 

We built an ML credit scoring model based on the random forest model in Section 3.1.2. After splitting data into training (70% of 
the observations) and validation samples (30% of the observations), with the same partitioning for the logistic regression, we applied 
the random forest GridSearch CV algorithm of Python to the training sample and used the estimated model to calculate the credit 
scores of the companies in the validation sample. Each company in the validation sample was then predicted: to default or not to 
default, comparing the model scores to a set threshold of 0.5. The performance of the full random forest model, which employs all six 
explanatory variables, is shown in Table 6 in comparison with the logistic regression model previously described. 

Table 6 shows that, as expected, the accuracy of the random forest model is higher. The joint consideration of Sensitivity, Spec
ificity, and F1 Score further indicates that the random forest model performs better because it balances sensitivity and specificity 
better. Consistent with this result, when the set threshold varies from 0.5, as in the AUC metrics, the random forest model strongly 
outperforms the logistic regression, with AUC = 0.93 versus AUC = 0.63. In conclusion, the available data indicate clear superiority in 
the predictive accuracy of the random forest credit scoring model over the logistic regression model. 

However, although the random forest model is highly accurate, it does not produce a set of estimated coefficients, as shown in 
Table 5, indicating the relative impact of each explanatory variable. From a managerial perspective, we can predict whether to invest 
in an SME; however, we do not know why. From an SME perspective, it is unclear which variables improve credit scores. 

To overcome this problem, we can post-process the predicted scores obtained with the random forest model using a ‘feature 
importance plot’. For each variable in the model, the plot represents the decrease in the Gini variability measure determined by each 
split of the tree induced by a given explanatory variable averaged over all tree models in the random forest built on the training data. 
Recall that, for a given split induced by an explanatory variable, the higher the reduction in variability, the more important the 

Fig. 3. Global Shapley values based on the predictions generated by the full logistic regression model.  
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variable. The feature importance plot for our considered training data is shown in Fig. 4. 
Fig. 4 shows that ROE, PLTax, Leverage, and EBIT lead to the highest reduction of the Gini measure and are thus individuated as the 

most important variables. However, the lowest importance is related to Industry and Country, the only two variables in the sample that 
are not derived from the balance sheet. 

Although the feature importance plot addresses, to some extent, explainability, it is not model-agnostic; it cannot be obtained for 
models different from random forests, such as logistic regression. Consequently, it does not allow a comparison of model explainability. 
Thus, we resort to a model-agnostic tool, Shapley values, calculated from the predicted credit scores in their validation sample. 

Fig. 5 shows the overall contribution of each variable, as described by the global Shapley values: the Shapley values for each 
variable, summed across all observations. 

From Fig. 5 note that the most explainable variable is ‘Leverage’, followed by ‘PLTax’ and ‘EBIT’, consistently with the difference in 
conditional means, and with the feature importance plot in Fig. 4, but differently from what obtained applying Shapley values to 
logistic regression. Here, ‘Leverage’ is the least important variable. The same figure shows that the global Shapley values for ‘Country’ 
and ‘Industry’ are small, consistent with the feature importance plot but different to what occurs for the logistic regression in Fig. 3. 

From a financial viewpoint, the Shapley values of the random forest credit scores indicate that the probability of default of an SME 
is mainly determined by its probability (as measured by ROE, PLTax, and ROE) and by its financial leverage; less affected by its size and 
operating revenues (as measured by Tasset and Turnover); and little affected by its corresponding Country or Industry, differently from 
what occurs using a logistic regression model. 

To understand which variables are statistically significant to explain the probability of default, we applied our proposed selection 
procedure: a stepwise variable selection based on the comparison of the AUC and the ordering established by the Global Shapley values 
in Fig. 5. Our procedure differed from classical stepwise procedures that compare models in terms of their likelihood. Instead, we 
compared the models in terms of their predictive accuracy. The advantage of doing so is generality: we can compare models with an 
underlying probabilistic model, such as logistic regression and all ML models, such as random forest models. 

More precisely, we employed a backward selection procedure, which progressively eliminated variables from the full model, 
following the order determined by the global Shapley values in Fig. 5: from the least explainable (‘Industry’) to the most explainable 
(‘ROE’). Each variable was removed from the least explainable to the most explainable variable. Specifically, a variable is removed 
from the model when its additional contribution to predictive accuracy, as measured by the Area Under the Receiver Operating 
Characteristics (AUC), is not statistically significant; that is, it leads to a DeLong test with pvalue larger than a threshold (e.g. 5%). The 
procedure was stopped when p was lower than the set threshold. As a result of our proposed procedure, the selected model is highly 

Table 6 
Comparison of Logistic Regression and Random Forest full models, regarding predictive accuracy measures.  

Measure Accuracy Sensitivity Specificity F1 Score AUC 

Random Forest  0.97066  0.98687  0.86884  0.89051  0.92785 
Logistic Regression  0.89646  0.98748  0.32459  0.46261  0.65603  

Fig. 4. Random Forest Feature Importance.  
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predictive and explainable using a parsimonious set of predictors. 
Table 7 lists the results of this stepwise procedure. It contains the AUC values and the p-values of the DeLong test, corresponding to 

comparing subsequent pairs of AUCs. 
Table 7 shows that ‘Industry’ is the least explainable variable: the first candidate for removal. The comparison of the AUC of the 

entire model, when all predictors are used in the random forest model, against the model without ‘Industry’, leads to a p-value of the 
DeLong test equal to 0.16772, leading to select the simpler model, without ‘Industry’. 

The next variable candidate for removal is ‘Country’. Comparing the AUC of the model without ‘Industry’ and ‘Country’ against the 
model which excludes only ‘Industry’, we found that the p-value of the DeLong test equals 0.25892, so the model can be further 
simplified. 

The procedure continues until a variable whose exclusion leads to a significant decrease in predictive accuracy is identified. In our 
case, this is the third most explainable variable, ‘Turnover’, for which the p-value is smaller than the threshold, leading to a rejection of 
model simplification and stopping the variable removal procedure. In conclusion, from Table 7, we obtain that the best trade-off 
between explainability and predictive accuracy is provided by a model that includes all available financial indicators but not the 
variables which describe the ‘Industry’ and the ‘Country’ of the companies. 

From a financial viewpoint, this result indicates that the binarised ratings assigned by the rating agency are ‘fair’ across countries 
and sectors, with no bias in terms of financial inclusion. 

To verify the results obtained in Table 7, we provide the results from applying Hand’s H statistics Hand (2009) to our models. The 
results are consistent with those of the AUC: the values for the H measure are similar, approximately 0.818, for the first three models, 
before removing ‘Turnover’ and, when ‘Turnover’ is removed, H drops down to 0.808577, showing that the model should not be 
simplified any further, consistent with the results obtained applying DeLong’s test to the AUCs. 

Thus, our proposed selection procedure leads to a simpler random forest credit scoring model than the entire model, with six 
variables instead of eight. However, this does not result in a significant loss of predictive accuracy. 

For completeness and comparison, we should apply our proposed stepwise procedure also to the logistic regression scoring model, 
following the variable ordering determined by Fig. 3. In this case, removing ‘Leverage’, the least explainable variable in Fig. 3, leads to 
a p-value smaller than 0.05. Hence, the null hypothesis is rejected, and the full model cannot be simplified without a significant loss of 
accuracy. Thus, the selected random forest model with six variables is more parsimonious than the selected logistic regression model, a 
full model with eight variables. 

Fig. 5. Global Shapley values importance.  

Table 7 
DeLong Tests of the considered pairs of Random Forest models.  

Removed Variable Number of Variables in model AUC P-value H Measure 

-  8  0.927856 -  0.818273 
Industry  7  0.927604 0.167723  0.817766 
Country  6  0.928045 0.258918  0.818519 
Turnover  5  0.924413 0.000009  0.808577  
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Therefore, we conclude that the random forest model selected by our proposed procedure is more accurate and parsimonious than 
the selected logistic regression model. 

5. Conclusions 

Ensemble ML models, such as random forests, can improve the accuracy of credit scoring models but are not explainable. 
Explainable AI methods such as Shapley values can be employed to post-process credit scores to achieve explainability. 

This study employed Shapley values to achieve explainability and guide variable selection, leading to a parsimonious model that is 
a good trade-off between predictive accuracy and explainability. 

To achieve this goal, we proposed a model selection strategy in which global Shapley values ordered the candidate explanatory 
variables in terms of their predictive importance, and a backward stepwise selection procedure, based on the comparison of predictive 
accuracy, was implemented to select a ‘statistically optimal’ subset of variables. 

Our proposal is applied to a database containing credit ratings for a large set of European SMEs, the values of six financial ratios 
from their 2020 balance sheets, and their country and sector of belonging. These results indicated that the nonlinear random forest 
credit scoring model was more accurate than the logistic regression. The application of our procedure also showed that the selected 
random forest model was more parsimonious than the selected logistic regression model because it depended only on balance sheet 
ratios and not on the country or industry sector of a company, with no bias in terms of financial inclusion. 

From a methodological viewpoint, our proposed method: i) fills a gap, as it provides a model comparison procedure based on both 
accuracy and explainability, which can be equally applied to all types of ML models; and ii) leads to a credit scoring model which is a 
good trade-off between predictive accuracy and explainability. 

From a managerial viewpoint, our model can support banks, fintech companies, and regulators in developing and supervising ML 
models for credit scoring compliant with regulatory requirements, particularly those concerning AI. 

Our proposal makes three main contributions to literature. For research scholars, it proposes a novel model comparison approach, 
which combines explainability with predictive accuracy; for financial and fintech managers, it proposes a way to make AI applications 
explainable and, therefore, acceptable; for policymakers and regulators, it provides a methodology able to check whether a specific AI 
application for credit scoring is compliant with the existing regulations. 

Our study is built on the standard axiomatisation of the Shapley value, which is only suitable for binary responses such as credit 
default. However, when continuous response variables such as loss given default or exposure at default are considered, the proposed 
method can be extended by considering the Baseline Shapley value (Bshap) or the Random Baseline Shapley value (Sundararajan and 
Najmi, 2020) when implementing random forest or other ML approaches. 

Further research is needed to experiment with the proposed model selection procedure using alternative Shapley axiomatisations. 
An interesting avenue of research would be to understand the impact of balance sheet variables on companies’ financial exposure by 
extending the linear regression analysis of Fasano and Cappa (2022) to an ML context. 

Further research is also needed to consider the interpretation of the predictions in terms of their ‘fairness’, that is, to establish how 
independent the credit scores from country and industry sector or, for consumer credit applications, from gender, race or other types of 
stratifications. 
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