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a b s t r a c t 

Financial stress tests that capture multiple interactions between contagion channels are conditional 

on specific, subjectively-imposed stress scenarios. Eigenvalue-based approaches, in contrast, provide a 

scenario-independent measure of systemic stability, but so far only handle a single contagion mecha- 

nism. We develop an eigenvalue-based approach that brings the best of both worlds, enabling the anal- 

ysis of multiple interacting contagion channels without the need to impose a subjective stress scenario. 

Our model captures the solvency-liquidity nexus, which allows us to demonstrate that the instability due 

to interacting channels can far exceed that of the sum of the individual channels acting in isolation. The 

framework we develop is flexible and allows for calibration to the microstructure and contagion chan- 

nels of real financial systems. Building on this framework, we derive an analytic stability criterion in the 

limit of a large number of institutions that gives the instability threshold as a function of the relative size 

and intensity of contagion channels. This analytical formula requires comparatively little data to elucidate 

the mechanisms that drive instability in real financial systems and thus complements the insights gained 

from traditional stress tests. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

One of the revelations of the financial crisis was the importance 

f systemic risk . 1 Systemic risk is transmitted between institution 

o spread and amplify across the financial system through mech- 

nisms referred to as contagion channels ( Allen and Gale, 20 0 0 ).

isk control measures that are prudent for a single institution act- 

ng on its own may be counterproductive when many institutions 

ct in unison. 2 This problem is complicated by the fact that the 

nancial system is heterogeneous, with different types of actors, 
∗ Corresponding author. 

E-mail address: garbrandwiersema@outlook.com (G. Wiersema) . 
1 See e.g. Cont et al. (2010) ; Gai and Kapadia (2010) ; Fouque and Langsam (2013) ; 

lasserman and Young (2016) . 
2 See e.g. Adrian and Shin (2010) ; Thurner et al. (2012) ; Adrian and Shin (2014) ; 

ymanns and Farmer (2015) ; Aymanns et al. (2016) . 
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uch as banks, pension funds, hedge funds, money market funds 

nd insurance companies, and many types of interactions. 3 This 

akes the financial system a prime example of a complex system 

nd raises the key challenge for policymakers to capture the com- 

lex microstructure of the system in models of financial stability 

 Arinaminpathy et al., 2012; Aymanns et al., 2018 ). 

The microstructural models currently used by policymakers to 

valuate the stability of financial systems are premised on stress 

cenarios consisting of hypothetical exogenous shocks that could 

otentially threaten the stability of the system. 4 This approach 

as the obvious drawback that the specification of such scenar- 
3 See e.g. Allen and Babus (2009) ; Gai et al. (2011) ; Arinaminpathy et al. (2012) ; 

accioli et al. (2012) ; Cont et al. (2013) ; Cont and Schaanning (2017) ; 

ymanns et al. (2018) ; Farmer et al. (2020) . 
4 See e.g. Burrows et al. (2012) ; IMF (2014) ; Kok and Montagna (2016) ; 

udnik et al. (2019) . 
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6 See e.g. Adrian and Shin (2010) ; Caccioli et al. (2013, 2014, 2015) ; Duarte and 

Eisenbach (2018) ; Cont and Schaanning (2017, 2019) . 
7 See e.g. Eisenberg and Noe (20 01) ; Furfine (20 03) ; Gai and Kapadia (2010) ; 

Battiston et al. (2012) ; Elliott et al. (2014) ; Acemoglu et al. (2015) ; Bardoscia et al. 

(2015, 2017) . 
8 See e.g. Fostel and Geanakoplos (2008) ; Brunnermeier and Pedersen (2009) ; 

Adrian and Shin (2010) ; Geanakoplos (2010) ; Adrian and Shin (2014) ; 

Aymanns et al. (2016) . 
9 We consider expected inflows and outflows of liquid assets as part of regular 

day-to-day liquidity management, and therefore do not classify such flows as a liq- 
os is inherently subjective, giving rise to debates about their real- 

sm and relevance to current market conditions ( Borio et al., 2014; 

ymanns et al., 2018 ). Moreover, scenarios are by their very na- 

ure not comprehensive – the financial system might be stable 

n one set of scenarios and collapse in other unforeseen or mis- 

pecified scenarios. This challenge can be partially overcome by an- 

lyzing ensembles of shock scenarios (see e.g. Elsinger et al. (2006) ; 

ontagna et al. (2021) ), but because the space of potential scenar- 

os is effectively infinite and the probability of specific scenarios is 

nknown, the problem is never entirely overcome. 

An alternative method that does not suffer from these short- 

omings explicitly models the financial network as a dynamical 

ystem, so that its stability can be analyzed in terms of its eigen- 

alues. This approach has been used for studying the effect of con- 

agion channels in isolation ( Caccioli et al., 2014; Bardoscia et al., 

017; Cont and Schaanning, 2019 ). However, financial systems have 

ultiple interacting contagion channels, and studies have shown 

hat the interaction of multiple channels can dramatically amplify 

nstability compared to channels operating in isolation. 5 Up un- 

il now there has been no general method for treating interact- 

ng channels as a dynamical system. This causes a tenuous state 

f affairs for policymakers: To take into account interacting con- 

agion channels, they are forced to rely on subjectively imposed 

tress scenarios. 

Our key contribution in this paper is to offer a novel approach 

hat combines the best of both worlds: a systematic method to an- 

lyze a financial network with multiple interacting contagion chan- 

els as a dynamical system, which significantly complements our 

bility to understand and monitor the stability of the financial sys- 

em. This novel approach is realized by expressing contagion chan- 

els in terms of shocks to the liquidity and solvency of institutions, 

hich allows us to reduce the multiple layers of the financial sys- 

em’s contagion network to a simple two-layer system and study 

he nexus of the interactions between liquidity and solvency. Us- 

ng this method, we compute the linear stability of a financial sys- 

em exposed to small shocks in a general setting. This makes it 

ossible to estimate the stability of the financial system without 

aving to impose a specific, subjective risk scenario. In contrast to 

ethods such as those used by the EBA and the FED ( EBA, 2018;

ED, 2018 ), for example, this has the potential to yield accurate es- 

imates of financial stability that are robust under a wide range of 

tress scenarios. 

The paper proceeds as follows. Section 2 introduces our frame- 

ork, which we refer to as the “shock transmission matrix”, ex- 

lains our modelling of contagion dynamics, and derives our main 

esults. Section 3 applies our framework to randomly generated fi- 

ancial systems. The purpose of this exercise is to elucidate the 

nteractions between solvency- and liquidity-mediated contagion 

hannels and to demonstrate that neglecting these interactions 

ay lead to a potentially substantial overestimation of stability. 

ection 4 concludes with a discussion of the implications of our 

ndings for financial stability policy and financial stress testing 

ractices. 

. Capturing the solvency-liquidity nexus 

Financial contagion can take many forms, many of which 

ave been extensively studied (see e.g. Allen and Gale (20 0 0) ; 

isenberg and Noe (2001) ; Gorton and Metrick (2012) ). In this pa- 

er, we analyze four principal contagion channels of the finan- 

ial system, which we call funding contagion, overlapping portfo- 

io contagion, counterparty risk contagion, and deleveraging conta- 

ion. 
5 See e.g. Caccioli et al. (2013) ; Poledna et al. (2015) ; Kok and Montagna (2016) ; 

etering et al. (2021) . 

u

t

g

e

2 
Funding contagion occurs when a borrowing institution depends 

n short-term loans to provide liquidity and runs the risk that 

he lender might withdraw its loans ( Diamond and Dybvig, 1983; 

charya and Skeie, 2011; Caccioli et al., 2013 ). Overlapping port- 

olio contagion can materialize when two institutions hold com- 

on securities. If either institution sells securities this drives prices 

own, lowering the securities’ value. 6 Counterparty risk occurs 

hen a lender runs the risk that a borrower might default. 7 Fi- 

ally, deleveraging contagion takes place when an institution uses 

orrowed funds to purchase assets. 8 Borrowing creates debt and 

he ratio of debt to equity is called the leverage λ. As part of good

isk-management practices, it is common for financial institutions 

o target a particular leverage to control risk. If the value of as- 

ets drops, the debt burden remains constant but the equity value 

ecreases, so leverage increases. This forces a leverage-targeting in- 

titution to pay off debt to maintain its leverage target, an action 

hat drains the institution’s liquidity. 

The culmination of a severe financial crisis is usually the default 

f one or more institutions ( Brunnermeier, 2009; Roukny et al., 

013 ). A default can be forced by insolvency or illiquidity. Insol- 

ency occurs when asset values drop to the point where equity be- 

omes negative – that is, when the value of an institution’s liabil- 

ties exceeds that of its assets ( Amini et al., 2016 ). Default due to

lliquidity , on the other hand, occurs when an institution is unable 

o meet its payment obligations ( Cont and Schaanning, 2017 ). In- 

olvency and liquidity can be related, but are analytically distinct: 

n institution can default due to a liquidity shock even when it is 

olvent, and vice versa. During financial crises, liquidity tends to 

e the more direct threat; an institution may survive temporary 

nsolvency by maintaining liquidity and regaining its solvency at 

 later date, but for our purposes we neglect this possibility here. 

n normal economic times, a solvent institution is expected to bor- 

ow to avert a liquidity shortage. In times of economic crisis, how- 

ver, this may not be possible because lending markets malfunc- 

ion due to uncertainty about asset values, escalating collateral re- 

uirements, liquidity hoarding and capital flight, etc. ( Gorton and 

etrick, 2012 ). 

We can analyze the stability of the financial system in terms 

f its resilience to shocks, which we can classify either as liquid- 

ty shocks or valuation shocks, depending on the type of default 

hey threaten to cause. For the purposes of this paper, we define a 

iquidity shock as an unexpected outflux of liquid assets and a val- 

ation shock as a drop in the (expected) value of an institution’s 

ssets. 9 

The key insight is that the four contagion channels we distin- 

uish here can be described in terms of the propagation of liquid- 

ty and valuation shocks and the conversion of one type of shock 

nto the other: 

• Propagation of liquidity shocks by funding contagion: If institution 

i depends on a short-term loan from institution j, if j suddenly 

withdraws the loan to meet a liquidity shock it receives, then 

this causes a liquidity shock to i . 
idity shock. For simplicity, we assume that shocks are non-negative. In principle, 

he framework could also capture negative shocks (i.e. liquidity and asset value 

ains ), but this would cause the framework to lose some of the convenient prop- 

rties guaranteed by the Perron Frobenius theorem. 
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Fig. 1. Decomposition of shock dynamics. The vector of shocks to the financial 

system can be described as a concatenation of the vector of liquidity shocks and 

the vector of valuation shocks to each institution. The shock transmission matrix 

maps the complete vector of shocks in one period to the vector of shocks in the 

next period. It can be decomposed into its four quadrants as shown in the figure, 

corresponding to the propagation and conversion of both shock types. Note the cor- 

respondence of the quadrants in (a) and (b): Funding contagion propagates liquidity 

shocks, counterparty risk propagates valuation shocks, overlapping portfolio conta- 

gion converts liquidity shocks to valuation shocks and deleveraging converts valua- 

tion shocks to liquidity shocks. 

Fig. 2. The duplex network underlying the shock transmission matrix A . The 

nodes represent institutions and the edges represent the shock transmission be- 

tween institutions. In this two-layer system, the top layer represents the liquid- 

ity shock network (in blue) and the bottom layer the valuation shock network (in 

red). The green and yellow arrows represent interactions between these two net- 

works; the green arrow represents conversions of shocks from liquidity to valuation, 

whereas yellow arrows represent the conversion of shocks from valuation to liquid- 

ity. The shock transmission matrix is a weighted adjacency matrix that describes 

both layers and their interactions simultaneously. 
• Propagation of valuation shocks by counterparty risk contagion: 

If a valuation shock causes institution i ’s probability of default 

to rise, the risk-adjusted value of its debt to institution j falls, 

causing a valuation shock to j. 
• Conversion of liquidity shocks to valuation shocks by overlapping 

portfolio contagion: If institution i suffers a liquidity shock it 

may be forced to sell securities to raise liquidity. This depresses 

their price. If institution j also has a position in these securities 

it experiences a valuation shock. 
• Conversion of valuation shocks to liquidity shocks by deleveraging: 

If a valuation shock decreases institution i ’s equity, its lever- 

age rises. To return to its target leverage, the institution must 

raise cash to pay off its debt, essentially triggering a liquidity 

shock to itself (we do not consider slower mechanisms to raise 

equity-capital, such as issuing new shares or retaining earn- 

ings). 

Note that we use the term “contagion channel” to refer to a 

pecific mechanism that propagates or converts a financial shock, 

nd not as a reference to the shock itself. 

In the remainder of this section, we show how to describe the 

ollective dynamics of these four interacting contagion channels in 

 scenario-independent framework. This allows us to characterize 

he financial system’s resilience to a wide range of liquidity and 

aluation shocks based on the corresponding largest eigenvalue. 

.1. The shock transmission matrix 

The interactions of the four contagion channels can be captured 

n a single matrix A which we call the shock transmission matrix , 

s shown in Figure 1 a. Assume discrete dynamics and let x l 
t,i 

de- 

ote the liquidity shock suffered by institution i at time t . The N- 

imensional vector x l t gives the liquidity shocks to all institutions, 

here N is the number of financial institutions. Similarly, x v 
t,i 

de- 

otes the valuation shock to institution i at time t and x v t the N- 

imensional vector of valuation shocks to all institutions. The com- 

ined shock vector x t of length 2 N is 

 t = 

[
x l t 
x v t 

]
. (1) 

he shock transmission matrix A is the 2 N × 2 N matrix that acts 

n the shock vector x t according to 

 t+1 = A x t . (2) 

iven the distinction between the top and bottom half of x t , we 

ecompose the shock transmission matrix into its four quadrants, 

 = 

[
A 

ll A 

v l 

A 

lv A 

vv 

]
, (3) 

here each of the components A 

ll , A 

lv , A 

v l and A 

vv are N × N ma-

rices, so that Eq. (2) can be written in the form 

 t+1 = 

[
x l t+1 

x v t+1 

]
= 

[
A 

ll x l t + A 

v l x l t 
A 

lv x l t + A 

vv x v t 

]
. (4) 

q. (4) makes explicit how the diagonal quadrant A 

ll describes the 

ropagation of liquidity shocks and A 

vv the propagation of valua- 

ion shocks. The off-diagonal quadrant A 

lv gives the conversion of 

iquidity to valuation shocks and A 

v l the conversion of valuation 

o liquidity shocks. Figure 1 b shows the corresponding contagion 

hannels. 

The shock transmission matrix A is the adjacency matrix of a 

eighted, directed, duplex network, where the nodes are institu- 

ions and the edges represent the transmission of shocks. Each 

nstitution is represented by a node in each layer. As shown in 

igure 2 , the top layer describes the propagation of liquidity shocks 
3



G. Wiersema, A.M. Kleinnijenhuis, T. Wetzer et al. Journal of Banking and Finance 146 (2023) 106684 

b

w

s

v

s

v

g

a

t

m

t

n

m

(

e

t

n

t

p

i  

W

s

a

g

g

i

a

s

o

2

i

s

a

w

a

s

t

o

a

o

a

m

a

s

t

s

t

i

s

c

H

d

t

i

t

H

(

z

t

t

c

e

a

i

i

b

s

u

p

f

t

a

i

c

n

h

v

n

i

a

i

h

t

T

fi

t

t  

a

a

s

fi

t

b

2

g
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11 See e.g. Adrian and Shin (2010) ; Duarte and Eisenbach (2018) ; 

Greenwood et al. (2015) ; Cont and Schaanning (2017) ; Bookstaber (2017) . 
12 We assume for simplicity that institution i has a single security at the top of 
y funding contagion and is referred to as the liquidity shock net- 

ork . The bottom layer describes the propagation of valuation 

hocks by counterparty risk contagion and is referred to as the 

aluation shock network . The edges between the two layers de- 

cribe liquidity shocks transitioning to valuation shocks and vice 

ersa, according to overlapping portfolio and deleveraging conta- 

ion respectively. Because we can express all four contagion mech- 

nisms in this two-layer system, in contrast to earlier methods 10 , 

his method does not require a separate layer for each contagion 

echanism. 

The shock transmission matrix can be used to study the sys- 

em’s stability and resilience to shocks. Because all its elements are 

on-negative, the Perron-Frobenius theorem guarantees that the 

atrix has a non-negative real eigenvalue greater than or equal to 

the absolute values of) the matrix’ other eigenvalues. This largest 

igenvalue describes the systemic properties of the financial sys- 

em ( Caccioli et al., 2014; Bardoscia et al., 2017; Cont and Schaan- 

ing, 2019 ): If the largest eigenvalue is greater than one, shocks 

hat are not orthogonal to the corresponding eigenvector are am- 

lified without bound and the system is unstable ; if the eigenvalue 

s smaller than one, shocks are damped and we refer to it as stable .

hile no system is resilient to arbitrarily large shocks, an unstable 

ystem under this definition is not even resilient to small shocks, 

s it amplifies them without bound over time. 

In Eq. (2) , each contagion mechanism manifests itself in a sin- 

le time step t . This setup implicitly assumes that all four conta- 

ion mechanisms act equally fast, which we know is not necessar- 

ly true in reality. However, this simplifying assumption does not 

ffect our results: As we show in the Supplementary Materials, the 

et of conditions under which the largest eigenvalue is equal to 

ne is independent of this assumption. 

.2. Institutions’ responses to shocks 

To study how a system’s stability depends on its composition 

n terms of different types of financial institutions, we classify in- 

titutions based on the contagion they transmit. The response to 

 financial shock generally depends on its magnitude, but here 

e focus on shocks that are sufficiently small that the dynamics 

re approximately linear. This can be extended to deal with larger 

hocks by dynamically updating the shock transmission matrix as 

he shocks propagate. 

When a liquidity shock hits, an institution may have multiple 

ptions available to respond. We assume that each institution has 

 pecking order that specifies the sequence in which it uses these 

ptions ( Kok and Montagna, 2016; Hałaj, 2018 ). For example, once 

n institution has fully sold its position in a given security, it may 

ove on to selling another, less liquid, security. The assumption of 

 liquidity pecking order underpins the design of regulatory mea- 

ures like the Liquidity Coverage Ratio and Net Stable Funding Ra- 

io requirements ( BIS, 2013; 2014 ). We focus on shocks that are 

ufficiently small for us to assume that the liquidation option at 

he top of any institution’s pecking order is not exhausted. In real- 

ty, the pecking order is institution-specific. Our methodology as- 

umes that every institution has a pecking order, but it is in prin- 

iple agnostic to what that pecking order looks like. 

Following the approach of Kok and Montagna (2016) and 

ałaj (2018) , we assume that institutions adopt the pecking or- 

er that minimizes liquidation costs. As a result, any institution 

hat holds sufficient cash on its balance sheet can absorb liquid- 

ty shocks without causing any contagion. Such institutions do not 

ransmit any shocks in response to the receipt of a liquidity shock 
10 See e.g. Caccioli et al. (2013) ; Kok and Montagna (2016) ; Poledna et al. (2015) ; 

üser et al. (2018) ; Bardoscia et al. (2018) . 

i

c

l

l

e

4 
i.e. its column in the left half of the shock transmission matrix is 

ero). We refer to these institutions as liquidity sinks. Institutions 

hat can easily access cash, for example by borrowing on the in- 

erbank market ( Rochet and Tirole, 1996 ) or accessing central bank 

redit ( Bagehot, 1873 ), can also act as liquidity sinks (note, how- 

ver, that borrowing cash is not an option when the liquidity shock 

rises because the institution needs to pay off its debts to decrease 

ts leverage to return to its leverage target). If an institution holds 

nsufficient cash but has made short-term loans, it can raise cash 

y not rolling over these loans. Finally, an institution can liquidate 

ecurities; we assume that this is done in descending order of liq- 

idity (the most liquid securities are liquidated first, to minimise 

rice impact). In sum: cash sits at the top of the pecking order, 

ollowed by withdrawal of short-term loans, and finally by liquida- 

ion of securities in descending order of liquidity. 

Following a similar logic to that applying to liquidity sinks, we 

lso define valuation sinks. For our purposes, a valuation sink is an 

nstitution without leverage. Because it has no creditors to transmit 

ontagion to (it cannot go bankrupt) and cannot deleverage (it has 

o debt), it absorbs valuation shocks (i.e. its column in the right 

alf of the shock transmission matrix is zero). An example of a 

aluation sink is a defined contribution pension fund which has 

o debt to the financial system. 

We assume that each leveraged institution has a leverage ceil- 

ng , which reflects the maximum risk an institution is willing or 

llowed to take. The ceiling may be set by regulation, or it may be 

mplicitly imposed by haircuts on collateralized loans. Because the 

aircut requires the collateral value to exceed the value of the loan, 

he borrower must finance the excess collateral with its own funds. 

his limits the amount of (collateralized) debt the institution can 

nance given its equity. If an institution operates sufficiently close 

o its ceiling that a valuation shock would force it to deleverage, 

hen we say that it is leverage targeting . 11 In contrast, if the lever-

ge is sufficiently below the ceiling (e.g. due to a leverage buffer, 

s proposed in recent regulation ( Goodhart, 2013; FSB, 2017 )) we 

ay that it is passively leveraged . The shocks in our model are suf- 

ciently small not to push passively leveraged institutions towards 

heir ceiling to the point where they have to transition towards 

ecoming leverage targeting. 

.3. Contagion equations 

We now derive simple representative formulas for each conta- 

ion channel. 

• Funding contagion: Suppose institution i extends a short-term 

loan of size S i j to institution j, which is part of its short-term 

loan portfolio of size S i . On receiving a liquidity shock x l 
i 
, as-

sume institution i proportionately reduces the size of its short- 

term loans to each institution j to absorb the entire shock. This 

means that the liquidity shock that is transmitted to institution 

j is A 

ll 
ji 

x l 
i 
, where 

A 

ll 
ji = 

S i j 

S i 
. (5) 

• Overlapping portfolio contagion: Suppose that institution i holds 

n si shares of security s , which makes up the top of i ’s pecking

order 12 , and that i experiences a liquidity shock x l that causes 
ts pecking order. Hence, although the institution may hold positions in various se- 

urities, i only sells shares in security s (until the position is exhausted) to raise 

iquidity (but the model can allow for multiple securities in the top pecking order 

ayer by assuming that i liquidates these securities proportionally to its position in 

ach security). 
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Contagion Equations 

Contagion Mechanism Contagion Equation Description 

Funding Contagion A ll 
ji 

= 

S i j 

S i 
Short-term lending 

withdrawal 

Counterparty Risk A vv 
ji 

= δi λi 
D i j 

D i 
Probability of default increases 

Contagion due to lower valuations 

Overlapping Portfolio A lv 
ji 

= μs 
n s j 

n s 
Price-impact of 

Contagion selling securities 

Leverage Targeting A v l 
ii 

= λi Delevering requires 

Contagion raising liquidity 

(
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i to sell �n si = x l 
i 
/p s shares, where p s is the price of security s .

Assume a price impact function of the form 

�p s 

p s 
= μs 

�n si 

n s 
, (6) 

where n s is the total number of shares of security s in circula- 

tion, and the price impact factor μs is a nondimensional con- 

stant of order one that is inversely proportional to the liquidity 

of security s . Setting μs = 1 implies that selling n s shares drives 

the price to zero. Under the assumption of linearity, μs = 1 is 

an upper bound because the price cannot be negative. The re- 

sulting valuation shock to any institution j that holds n s j shares 

of security s is �p s n s j = μs x 
l 
i 
n s j /n s , which implies 

A 

lv 
ji = μs 

n s j 

n s 
. (7) 

Note that the diagonal component A 

lv 
ii 

is nonzero. We assume 

for simplicity that institutions do not short securities, so we al- 

ways have n s j ≥ 0 . 13 

• Counterparty risk contagion: Assume passively leveraged insti- 

tution i has equity E i and total debt D i , so that its leverage

is λi = D i /E i . When institution i experiences a valuation shock, 

its probability of default rises and the risk-adjusted value of its 

debt falls ( Bardoscia et al., 2017 ). Institutions with more equity 

can withstand larger valuation shocks without becoming insol- 

vent. Therefore, we assume that the fractional drop in the value 

of the debt is proportional to the fractional loss in equity x v 
i 
/E i .

If institution i owes debt D i j to institution j, then the valuation 

shock transmitted to institution j is δi x 
v 
i 
/E i D i j , so 

A 

vv 
ji = δi 

1 

E i 
D i j = δi λi 

D i j 

D i 

, (8) 

where the risk adjustment factor δi is a nondimensional con- 

stant of order one. Choosing δi = 1 implies that a shock of size 

E i (which causes bankruptcy) causes the full value of the debt 

to be lost and passed onto i ’s creditors as a valuation shock. Un-

der the assumption of linearity, δi = 1 is an upper bound as the 

loss cannot exceed the value of the debt. D includes short-term 

as well as long-term debt, so in general D i j ≥ S ji . 
• Deleveraging contagion. Suppose leverage targeting institution i 

maintains a leverage target λi . If it receives a valuation shock 

x v 
i 

it must pay off debt to return to its target. The amount by 

which it must reduce debt is λi x 
v 
i 
, so 

A 

lv 
ii = λi . (9) 

We assume that institution i ’s leverage targeting prevents the 

institution from transmitting counterparty risk contagion to its 

creditors. This is because the institution averts the risk associ- 

ated with increased leverage by paying off its debts to keep its 

leverage constant. 

We want to stress that the parameters in the equations vary 

ver time, and hence the shock transmission matrix is defined 

ith respect to a specific time t . For simplicity we omit the time 

ubscripts to the matrix and its entries. 

The four contagion equations are summarized in Table 1 . This 

et of contagion mechanisms is not exhaustive; for example, in- 

ormation contagion is not included ( Aharony and Swary, 1996; 

charya and Yorulmazer, 2008 ). Furthermore, in times of crisis, in- 

titutions sometimes hoard liquidity in response to liquidity shocks 
13 The framework can accommodate short positions by simply allowing n s j to be 

egative, but some convenient properties of the matrix would no longer be guaran- 

eed by the Perron Frobenius theorem. 

 

5 
 Acharya and Skeie, 2011; Heider et al., 2009 ). Liquidity hoard- 

ng can be included in the funding (5) and overlapping portfolio 

7) contagion equations by adding a hoarding term that captures 

he additional liquidity an institution hoards proportionally to the 

eceived liquidity shock. We make the simplifying assumption that 

iquidity hoarding is absent. We have chosen the four forms we 

tudy here because they are all important, but we restrict ourselves 

o only four contagion channels for simplicity. Our basic method- 

logy applies to any contagion channels and does not depend on 

he details of the interaction terms. 

According to the Perron-Frobrenius theorem, the largest eigen- 

alue of the shock transmission matrix is bounded by its small- 

st and largest column sums. The sum of a column’s entries gives 

he size of the aggregate shock the institution transmits relative 

o a received liquidity or valuation shock (depending on whether 

he columns is in the left or right half of the matrix). When 

o column-sum exceeds one, no institution ever transmits an ag- 

regate shock that exceeds the received shock, so there is no 

hock amplification and the system is stable. Conversely, when all 

olumn-sums exceed one, shocks are always amplified and the sys- 

em is unstable. 

The sum of a column corresponding to an institution’s trans- 

ission of funding contagion (5) is equal to 
∑ 

j S i j /S i = 1 and the

um of a column corresponding to overlapping portfolio contagion 

7) is given by 
∑ 

j μs n s j /n s = μs ≤ 1 . Hence, the aggregate shock 

ransmitted in response to a liquidity shock is never amplified (but 

ote that the addition of a liquidity hoarding term could change 

his). Furthermore, the sum of a counterparty risk contagion col- 

mn is equal to 
∑ 

j δi λi D i j /D i = δi λi ≤ λi and the sum of a delever- 

ging column is given by its only non-zero element λi . Therefore, 

nder the assumption of no liquidity hoarding, leverages exceeding 

ne are the only source of shock amplification in the system. This acts 

hrough the counterparty risk and deleveraging channels. 

.4. Stylized example 

We illustrate the approach outlined above using a simple exam- 

le of a self-contained financial system that includes all four con- 

agion mechanisms as well as both liquidity and valuation sinks. 

onsider four institutions, as summarized in Figure 3 . 

• Pension fund h has no debt and a cash surplus, making it both 

a valuation and a liquidity sink. It makes long-term loans L hi , 

L h j and L hk to institutions i , j and k and has a position n sh in

security s . 
• Bank i is passively leveraged. It has a position n si in security s , 

which sits at the top of its pecking order, and debt D ih = L hi and

D i j = S ji + L ji to institutions h and j. 
• Bank j targets leverage λ j . It makes short and long-term loans 

S ji , L ji and S jk , L jk to institutions i and k and has debt D jh =
L h j to institution h . The short-term loans sit at the top of its 

pecking order. 
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Fig. 3. A stylized example illustrating the interaction of multiple channels of contagion. Consider four institutions, h , i , j and k , whose balance sheets are given at 

the top of the figure. Each institution’s liquidity is represented by a node in the liquidity shock network, while each institution’s solvency is represented by a node in the 

valuation shocks network. The label of an edge indicates the type of contagion transmitted (each node transmits a single type of contagion so only one of a node’s out-edges 

is labeled) and the expression next to the edge represents the size of the interaction. The out-edges of a node in the liquidity shock network give the node’s response to 

liquidity shocks and are dictated by the asset that sits at the top of the institution’s pecking order. Similarly, out-edges in the valuation shock network give the response to 

valuation shocks as given by the institution’s leverage strategy: unleveraged (institution h ), passively leveraged (institution i ), or leverage targeting (institutions j and k ). 

 

t

 

 

 

 

 

 

 

 

 

 

 

, 

j

t

ν

a

o

ν

T  

a

d

c

z

i

s

l

 

n  

m

a

• Bank k has a cash surplus, making it a liquidity sink, and main- 

tains a leverage target λk . It has a position n sk in security s ,

short-term debt D k j = S jk + L jk and long-term debt D kh = L hk . 

The shock transmission matrix (and dynamic of the shock vec- 

or) of this system is: 

h l i l j l k l h v i v j v k v ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h l 0 0 0 0 0 0 0 0 x l 
t,h 

x l 
t+1 ,h 

i l 0 0 
S ji 
S j 

0 0 0 0 0 x l 
t,i 

x l 
t+1 ,i 

j l 0 0 0 0 0 0 λ j 0 x l 
t, j 

x l 
t+1 , j 

k l 0 0 
S jk 
S j 

0 0 0 0 λk x l 
t,k 

= x l 
t+1 ,k 

h v 0 μs 
n sh 

n s 
0 0 0 δi λi 

D ih 
D i 

0 0 x v 
t,h 

x v 
t+1 ,h 

i v 0 μs 
n si 

n s 
0 0 0 0 0 0 x v 

t,i 
x v 

t+1 ,i 

j v 0 0 0 0 0 δi λi 
D i j 

D i 
0 0 x v 

t, j 
x v 

t+1 , j 

k v 0 μs 
n sk 

n s 
0 0 0 0 0 0 x v 

t,k 
x v 

t+1 ,k 

(10) 

where S j = S ji + S jk , D i = D ih + D i j and n s = n sh + n si + n sk . 

To simplify the discussion we set the price-impact and risk ad- 

ustment factors to their upper bounds μs = δi = 1 . For this system, 

he largest eigenvalue of the shock transmission matrix is equal to 
6 
= 

(
S ji n si λi D i j λ j 

S j n s D i 

)1 / 4 

, (11) 

nd so the largest eigenvalue in this example is the product of each 

f the four contagion mechanisms, i.e. 

4 = 

S ji 

S j 
× n si 

n s 
× λi 

D i j 

D i 

× λ j . 

he factors S ji /S j , n si /n s and D i j /D i are all less than or equal to one,

nd so exert a stabilizing force competing against the potentially 

estabilizing forces of the leverages λi and λ j . If any of the four 

hannels of contagion is removed the largest eigenvalue becomes 

ero and the system becomes unconditionally stable. The possibil- 

ty for instability is caused by the interaction of all four channels, 

o analyzing each channel in isolation, as often done, gives a mis- 

eading result. 

Consider some plausible numbers: if S ji /S j = D i j /D i = 1 / 3 ,

 si /n s = 1 / 4 and λi = λ j = 6 , then ν = 1 and the system is at its

argin of stability. For any system, we define the critical leverage ˆ λ
s the maximum leverage that all leveraged institutions can attain 
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imultaneously without rendering the system unstable (i.e. ν ≤ 1 , 

here all unleveraged institutions are assumed to remain so). For 

he system outlined in the stylized example, the critical leverage is 

hus given by ˆ λ = 6 . 

The Stabilizing Role of Sinks. Sinks play an essential role in stabi- 

izing the financial system. All else equal, if more shocks are trans- 

itted to sinks, then less shocks are transmitted to potentially 

estabilizing institutions. 14 The ability of a sink to absorb shocks 

ncreases when it holds more short-term lending, more securities 

nd more of other institutions’ debt. This can be seen for the ex- 

mple by expanding the denominators in Eq. (11) , 

= 

(
S ji 

S ji + S jk 
× n si 

n sh + n si + n sk 

× λi 

D i j 

D i j + D ih 

× λ j 

)1 / 4 

. (12) 

he sinks’ short-term debt S jk , securities holdings n sh and n sk , and 

ending D ih all appear only in the denominator and therefore exert 

 stabilizing force on the system. Hence, sinks stabilize the system 

y absorbing shocks that would otherwise have been transmitted to 

ther institutions . 

.5. Application to stress testing 

This framework can be calibrated using granular data to accu- 

ately represent the microstructure of the financial system and it 

an be used to study any channels of contagion (he description 

an be made at any level of granularity, down to individual con- 

racts). Because the shock transmission matrix’ largest eigenvalue 

uantifies stability independently from any specific stress scenario, 

t provides an objective, robust measure of stability that allows for 

omparison across time, jurisdictions, policy interventions, and so 

n. 

The eigenvectors associated with the largest eigenvalue also 

rovide useful diagnostic information. 15 The right eigenvector pro- 

ides a measure of institutions’ in-degree centralities that takes 

he whole system into account and the left eigenvector provides 

 measure of institutions’ out-degree centralities that takes the 

hole system into account ( Newman, 2018 ). The larger entries of 

he right eigenvector flag the institutions that are likely to receive 

he largest shocks and those of the left eigenvector flag the insti- 

utions that play the biggest role in transmitting shocks. This can 

otentially help guide policymakers in identifying systemically im- 

ortant institutions and designing stress tests and interventions. 

Scenario-Dependent Stability. 

Although the framework here assumes infinitesimal shocks, it 

s also useful for understanding large shocks. In reality institutions 

o not respond to a shock instantaneously, but rather take a series 

f actions that are initially close to the dynamics captured by our 

ramework but diverge from these over time, so as the financial 

ystem responds to a large shock its stability changes. As the shock 

lays out, institutions may exhaust the top layers of their pecking 

rders, market liquidities may fall, and risk adjustment factors may 

ise. By investigating how this affects (linear) stability, we may gain 

nsight into how large shocks affect stability. The properties of the 

nancial system may also change due to central bank or govern- 

ent intervention in response to the shock, or because of adaptive 

rocesses that take place as part of the ongoing evolution of the 

nancial system ( Farmer et al., 2021 )). 
14 In any system, the eigenvalues are determined by the shock transmission be- 

ween strongly connected nodes. Sinks are by definition not strongly connected, 

o the more shocks transmission to sinks, the less shock transmission between 

trongly connected nodes and the lower the largest eigenvalue. 
15 The Perron Frobenius theorem guarantees that the right eigenvector is non- 

egative and, assuming that the network has a single strongly connected compo- 

ent, that it is unique (i.e. the coresponding eigenspace of the largest eigenvalue ν

s one-dimensional). The same is true for the left eigenvector. 

t

e

s

s

t

B

(

7

The evolution of the stability of the financial system in response 

o a large shock embodies the scenario-dependent component of 

he system’s shock-dynamics, which is not captured in its linear 

tability. As the framework can be calibrated to any state of the 

ystem, by continuously re-calibrating the shock transmission ma- 

rix as the system evolves in response to a shock, we may under- 

tand how the instantaneous stability changes, track it over time, 

nd distinguish between the scenario-dependent and independent 

omponents of the system’s stability. This can be done for both 

he empirically observed or forecast (by means of some simulation 

odel) evolution of real financial systems. 16 By investigating the 

ensitivity of a system’s stability to specific stress scenarios using 

he method developed here, policymakers may gain insight into 

he factors that generate financial instability in any given scenario. 

The effect of the liquidity pecking order in particular war- 

ants further investigation, because the stability of financial sys- 

ems strongly depends on which assets are at the top of institu- 

ions’ pecking orders. For example, when each institution has a 

ingle-layer pecking order (i.e. it liquidates a vertical slice across 

ll its liquid assets), the shock transmission matrix remains con- 

tant as long as institutions do not default or change their lever- 

ge strategies (under reasonable assumptions about μs and δi ). 

iquidation-cost minimizing pecking orders, on the other hand, 

ay be highly sensitive to the choice of stress scenario, because 

iquidities may change and layers of the pecking order may be ex- 

austed. Therefore, investigating what pecking orders institutions 

se during crises may yield valuable insights into the predictabil- 

ty of financial stability. 

. Stability overestimation due to ignoring interactions 

In the previous sections we derived the shock transmission ma- 

rix and explained how it may be used to assess the stability of 

nancial systems with interacting contagion channels. In this sec- 

ion, to underscore the importance of using the shock transmis- 

ion matrix to complement existing stress tests we demonstrate 

he dangers of ignoring the interactions between contagion chan- 

els. In the stylized example in section 2.4 , we showed that ig- 

oring any of the four contagion channels may overestimate sta- 

ility. In this section we demonstrate this in a more general set- 

ing. Because most contagion literature studies the counterparty 

efault (risk) channel alone 17 , we focus on the overestimation due 

o only considering counterparty risk contagion and ignoring all 

ther channels. This stability of pure counterparty risk contagion is 

iven by the largest eigenvalue of the counterparty risk component 

f the shock transmission matrix, i.e its bottom-right quadrant. We 

rst discuss two extremes for which the overestimation follows in- 

uitively and then consider intermediate cases. 

In the case where all institutions in the financial system are 

assively leveraged or no institution has tradeable securities at the 

op of their pecking order, the system’s shock transmission matrix 

s block-triangular. Due to the properties of block-matrix determi- 

ants, the largest eigenvalue of this system is given by the largest 

igenvalue of the diagonal quadrants, which correspond to coun- 

erparty risk and funding contagion. Such a system is stable when 

ure counterparty risk contagion is stable (as funding contagion is 

ever amplified under the assumption of no liquidity hoarding) so 

hat there is little potential for overestimating stability. 
16 Note that the purpose of our framework is to identify instabilities as they 

merge, rather than forecast the nature and magnitude of the crisis that may en- 

ue. The framework may provide insight into the simulated evolution of a financial 

ystem, but the simulation itself would require another model (or an extension of 

he one developed here). 
17 See e.g. Eisenberg and Noe (20 01) ; Furfine (20 03) ; Gai and Kapadia (2010) ; 

attiston et al. (2012) ; Elliott et al. (2014) ; Acemoglu et al. (2015) ; Bardoscia et al. 

2015, 2017) . 
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In the opposite situation where all institutions are leverage tar- 

eting, the counterparty risk quadrant is zero. Hence, considering 

ure counterparty risk contagion would lead to the conclusion that 

he system is unconditionally stable, regardless of the true stabil- 

ty. To understand how ignoring interactions between contagion 

hannels leads to an overestimation of stability in systems with 

oth passively leveraged and leverage targeting institutions, we 

ust understand how network composition affects stability. As a 

ractable example, in the sections that follow we apply the frame- 

ork developed in section 2 to randomly generated financial sys- 

ems. 

.1. Application to randomly generated financial systems 

To gain insight into the dynamics of interacting contagion chan- 

els we study randomly generated financial systems. To do this we 

opulate the balance sheets of N institutions with randomly gener- 

ted securities and loans. We do this in such a way that the types 

f institutions introduced in section 2.2 have the following propor- 

ions: 

1. A fraction φl of institutions have sufficient cash to absorb 

shocks. We call φl the fraction of liquidity sinks . 

2. A fraction φv of institutions have no leverage. We call φv the 

fraction of valuation sinks . 

3. A fraction F of institutions provide short-term loans. We call F 

the fraction of short-term lenders . 

4. A fraction � of leveraged institutions are leverage targeting. We 

call � the fraction of leverage targeters . 

These proportions constrain the random assignment of loans. 

or each security s out of a possible number N 

w of distinct secu- 

ities, we divide the total number of outstanding shares n s into N 

s 

locks of n s /N 

s shares and assign each block to a randomly cho- 

en institution. We do this with uniform probability and with re- 

lacement. Similarly, each institution makes N 

d loans, each to a 

andomly chosen leveraged institution; for simplicity, all loans an 

nstitution receives are set equal in size. Any institution that was 

esignated as leveraged but ended up not receiving any loans is 

llocated a single loan from a randomly chosen institution. 

For any institution i , let N 

s 
i 

denote the number of blocks of 

ecurity s received, N 

d 
i 

the total number of loans received, and 

 

d 
ji 

the number of loans received from institution j. The leverages 

f the N 

v = (1 − φv ) N leveraged institutions are set to the critical 

everage λi = ̂

 λ, which fixes their debts relative to their equities. 

nce we choose the N 

w distinct securities’ market capitalizations 

 s = p s n s , the requirement that any institution’s assets (LHS) must 

qual the sum of its equity and debt (RHS) provides N constraints 

hat determine the N institutions’ equity E i , 

N w 
 

s =1 

C s 
N 

s 
i 

N 

s 
+ 

N v ∑ 

j=1 

D j 

N 

d 
i j 

N 

d 
j 

= E i ( λi + 1 ) . (13) 

his allows us to generate a random financial system with any de- 

ired values of the parameters φl , φv , F and �. 

Financial systems tend to have sparse, heterogenous topolo- 

ies ( Boss et al., 2004; Cont et al., 2013 ) that can frequently be

haracterized as core-periphery structures ( Craig and Von Peter, 

014; Fricke and Lux, 2015 ). Similarly, our randomly generated sys- 

ems here include many sources of heterogeneity and have a core- 

eriphery structure: Since an institution can either be a liquidity 

ink or not be a liquidity sink, provide short-term loans or not pro- 

ide short term loans, and be unleveraged, passively leveraged or 

ave a leverage target, this implies that there are 2 × 2 × 3 = 12

ifferent types of institutions. The short-term lending network that 

esults from our method of random construction has a core of in- 

titutions that both provide and receive short-term loans. There are 
8

lso three distinct peripheries - one of institutions that only pro- 

ide short-term loans, one of institutions that only receive short- 

erm loans, and one of institutions that do not partake in the 

hort-term lending network at all. The long-term lending network 

as a similar topology but with different institutions at its core and 

eripheries. 

Furthermore, because loans and securities are chosen with re- 

lacement , institutions can receive multiple loans from the same 

nstitution and hold multiple shares in the same security. Conse- 

uently, the weights of the edges vary across institutions in all 

etworks. Finally, because the institutions’ assets are randomly de- 

ermined, the endogenously-determined balance sheet sizes vary 

cross institutions. By varying the system parameters φl , φv , F , �, 

 , N 

d , and N 

s , we can control the level of heterogeneity present in

he system. 

.2. Mean-field approximation 

In the limit where N, N 

d /N, N 

s /N → ∞ , the randomly generated

nancial systems reduce to a mean-field model. In fact, as we show 

elow, the mean field model remains a reasonable approximation 

or much smaller, sparser systems as well. Rather than studying 

he stability of the generated systems explicitly we focus on the 

ean-field approximation, which is more insightful because it pro- 

ides an analytic stability condition. 

In Supplementary Materials, we explain that the dynamics of 

his mean-field model are uniquely defined by the transmission of 

he aggregate liquidity shock x l t = 

∑ 

i x 
l 
t,i 

and aggregate valuation 

hock x v t = 

∑ 

i x 
v 
t,i 

. This allows us to reduce the system’s full shock 

ransmission matrix to a 2 × 2 matrix that describes the dynamics 

f the aggregate shocks, 

x l t+1 

x v t+1 

]
= 

[
(1 − φl ) F λ(1 − φl )�

μ(1 − φv )(1 − F ) δλ(1 − φv )(1 − �) 

][
x l t 
x v t 

]
, 

(14) 

where μ is the price impact factor of the most liquid security (in 

hich all institutions have a position when N 

s /N → ∞ ), and we

ave set λi = λ for all leveraged institutions and δi = δ for pas- 

ively leveraged institutions. 

We compute the characteristic equation of the matrix in 

q. (14) and solve for its largest eigenvalue ν = 1 to find the mean- 

eld critical leverage , 

ˆ = 

1 − ( 1 − φl ) F 

μ�( 1 − φl ) ( 1 − F ) + δ( 1 − �) ( 1 − ( 1 − φl ) F ) 
(1 − φv ) 

−1 . 

(15) 

q. (15) demonstrates that financial stability is the result of a bal- 

nce between the destabilizing force of leverage and the stabilizing 

orce of sinks (note that the mean-field critical leverage (15) is an 

ncreasing function of both the liquidity sinks fraction φl and valu- 

tion sinks fraction φv ). We first discuss the accuracy of the mean- 

eld model before we use it to understand how ignoring interac- 

ions between contagion channels overestimates financial stability. 

Accuracy of the Mean-Field Model. The mean-field model was de- 

ived in the limit of a dense network with an infinite number of in- 

titutions. In Figure 4 , we compare the mean-field critical leverage 

redicted by Eq. (15) to that of randomly generated systems with 

arying sizes and densities and show that the mean-field critical 

everage is a good approximation not only for large, dense systems, 

ut also for fairly small, sparse systems. 

To choose plausible estimates of the system parameters we do 

 rough calibration to the European financial system. To estimate 

he parameters φv , �, F and φl , we calculate the fraction of finan- 

ial assets in the Eurosystem held by various sectors, as shown at 
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Fig. 4. Comparison of the mean field model to randomly generated financial systems. The plot compares the critical leverage (horizontal line) predicted by the mean field 

model, Eq. (15) , to the critical leverages of randomly generated financial systems. For various combinations of the number of loans N d , the number of securities-blocks N s and 

the number of institutions N , we generate 500 random systems and plot the median (using various markers to indicate the number of institutions) and the 15 th to 85 th per- 

centile interval (vertical bars) of the distribution of critical leverages. The simulated values converge to the predictions of the mean-field model as N d , N s , N increase. a Source: 

http://sdw.ecb.europa.eu/reports.do?node=10 0 0 0 05664 ; accessed November 3 rd 2018 b Source: http://sdw.ecb.europa.eu/reports.do?node=10 0 0 0 05659 ; accessed November 3 rd 

2018 c Source: http://sdw.ecb.europa.eu/reports.do?node=10 0 0 0 05718 ; accessed November 3 rd 2018 d Source: http://sdw.ecb.europa.eu/reports.do?node=10 0 0 0 03516 ; accessed 

November 3 rd 2018 e Source: http://sdw.ecb.europa.eu/reports.do?node=10 0 0 0 03621 ; accessed November 3 rd 2018 
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he top of Figure 4 . 18 We include N 

w = 10 distinct securities whose

arkets caps are calibrated to the ten largest stocks on the Eu- 
18 The aggregate sector assets are listed in Table (rounded to one decimal) and the 

arameter calculations are listed in Table (rounded to a multiple of 1 / 4 th or 1 / 5 th 

o the number of each type is an integer for any multiple of N = 10 ). We assume 

hat pension funds and insurance corporations are unleveraged, monetary financial 

nstitutions (which are mostly banks) are leverage targeting, and investment funds 

nd financial vehicle corporations are passively leveraged. Monetary financial insti- 

utions are assumed to be the only providers of short-term loans. Finally, we as- 

ume favorable market liquidity conditions such that all institutions but investment 

unds and financial vehicle corporations are liquidity sinks. Although these assump- 

ions imply correlations between institutions’ types, the are assigned independently 

rom one another. Note that these are rough parameter estimates. Accurate calibra- 

ion requires further (empirical) investigation. 

a
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a

r

N

t

s

s

i

9 
onext exchange. 19 The Eurosystem’s 119 most significant institu- 

ions as designated by the ECB have leverages ranging between 10 

nd 20 ( ECB, 2019 ). Given that the Eurosystem appears to be sta- 

le, we choose values of δ = μ = 0 . 1 , which gives a critical lever-

ge of ˆ λ = 35 . We also think these are reasonable values for other 

easons. 20 

We explore different combinations of the parameters N , N 

d and 

 

s , generating 500 realizations for each set of parameter values. In 
19 Source: https://www.statista.com/statistics/546298/euronext- market- capitaliza- 

ion- leading- companies/ ; accessed January 22 nd , 2019. 
20 The fact that a large fraction of the value of a loan can usually be recovered 

uggests that δ is substantially below one. Similarly, since institutions liquidate as- 

ets in order of liquidity, the price impact factor μs of any security at the top of 

nstitutions’ pecking orders is likely to be substantially less than one. 

http://sdw.ecb.europa.eu/reports.do?node=1000005664
http://sdw.ecb.europa.eu/reports.do?node=1000005659
http://sdw.ecb.europa.eu/reports.do?node=1000005718
http://sdw.ecb.europa.eu/reports.do?node=1000003516
http://sdw.ecb.europa.eu/reports.do?node=1000003621
https://www.statista.com/statistics/546298/euronext-market-capitalization-leading-companies/
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igure 4 we plot the median critical leverage as well as the 15 th 

o 85 th percentile intervals against the prediction of Eq. (15) . 21 

he figure shows that the mean-field model gives a good approx- 

mation for systems with at least N ≥ 30 institutions and at least 

 d ≥ 10 loans made by each institution. 

Although this is not a large effect, note that the smallest, spars- 

st systems in Figure 4 are the least stable. This is in contrast to

ardoscia et al. (2017) , who find the sparsest systems are most 

table. Our model approximately reduces to theirs in the limit 

here all institutions are passively leveraged ( � → 0 ). However, 

ardoscia et al. (2017) require the sparsest systems to be acyclic, 

hich is the most stable configuration, as the largest eigenvalue is 

ero by definition. We do not impose this requirement, which is 

hy we get the opposite result. 

Our model does not address important features of the financial 

ystem, such as hedging with derivatives or short positions. Fig- 

re in the appendix shows that introducing additional sources of 

eterogeneity increases the variation in critical leverage. Nonethe- 

ess, the mean field model does a good job of qualitatively cap- 

uring some of the key features of financial stability. We want to 

tress, however, that when fine-grained data is available, it is far 

referable to use the full model developed in section 2 , which uses 

eaker assumptions and contains fewer approximations. 

.3. The misclassification region 

We now demonstrate that stability is almost always overesti- 

ated, and sometimes dramatically so, when ignoring the interac- 

ions between contagion channels. For simplicity, because this is 

nly a qualitative demonstration, we set the price-impact and risk- 

djustment factors in the mean-field critical leverage (15) equal to 

heir upper bounds μ = δ = 1 . This simplifies Eq. (15) to 

ˆ = 

(
1 − (1 − φl ) F 

1 − (1 − φl ) F − φl �

)
(1 − φv ) 

−1 . (16) 

q. (16) is a product of two terms; the first captures the intensity 

f the feedback loop between solvency and liquidity, and the sec- 

nd captures the way in which valuation sinks counterbalance the 

estabilizing force of leverage. 

The stability of pure counterparty risk is determined by the 

ounterparty risk quadrant alone. We find the critical leverage of 

ure counterparty risk contagion in the mean-field model by solv- 

ng for the leverage for which the counterparty risk quadrant in 

q. (14) is equal to one, 

ˆ = 

1 

1 − �
(1 − φv ) 

−1 . (17) 

his is equivalent to setting φl or F in Eq. (16) equal to one (so

here is no feedback loop between solvency and liquidity). 

The counterparty risk critical leverage (17) may be shown to 

everely overestimate the true mean-field critical leverage when 

he interaction of other contagion channels is taken into account. 

o take a simple case, when φl = 0 , i.e. when there are no liquidity

inks, the true critical leverage equals 

ˆ = (1 − φv ) 
−1 . (18) 

n Figure 5 we plot the counterparty risk critical leverage (17) and 

he true critical leverage (18) . As the fraction of leveraged institu- 

ions increases, the discrepancy between the counterparty risk crit- 

cal leverage and true critical leverage becomes arbitrily large, and 

ence so does the overestimation of stability due to ignoring the 
21 Note that the percentile bars visualize the width of the observed distributions. 

hey are not error bars – these are negligible given the large number of samples 

nd are therefore not plotted. 

t

c

A

10 
nteractions between contagion channels. To show that this hap- 

ens for any value of φl < 1 , in Figure of the appendix we plot the

ritical leverage for various values of φl . For φl = . 75 , F = . 5 and

= . 75 , for example, we find that the counterparty risk critical 

everage overestimates the true critical leverage by 45%, but this 

oars to 300% when φl → 0 , as may be the case when liquidity

ries up during financial crises. 

Detering et al. (2021) also show in a scenario-independent set- 

ing (which also only depends on aggregate system parameters) 

hat stability is overestimated when ignoring the interaction be- 

ween contagion channels. However, they only include counter- 

arty default and overlapping portfolio contagion and do not cap- 

ure liquidity in their model. By capturing the solvency-liquidity 

exus (and all its contagion channels) in its entirety, we demon- 

trate that this overestimation is determined by the intensity of 

he feedback loop between solvency and liquidity. 22 The manifes- 

ation of this overestimation in all but unrealistic scenarios makes 

lear that taking account of interacting contagion channels, as our 

pproach outlined in Section 2 proposes, is critical when evaluat- 

ng financial stability. 

. Concluding remarks 

Financial instability is caused by the endogenous amplification 

f shocks. 23 We are the first to introduce a scenario-independent 

easure of the stability of the solvency-liquidity nexus that takes 

nto account the interactions of an arbitrary number of financial 

ontagion channels. By describing the interactions of liquidity and 

aluation shocks, our method captures the most important conta- 

ion mechanisms and their interactions in a duplex network con- 

isting of a liquidity and a valuation shock layer. The largest eigen- 

alue of the system provides a robust measure of the system’s 

tability that is complementary to the insights provided by ex- 

sting methods because it does not rely on subjectively imposed 

tress scenarios. Furthermore, the associated eigenvectors provide 

etailed insights that are valuable for important policy considera- 

ions, such as the identification of the most systemically important 

nstitutions. 

With appropriate microdata this method can be calibrated 

gainst real financial systems. To do this it is necessary to estimate 

hich institutions absorb liquidity shocks, to identify their lever- 

ge strategies and pecking orders, and measure the price-impact 

nd risk-adjustment factors μs and δi . While this is not a trivial 

ask, it is feasible with the right data. We hope that our model 

ill help provide an incentive for central banks to collect this data. 

he analysis presented here relies on the assumption that shocks 

re small enough that it is only necessary to consider the top level 

f the pecking order. However, as we have outlined, the method 

ay also be used to monitor the stability of a financial system as 

t evolves in response to larger shocks. This will be investigated in 

 follow-up paper. 

The framework presented here has the advantage over black- 

ox simulations, such as Kok and Montagna (2016) ; Cont and 

chaanning (2017) or Farmer et al. (2020) , that it provides insight 

nto the mechanisms that cause contagion. In fact, it can be used in 

onjunction with such simulations to provide a deeper understand- 

ng of their results. Furthermore, our analysis here complements 

symptotic graph techniques (see e.g. Gai and Kapadia (2010) ; 

mini et al. (2016) ; Detering et al. (2021) ), which study the final

tate to which the system converges in response to a shock. An 
22 Comparison of equations 17 and 18 shows that the overestimation is caused by 

he first term on the right hand side of Eq. 16 , as the second term appears identi- 

ally in all three equations. 
23 See e.g. Danielsson and Shin (2003) ; BIS (2009) ; Krishnamurthy (2010) ; 

cemoglu et al. (2012) ; Anderson et al. (2018) . 
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Fig. 5. Overestimation of financial stability by omitting the interaction of channels of contagion. The solid line plots the critical leverage of the mean-field model for 

the fraction of liquidity sinks φl = 0 , and the dashed curve plots the counterparty risk critical leverage as a function of the fraction of leverage targeting institutions �. 

The leverages are expressed in units of (1 − φv ) −1 to reduce the number of free parameters. The region between the true critical leverage and the counterparty risk critical 

leverage is the misclassification region and consists of destabilizing leverages that seem stable when considering only pure counterparty risk contagion. 

i

t

c

e

n

i

i

a

o

t

i

t

t

t

n

f

t

t

d

b

m

d

s

d

t

s

e

t

t

t

t

b

d

s

B

u

s

f

i

A

r

t

o

D

A

a

l

f

n

b

R

o

a

R

S

mportant advantage of the instantaneous stability quantified by 

he shock transmission matrix is that it does not suffer from the 

ompounding inaccuracies that any iterative model is inevitably 

xposed to. 

We derive an analytic stability criterion in the limit of a large 

umber of institutions which demonstrates that financial stabil- 

ty results from the balance between stabilizing and destabiliz- 

ng forces. Although the stability criterion is simple, with only 

 few parameters, it is powerful enough to derive a wide range 

f insights about the stability of financial systems. It shows that 

he shock-amplifying forces of the levels of leverage common 

n real financial systems must be offset by damping to main- 

ain stability. Understanding the conditions under which institu- 

ions absorb financial shocks is crucial to policymakers. Despite 

his, the absorption of shocks by sinks and the damping of fi- 

ancial shocks have received little attention in the literature so 

ar. The only previous work that we are aware of that stresses 

his point is Aymanns et al. (2016) , who study the balance be- 

ween shock-amplification due to deleveraging banks and shock- 

amping by fundamental value investors. We study the interaction 

etween shock-amplifying and shock-dampening forces in a much 

ore general network setting. The stability criterion that we derive 

emonstrates the fundamental importance of the balance between 

tabilizing and destabilizing forces, highlighting that this interplay 

eserves further investigation. 

Building on the work of others who have observed that interac- 

ions between contagion channels amplify instabilities in particular 

ettings ( Caccioli et al., 2013; Kok and Montagna, 2016; Poledna 

t al., 2015; Detering et al., 2021 ), the analytic stability criterion 

hat we develop here elucidates the mechanism responsible for 

his amplification in general. We show that a feedback loop be- 

ween liquidity and valuation shocks always exists and that when 

he interactions between contagion channels are ignored, this feed- 

ack loop is overlooked and stability is overestimated, sometimes 

ramatically so. Because most studies focus on a single type of 
f

11 
hocks (see e.g. Eisenberg and Noe (2001) ; Caccioli et al. (2014) ; 

ardoscia et al. (2017) ), financial instabilities may be structurally 

nderestimated. Hence, comprehensive measures of the financial 

tability implications of interacting contagion channels like the 

ramework developed here are highly complementary to other ex- 

sting methods. 
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