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A B S T R A C T

Conditional heteroskedasticity of the error terms is a common occurrence in financial factor
models, such as the CAPM and Fama–French factor models. This feature necessitates the use
of heteroskedasticity consistent (HC) standard errors to make valid inference for regression
coefficients. In this paper, we show that using weighted least squares (WLS) or adaptive least
squares (ALS) to estimate model parameters generally leads to smaller HC standard errors
compared to ordinary least squares (OLS), which translates into improved inference in the form
of shorter confidence intervals and more powerful hypothesis tests. In an extensive empirical
analysis based on historical stock returns and commonly used factors, we find that conditional
heteroskedasticity is pronounced and that WLS and ALS can dramatically shorten confidence
intervals compared to OLS, especially during times of financial turmoil.

. Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) is a cornerstone of finance and marks the birth
f asset pricing theory. It is part of just about any finance curriculum in academia and is also widely used in the industry; for an
n-depth review, see Fama and French (2004). The model states that the expected excess return of a stock is proportional to the
xpected excess return of the market:

E(𝑅 − 𝑟𝑓 ) = 𝛽E(𝑅𝑚 − 𝑟𝑓 ) ,

here 𝑅 denotes the return of the stock, 𝑟𝑓 denotes the risk-free rate, and 𝑅𝑚 denotes the return of the market. The coefficient 𝛽
s known as the ‘‘beta’’ of the stock and measures its riskiness with respect to the market: the larger is 𝛽, the riskier is the stock
ompared to the market and the larger is also the expected (excess) return of the stock.

In practice, the beta of a stock is unknown and needs to be estimated from historical data. To this end it is common to consider
regression model of the following kind:

𝑟𝑡 = 𝛼 + 𝛽𝑟𝑚,𝑡 + 𝜀𝑡 , (1.1)

ith E(𝜀𝑡|𝑟𝑚,𝑡) = 0. Here, 𝑡 ∈ {1,… , 𝑛} indexes dates,

• 𝑟𝑓,𝑡 denotes the return of the risk-free asset at date 𝑡,
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• 𝑟𝑡 ..= 𝑅𝑡 − 𝑟𝑓,𝑡 denotes the excess return of the stock at date 𝑡,
• 𝑟𝑚,𝑡 ..= 𝑅𝑚,𝑡 − 𝑟𝑓,𝑡 denotes the excess return of the market at date 𝑡, and

• 𝜀𝑡 denotes a mean-zero error term.

Even though the CAPM postulates that 𝛼 = 0 in regression (1.1), it still is customary to include an intercept in practice when
stimating the model. One of the reasons is that one might be interested in testing a violation of the CAPM, that is, in testing the
ypothesis 𝐻0 ∶ 𝛼 = 0 against the alternative 𝐻1 ∶ 𝛼 ≠ 0. Another reason is that the usual interpretation of the 𝑅2 statistic of an

OLS regression (as the percentage of the variation in the regressand explained by the estimated model) is not valid if the regression
does not contain an intercept.

More generally, the Arbitrage Pricing Theory (APT) of Ross (1976) states that the expected excess return of a stock can be
modeled as a linear function of several factors or theoretical market indices. Thereby, the sensitivity to changes in each factor is
represented by a factor-specific beta coefficient. In slight abuse of notation, a general (multi-)factor model can be written as

𝑟𝑡 = 𝛽′𝑥𝑡 + 𝜀𝑡 , (1.2)

here

• 𝑥𝑘,𝑡 denotes the return of factor 𝑘 at date 𝑡, stacked into 𝑥𝑡 ..= (𝑥1,𝑡,… , 𝑥𝐾,𝑡)′,
• 𝑥1,𝑡 ≡ 1 in case an intercept is included,
• 𝛽𝑘 denotes the beta of factor 𝑘, stacked into 𝛽 ..= (𝛽1,… , 𝛽𝐾 )′, and
• 𝜀𝑡 denotes a mean-zero error term.

Clearly, model (1.2) nests model (1.1) with the choices 𝑥𝑡 ..= (1, 𝑟𝑚,𝑡)′ and 𝛽 ..= (𝛼, 𝛽)′. For reasons that will become apparent
elow, it is more convenient for our purposes to include a (potential) intercept in 𝑥𝑡, in which case its coefficient is 𝛽1, as opposed
o ‘listing’ it separately, with coefficient 𝛼; of course, in such a case one would not think of the intercept as an actual factor. For the
ame reasons, it is more convenient to denote the vector of factors by 𝑥𝑡 rather than by 𝑓𝑡, with the latter convention being more
tandard in the literature.

The search for factors that explain the cross-section of expected stock returns has produced hundreds of potential candidates.
oth Green et al. (2013) and Harvey et al. (2016) find more than 300 articles and factors in this strand of literature. Additionally,
ochrane (2011) and more recently (McLean & Pontiff, 2016) state that we have a ‘‘zoo’’ of (new) factors. Note that Hou et al. (2017)
ven replicate the entire anomalies literature in finance and accounting by compiling a largest-to-date data library that contains
47 anomaly variables.

Arguably, the classic multi-factor model is the three-factor model of Fama and French (1993):

𝑥𝑡 ..= (1, 𝑟𝑚,𝑡, SMB𝑡,HML𝑡)′ , (1.3)

here SMB denotes the size factor and HML the value factor. The Fama–French three-factor model was extended to a four-factor
odel by Carhart (1997):

𝑥𝑡 ..= (1, 𝑟𝑚,𝑡, SMB𝑡,HML𝑡,UMD𝑡)′ , (1.4)

here UMD denotes the momentum (winners minus losers) factor, and recently to a five-factor model by Fama and French (2015):

𝑥𝑡 ..= (1, 𝑟𝑚,𝑡, SMB𝑡,HML𝑡,RMW𝑡,CMA𝑡)′ , (1.5)

here RMW denotes the profitability factor, and CMA the investment factor. There are of course many other (multi-) factor models,
ut to make our point clear, and as it is not obvious from the literature which and how many factors should be considered, we will
ocus on the most common ones listed above.

The parameter vector 𝛽 in a factor model is typically estimated via ordinary least squares (OLS). To this end, it is standard to use
aily data with the most common samples sizes being 252 ≤ 𝑛 ≤ 1260, that is, one to five years of past data; for example, see Frazzini
nd Pedersen (2014) or De Nard et al. (2021). Alternatively, Bloomberg uses two years of weekly data for their beta estimates and
ome even use monthly data with the most common samples sizes being 𝑛 = 60 or 𝑛 = 120, that is, five or ten years of past data;

for example, see Damodaran (2012, Chapter 8) and Stock and Watson (2019, Section 4.2).
Some researchers still assume that stock and factor returns are independent and identically distributed (i.i.d.) through time;

for example, see Campbell et al. (2012, Section 4.3). It is more general, and more realistic, however, to assume that stock and
factor returns are (strictly) stationary through time. Even this weaker assumption implies that the error terms are unconditionally
homoskedastic, that is, E(𝜀2𝑡 ) is a constant number and does not depend on 𝑡. A common occurrence, which tends to be ignored by
many applied researchers, is the one of conditional heteroskedasticity of the error terms. In our general formulation (1.2), which will
be the basis of our analysis from here on (unless otherwise stated), this means that E(𝜀2𝑡 |𝑥𝑡) in general is not a constant number but

function of 𝑥 .
365

𝑡
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2. Dealing with conditional heteroskedasticity

2.1. Methodology

Conditional heteroskedasticity does not present a problem for the estimation of model (1.2) via OLS in the sense that the OLS
stimator of 𝛽 is still consistent under weak regularity conditions; having said this, the OLS estimator is no longer efficient in the

sense of having the smallest asymptotic covariance matrix.
On the other hand, conditional heteroskedasticity does present a problem for inference in model (1.2) in the sense that the usual

tandard errors of the OLS estimators of linear combinations of 𝛽 (such as specific elements of 𝛽) are no longer valid, since these
standard errors are based on an assumption of conditional homoskedasticity. Here, by the ‘‘usual’’ standard errors we mean the
default textbook standard errors; for example, see Hayashi (2000, Section 2.6).

The common way to deal with this problem is to combine OLS estimation with heteroskedasticity consistent (HC) standard errors,
which guarantees asymptotically valid inference under conditional heteroskedasticity of unknown form. Such HC standard errors
go back to the seminal paper of White (1980) but, importantly, there have been subsequent alternative proposals to deliver better
finite-sample performance; for example, see Romano and Wolf (2017, Section 4) who describe in detail five versions of HC standard
errors (HC0–HC4) and recommend HC3 standard errors for practical use.

As an alternative to OLS, Romano and Wolf (2017) suggest to use weighted least squares (WLS) or adaptive least squares (ALS).
These methods are based on the concept of a skedastic function that maps the factor (vector) 𝑥𝑡 into the corresponding conditional
variance of the error term:

𝑣(𝑥𝑡) ..= E(𝜀2𝑡 |𝑥𝑡) .

This function is unknown in practice but can be estimated from the observed data, resulting in an estimator �̂�(⋅); see below for a
specific proposal.

The WLS method weights the data by division by
√

�̂�(𝑥𝑡) before applying OLS. That is, one considers the ‘transformed’ regression
odel

𝑟𝑡
√

�̂�(𝑥𝑡)
= 𝛽′

𝑥𝑡
√

�̂�(𝑥𝑡)
+ 𝜀∗𝑡 with 𝜀∗𝑡

..=
𝜀𝑡

√

�̂�(𝑥𝑡)
. (2.1)

The parameter vector 𝛽 is identical in model (2.1) compared to the original model (1.2), otherwise the exercise of transforming the
model would be pointless. Importantly, one also needs to use HC standard errors for the inference in model (2.1) to allow for the
possibility that �̂�(⋅) may not be a consistent estimator of the true skedastic function, as explained in detail by Romano and Wolf
(2017).

The ALS method ‘decides’ between the OLS method and the WLS method based on a pre-test for conditional homoskedasticity.
Only if this test rejects the null, that is, if this tests detects a significant amount of conditional heteroskedasticity in the data, does
one use WLS; otherwise one uses OLS. Of course, either way, one must use corresponding HC standard errors for the inference.

In Monte Carlo studies, Romano and Wolf (2017) demonstrate two advantages of WLS and ALS over OLS in the presence of
conditional heteroskedasticity. First, the point estimators tend to have smaller mean squared error (MSE); second, the HC3 standard
errors for the point estimators tend to be smaller, resulting in shorter confidence intervals and more powerful hypothesis tests.
Further empirical evidence is provided in Sterchi and Wolf (2017).

2.2. Parametric specification of the skedastic function

We use the following parametric specification for the skedastic function:

𝑣𝜃(𝑥𝑡) ..= exp(𝜈 + 𝛾2|𝑥2,𝑡| +⋯ + 𝛾𝐾 |𝑥𝐾,𝑡|) with 𝜃 ..= (𝜈, 𝛾2,… , 𝛾𝐾 )′ . (2.2)

This specification tacitly assumes that an intercept is included in the factor model, that is, 𝑥1,𝑡 ≡ 1; otherwise the specification should
be

𝑣𝜃(𝑥𝑡) ..= exp(𝜈 + 𝛾1|𝑥1,𝑡| +⋯ + 𝛾𝐾 |𝑥𝐾,𝑡|) with 𝜃 ..= (𝜈, 𝛾1,… , 𝛾𝐾 )′ . (2.3)

Specification (2.2) without the absolute values around the 𝑥𝑘,𝑡 is proposed by Wooldridge (2012, Chapter 8). Since in our case
the 𝑥𝑘,𝑡 can take on both negative and positive values, and it is reasonable to assume that conditional heteroskedasticity depends
on the magnitude only, using absolute values makes more sense.

Another specification proposed by Romano and Wolf (2017) is

𝑣𝜃(𝑥𝑡) = exp(𝜈 + 𝛾2 log |𝑥2,𝑡| +⋯ + log 𝛾𝐾 |𝑥𝐾,𝑡|) .

But this specification is problematic when not all of the |𝑥𝑘,𝑡| are bounded away from zero, which is clearly the case in our context.
In order to estimate the parameter vector 𝜃 in (2.2), we first estimate model (1.2) via OLS and denote the corresponding residuals

by �̂�𝑡. Then, in principle, we would estimate the following regression by OLS:

log
[

max(𝛿2, �̂�2𝑡 )
]

= 𝜈 + 𝛾2|𝑥2,𝑡| +⋯ + 𝛾𝐾 |𝑥𝐾,𝑡| + 𝑢𝑡
̂ .. ′
366

and denote the resulting estimator by 𝜃 = (�̂�, �̂�2,… , �̂�𝐾 ) .
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The introduction of the lower bound 𝛿2 on the left-hand side in this regression is necessary in order to avoid taking the log of
alues very close (or even equal) to zero. Romano and Wolf (2017) recommend the generic choice 𝛿 = 0.1 but we find that, for many
ata sets, truncation at 𝛿2 = 0.01 takes place in a large fraction of the observations, which is not conducive to an accurate estimation
f 𝜃. If necessary, we therefore ‘blow up’ all the variables in the regression by a factor of ten until the fraction of truncations is at
ost 5%. More specifically, the parameter vector 𝜃 is estimated by the OLS regression

log
[

max(𝛿2, 10𝑞 �̂�2𝑡 )
]

= 𝜈10𝑞 + 𝛾2|10𝑞𝑥2,𝑡| +⋯ + 𝛾𝐾 |10𝑞𝑥𝐾,𝑡| + 𝑢𝑡 , (2.4)

where 𝑞 ∈ {0, 1, 2,…} is the smallest non-negative integer such that the fraction of truncations on the left-hand side is at most
5% with the lower bound 𝛿2 = 0.01. With the resulting �̂� ..= (�̂�, �̂�2,… , �̂�𝐾 )′ in hand, the estimator of the skedastic function used in
regression (2.1) is then given by �̂�(⋅) ..= 𝑣�̂�(⋅).

Regression (2.4) also determines the ‘decision’ underlying for the ALS estimator and the corresponding inference: If the (joint)
null hypothesis 𝐻0 ∶ 𝛾2 = ⋯ = 𝛾𝐾 = 0 is rejected in this regression at significance level 0.1, then ALS coincides with WLS; otherwise,
it coincides with OLS.

Remark 2.1. Free programming code in the R language that implements this methodology can be downloaded at www.econ.uzh.
ch/en/people/faculty/wolf/publications.html.

3. Theoretical analysis

Romano and Wolf (2017) assume i.i.d. data to prove (asymptotic) validity of inference based on WLS or ALS. But making such
an assumption is unrealistic in the context of financial returns, for example because of the well-known phenomenon of volatility
clustering, at least at shorter horizons such as at the daily or at the weekly horizon. For this reason we need to extend the methodology
of Romano and Wolf (2017) by proving its validity under a more general set set of assumptions that is realistic for financial returns
(at least when the assets are stocks and commonly used factors).

We maintain the following set of assumptions throughout the paper:

(A1) The linear model is of the form

𝑟𝑡 = 𝑥′𝑡𝛽 + 𝜀𝑡 (𝑡 = 1,… , 𝑛) , (3.1)

where 𝑥𝑡 ∈ R𝐾 is a vector of explanatory variables (regressors) possibly including a constant, 𝛽 ∈ R𝐾 is a coefficient vector,
and 𝜀𝑡 is the unobservable error term with certain properties to be specified below.

(A2) The sample
{

(𝑟𝑡, 𝑥′𝑡)
}𝑛
𝑡=1 is strictly stationary and ergodic.

(A3) The error terms satisfy

E(𝜀𝑡|𝑥𝑡,… , 𝑥1, 𝜀𝑡−1,… , 𝜀1) = 0 ∀𝑡 . (3.2)

(A4) The 𝐾 ×𝐾 matrix 𝛴𝑥𝑥
..= E(𝑥𝑡𝑥′𝑡) is nonsingular (and hence finite). Furthermore, ∑𝑛

𝑡=1 𝑥𝑡𝑥
′
𝑡 is invertible with probability one.

(A5) The 𝐾 ×𝐾 matrix 𝛺 ..= E(𝜀2𝑡 𝑥𝑡𝑥
′
𝑡) is nonsingular (and hence finite).

(A6) There exists a nonrandom function 𝑣 ∶ R𝐾 → R+ such that

E(𝜀2𝑡 |𝑥𝑡) = 𝑣(𝑥𝑡) . (3.3)

Therefore, the skedastic function 𝑣(⋅) determines the functional form of the conditional heteroskedasticity. Note that under (A6),

𝛺 = E
[

𝑣(𝑥𝑡) ⋅ 𝑥𝑡𝑥′𝑡
]

.

The two generalizations compared to Romano and Wolf (2017) are Assumptions (A2)–(A3), the remaining assumptions being
identical. This new set of assumptions allows for time-series dynamics that are realistic, or at least plausible, for many financial
returns; in particular, time-varying conditional (co)-volatilities can be incorporated, such as (multivariate) GARCH dynamics.

It is useful to introduce the customary vector-matrix notations

𝑟 ..=
⎡

⎢

⎢

⎣

𝑟1
⋮
𝑟𝑛

⎤

⎥

⎥

⎦

, 𝜀 ..=
⎡

⎢

⎢

⎣

𝜀1
⋮
𝜀𝑛

⎤

⎥

⎥

⎦

, 𝑋 ..=
⎡

⎢

⎢

⎣

𝑥′1
⋮
𝑥′𝑛

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑥11 … 𝑥1𝐾
⋮ … ⋮
𝑥𝑛1 … 𝑥𝑛𝐾

⎤

⎥

⎥

⎦

,

so that Eq. (3.1) can be written more compactly as

𝑟 = 𝑋𝛽 + 𝜀 . (3.4)

Furthermore, Assumptions (A2), (A3), and (A5) imply that

Var(𝜀|𝑋) =
⎡

⎢

⎢

𝑣(𝑥1)
⋱

⎤

⎥

⎥

.

367

⎣ 𝑣(𝑥𝑛) ⎦
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We now can state the following theorem.

heorem 3.1. With the above re-definitions of Assumptions (A.2)–(A.3), the following results of Romano and Wolf (2017) continue to
old:

• Lemma 3.1
• Corollary 3.1
• Theorem 3.1
• Theorem 4.1
• An analog of Verification B.2 of assumptions for the parametric specification 𝑣𝜃(⋅) of (2.2)

Wherever necessary, the role of 𝑦𝑖 in these results is now taken over by 𝑟𝑡, which is just a different notation for the response
ariable in the regression model (3.1). Also, to point out the obvious, observations are now indexed by 𝑡 instead of by 𝑖 as in Romano
nd Wolf (2017). The proof of the theorem is deferred to Appendix.

For the detailed statements of the five results listed in Theorem 3.1 the reader is referred to Romano and Wolf (2017). But to
ake this paper (more) self-contained in terms of grasping the essentials for practical applications, we now briefly describe the

mport and the implications of the various results.
Given two real-valued functions 𝑎(⋅) and 𝑏(⋅) defined on R𝐾 (the space where 𝑥𝑖 lives), define 𝛺𝑎∕𝑏 to be the matrix given by

𝛺𝑎∕𝑏
..= E

[

𝑎(𝑥𝑖)
𝑏(𝑥𝑖)

⋅ 𝑥𝑖𝑥
′
𝑖

]

,

assuming the expectation exists, of course. By the final (that is, fifth) result listed in Theorem 3.1, �̂� converges in probability to a
limiting non-stochastic value 𝜃0 for the parametric specification 𝑣𝜃(⋅) of (2.2); recall here that �̂� is the OLS estimator of 𝜃 based on
the linear model (2.4). For compactness of notation let 𝑤 ..= 𝑣𝜃0 , and recall that 𝑣 denotes the true skedastic function.

Under the stated assumptions (A.1)–(A.6) and some further moment assumptions, it then follows from the first three results listed
in Theorem 3.1 that the WLS estimator is asymptotically normal:

√

𝑛(𝛽WLS − 𝛽)
𝑑

⟶ 𝑁
(

0,Avar(𝛽WLS)
)

with Avar(𝛽WLS) ..= 𝛺−1
1∕𝑤𝛺𝑣∕𝑤2𝛺−1

1∕𝑤 ,

where
𝑑

⟶ denotes convergence in distribution. Of course, this result implies that the WLS estimator is consistent, that is,

𝛽WLS
𝑝

⟶ 𝛽 ,

where
𝑝

⟶ denotes convergence in probability.
Furthermore, under some moment conditions, it follows from the fourth result listed in Theorem 3.1 that the asymptotic

covariance matrix Avar(𝛽WLS) can be estimated consistently by applying standard HC technology to the weighted data specified
in (2.1); for example, see Long and Ervin (2000). Inference on 𝛽 can therefore be based on 𝛽WLS in conjunction with a consistent
HC estimator Âvar(𝛽WLS) of Avar(𝛽WLS) by applying the usual ‘textbook formulas’ for the 𝑡-test, for the 𝐹 -test, and for confidence
intervals. The fourth result listed in Theorem 3.1, together with the discussion just below it, implies that such inference is
asymptotically valid; for example, a correct null hypothesis will be rejected with a probability that is bounded above by the nominal
significance level in the limit1; and a confidence interval will contain the true parameter with a probability that converges to the
nominal coverage level in the limit.

Analogously, consistency of the ALS estimator 𝛽ALS and asymptotic validity of the inference on 𝛽 based on 𝛽ALS is established
as well.

4. Empirical analysis

4.1. Data and model construction

We download daily stock return data from the Center for Research in Security Prices starting on January 1, 1964, and ending
on December 31, 2019. We restrict attention to stocks from the NYSE, AMEX, and NASDAQ stock exchanges. We also download the
daily risk-free rate and the returns on the five factors of Fama and French (2015) and the momentum (winners minus losers) factor
of Carhart (1997) during the same period from the website of Ken French.

We restrict our attention to a one-factor and three multi-factor models: the CAPM, which uses 𝑥𝑡 ..= (1, 𝑟𝑚,𝑡)′; the three- and five-
factor model of Fama and French (1993, 2015), which uses 𝑥𝑡 as defined in (1.3), respectively in (1.5); and the four-factor model
of Carhart (1997) which uses 𝑥𝑡 as defined in (1.4).2 The models are re-estimated once a year on December 31, starting in 1968
and ending in 2019. Doing so results in a total of 52 yearly estimates, indexed by ℎ = 1,… , 52. For any ℎ, the models are estimated

1 When the parameter under test is univariate and the test is one-sided, the limiting rejection probability typically is below the nominal significance level,
nless the parameter is on the boundary of the null space.

2 To save space and avoid repetitiveness, we sometimes only show results for the largest factor model, hence the five-factor model of Fama and French
368

2015), as the results for the other two factor models are very similar.
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Fig. 1. The panel on the top plots the yearly time series of the (size of the) investment universe, and its decomposition into large-, small-, and micro-cap
tocks. The panel in the middle plots the percentages of rejecting the null of conditional homoskedasticity in the CAPM for the entire investment universe and
ts decomposition. The panel on the bottom plots the percentages of rejecting the null of conditional homoskedasticity in the Fama–French five-factor model for
he entire investment universe and for its decomposition.

ased on the most recent 𝑛 = 1260 daily returns, which roughly corresponds to using five years of past data; therefore, we are
using a rolling-window rather than an expanding-window approach, which is standard in the literature. For any ℎ, the investment
universe is comprised of the set of stocks that have a complete return history over the corresponding past 1260 days. The top
panel of Fig. 1 displays the resulting size of the investment universe over time (𝑁ℎ), together with its decomposition into large-,
small-, and micro-cap stocks.3 The middle panel of the figure displays the percentage of stocks for which significant conditional
eteroskedasticity is detected in the CAPM, for the entire universe and also for the three sub-universes; the bottom panel does
he same for the Fama–French five-factor model. The resulting message is loud and clear: There is ample evidence for conditional
eteroskedasticity; indeed, the percentages are generally well above 0.5 and can even get very close to 1, such as in the years after
he financial crisis of 2008.

3 In principle, we could allow for small percentage of missing returns during the estimation period, to be replaced by zeros, which would result in even
369

arger investment universe. But even with our ‘strict’ rule the investment universes are large, as the figure shows.
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Fig. 2. CAPM boxplots for the two ratios defined in (4.1) over 52 years for the parameter of interest 𝛼 ..= 𝛽1. For any year, we plot first the WLS/OLS boxplots
in blue, followed by the ALS/OLS boxplots in green. In each box, the bar indicates the median ratio whereas the diamond-shaped symbol indicates the average
ratio. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.2. Performance measure

Since WLS is based on an OLS regression after weighting the data, the point estimates for 𝛽 differ between WLS and OLS. In their
Monte Carlo study, Romano and Wolf (2017) show that WLS and ALS estimators for specific entries of 𝛽 typically have smaller mean
squared error (MSE) than the OLS estimator; further numerical evidence is provided by Sterchi and Wolf (2017). Unfortunately, in
an application to real data, the MSE values cannot be compared, since the true parameters are unknown.

Therefore, we restrict the comparison to the resulting standard errors when inference for univariate parameters is carried out. In
the following, we restrict attention to an arbitrary element 𝛽𝑘 of 𝛽; more generally, inference for (non)linear combinations of 𝛽 could
be considered as well. Note that the ratio of any two standard errors is equal to the ratio of the lengths of the two corresponding
confidence intervals, as the confidence intervals that we consider are the usual ‘textbook’ ones. Specifically, a generic nominal 1−𝜆
confidence interval for 𝛽𝑘 is given by

𝛽𝑘,∗LS ± 𝑡𝑛−𝐾,1− 𝜆
2
× SEHC(𝛽𝑘,∗LS) ,

where ∗LS ∈ {OLS, WLS, ALS}, 𝑡𝑛−𝐾,𝜆 denotes the 𝜆 quantile of the 𝑡𝑛−𝐾 distribution, and SEHC denotes a HC3 standard error.
Consequently, the length of a confidence interval is proportional to the underlying standard error irrespective of the nominal level
1 − 𝜆.

For any year we compute the two ratios

SEHC(𝛽𝑘, WLS)

SEHC(𝛽𝑘, OLS)
and

SEHC(𝛽𝑘, ALS)

SEHC(𝛽k, OLS)
, (4.1)

and then use boxplots to visually ‘summarize’ their distribution over the 52 years.4 A ratio larger (smaller) than one implies that
he HC3 standard error for WLS, respectively ALS, is larger (smaller) than the corresponding standard error for OLS. For both WLS
nd ALS, we report the percentage of ratios that are smaller than one, and thus the percentage of cases where WLS, respectively
LS, leads to improved inference compared to OLS.

emark 4.1. Comparing the (average) lengths of confidence intervals computed from two different inference methods could, in
rinciple, be misleading, namely if one inference method is valid, in the sense of producing confidence intervals whose true coverage

4 Note that each boxplot is based on the time-varying investment universe depicted in Fig. 1.
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Fig. 3. CAPM boxplots for the two ratios defined in (4.1) over 52 years for the parameter of interest 𝛽 ..= 𝛽2. For any year, we plot first the WLS/OLS boxplots
in blue, followed by the ALS/OLS boxplots in green. In each box, the bar indicates the median ratio whereas the diamond-shaped symbol indicates the average
ratio. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

probability is equal to (or larger) than the nominal confidence level, whereas the other one is not. But this is not a concern here,
since we are estimating linear regression models with either 𝐾 = 2, 𝐾 = 4, 𝐾 = 5 or 𝐾 = 6 regressors based on samples of size
of 𝑛 = 1260, in which case finite-sample validity is, for all practical purposes, guaranteed for inference based on OLS, WLS, and
ALS. ■

We also report the results on the pretest for conditional homoskedasticity, namely the percentage of times the null hypothesis was
rejected. These results shed light on whether (statistically significant) conditional heteroskedasticity is indeed a common occurrence
in financial factor-model regressions.

4.3. Results: CAPM

First, we focus on 𝛼 ..= 𝛽1 and look at the entire investment universe. Fig. 2 shows that for both methods, WLS and ALS, the
median ratio (4.1) is always (weakly) below one. Furthermore, in most of the 52 years roughly 75% of the ratios (or more) lie weakly
below one. Additionally, we find that for 49 out of the 52 years, the mean ratio lies below one. This is a remarkable finding because,
by construction, (potential) small outliers of the ratios are bounded below by zero, but (potential) large outliers are unbounded,
so that outliers should move the mean in the direction ‘‘above one’’. The bottom line is that using WLS or ALS generally results in
shorter confidence intervals for 𝛼 compared to using OLS. This is particularly the case during times of financial turmoil (e.g., Black
Monday in 1987 or the financial crisis in 2008); intuitively, this finding can be explained by the fact that after a stock market crash
or during a financial crisis, volatility clustering is a (more) pronounced phenomenon, especially at the daily return frequency as
considered here.

Second, we focus on 𝛽 ..= 𝛽2 and look again at the entire investment universe. The results are similar to the ones for 𝛼. Fig. 3
shows that (i) for both methods, WLS and ALS, the median ratio (4.1) is also always (weakly) below one; (ii) in most of the 52 years
at least 75% of the ratios lie (weakly) below one; and (iii) even most of the mean ratios lie (weakly) below one. It is worth to
mention that for most of the periods the results for ALS are a bit more ‘condensed’ compared to those for WLS. In particular in the
80s and 90s, the 75th percentile of ALS avoids ratios in excess of one. Therefore, using WLS and especially ALS generally results in
shorter confidence intervals for 𝛽 compared to using OLS. As already discussed above, the benefit of WLS and ALS increases during
imes of financial turmoil due to the higher degree of conditional heteroskedasticity then.

As a robustness check, motivated by Fama and French (2008), we now repeat the analysis by breaking up the entire investment
niverse into large-, small-, and micro-cap stocks. For a particular year, a stock is classified as ‘large’ if it has a market cap above
he 50th NYSE percentile; as ‘small’ if it has a market cap between the 20th and 50th NYSE percentile; and as ‘micro’ if it has a
arket cap below the 20th NYSE percentile. The resulting ‘sub-universe sizes’ are displayed in the top panel of Fig. 1. We point out
371
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Fig. 4. Similar to Fig. 2 except that we now restrict attention to large-cap stocks.

hat although micro-cap stocks generally have the largest sub-universe size (on average as large as the other two sizes together),
hey only make up a minor fraction of the total market capitalization (on average about 3%).

Figs. 4 and 5 are the equivalents of Figs. 2 and 3 when attention is restricted to large-cap stocks. One can see that, in a given
ear, the ratios now show less dispersion: In general the length of the boxes is reduced and the number of outliers as well. The
enefit of using WLS/ALS during times of financial turmoil is even more pronounced now; for example, the mean ratios for both
LS and ALS are down to about 0.5 in the years after Black Monday 1987 when the parameter of interest is 𝛽. We also report the

ombined results for small- and micro-caps in Fig. 6, where for readability we restrict attention to the ratios for ALS. The benefits
ompared to OLS are still there, if less pronounced compared to large-cap stocks.

The graph in the middle panel of Fig. 1 sheds some light on the amount of conditional heteroskedasticity present in the CAPM:
n average, over the years, the null of conditional homoskedasticity gets rejected roughly 74% of the time.

Finally, is there any preference between WLS and ALS? To address this question, Fig. 7 presents, over the 52 years, the percentage
f the standard-error ratios, WLS/OLS and ALS/OLS, that are below one; this done for the entire universe and also for the three
ub-universes. According to this metric, ALS uniformly dominates OLS, whereas WLS does not. Therefore, our recommendation in
he end is to use ALS.

.4. Results: Multi-factor models

In this section we analyze the effect of conditional heteroskedasticity in multi-factor models. More specifically, we extend the
APM with the small minus big (SMB) size factor, the high minus low (HML) value factor, the robust minus weak (RMW) profitability

actor, the conservative minus aggressive (CMA) investment factor, and the winners minus loser (UMD) momentum factor. Of course
any other factors could be included in the model; however, we restrict our attention to the arguably most common multi-factor
odels of Fama and French (1993, 2015) and Carhart (1997). In general, we find that also for the multi-factor models conditional
eteroskedasticity of the error terms is a common occurrence and that WLS, respectively ALS, tend to reduce HC3 standard errors
ompared to OLS.

The graph in the bottom panel of Fig. 1 sheds some light on the amount of conditional heteroskedasticity present in the five-factor
odel: On average, over the years, the null of conditional homoskedasticity gets rejected roughly 75% of the time.

As for the CAPM, we find that usually the null gets rejected more frequently during periods of financial turmoil, as volatility
lustering is then more pronounced, and that the percentage of rejecting the null is robust across the investment universes. In terms
f the investment universe, we find again that WLS and ALS work across all NYSE breakpoints categories. Thus, for sake of simplicity
e report only the results for large-cap stocks.
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Fig. 5. Similar to Fig. 3 except that we now restrict attention to large-cap stocks.

Fig. 6. Similar to Figs. 2 and 3 except that we now restriction attention to small-cap stocks (column on the left) respectively micro-cap stocks (column on the
ight). To improve readability, the figure only presents boxplots for the ALS/OLS ratios; in unreported results we find similar patterns for the WLS/OLS ratios.
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Fig. 7. Percentages of standard-error ratios (4.1) that lie below one for the CAPM. The results are based alternatively on the entire investment universe and on
its decomposition into large-, small-, and micro-cap stocks.

Fig. 8 presents the 𝛼 HC3 standard-error ratios for large-cap stocks. Note that the median and mean 𝛼 ratios are always below
one and that the power of WLS and ALS is slightly higher in the five-factor model compared to the CAPM. We also plot the 𝛽𝑟𝑚,𝑡 HC3
standard-error ratios for large-cap stocks in Fig. 9. The results for the market factor look similar to those for the CAPM, but again
they are even slightly better. Finally, we also report the results for the other four Fama–French factors in Fig. 10. In sum, WLS and
ALS overall prominently reduce the HC3 standard errors compared to OLS for all investigated factors (and also for the intercept).

Even more impressive are the results concerning the percentages of HC3 standard-error ratios that lie below one, presented in
Fig. 11 and Table 1. We find that ALS consistently and often markedly outperforms WLS across all factors, and also for the intercept.
Therefore, again, applied researchers are advised to abandon OLS and update instead to ALS, which reduces the HC3 standard errors,
374

and thus the length of the confidence intervals, in 79%–94% of the cases (depending on the coefficient).
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Fig. 8. Five-factor-model boxplots for the two ratios defined in (4.1) for large-cap stocks. For any year, we plot first the WLS/OLS boxplots in blue, followed
by the ALS/OLS boxplots in green. In each box, the bar indicates the median ratio whereas the diamond-shaped symbol indicates the average ratio. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Percentages of HC3 standard-error ratios that lie below one for all coefficients of the various factor models.
All percentages are based on daily data for large-cap stocks from 12/31/1968 through 12/31/2019. For any
coefficient and model, the highest number appears in bold face.
HC3 standard-error ratios < 1

𝛼 𝛽𝑟𝑚,𝑡 𝛽SMB 𝛽HML 𝛽RMW 𝛽CMA 𝛽UMD

CAPM
WLS 83% 74% – – – – –
ALS 90% 83% – – – – –

Fama–French 3-Factor Model
WLS 87% 74% 73% 75% – – –
ALS 93% 83% 83% 84% – – –

Carhart 4-Factor Model
WLS 87% 73% 75% 76% – – 69%
ALS 93% 82% 83% 84% – – 79%

Fama–French 5-Factor Model
WLS 87% 75% 75% 76% 77% 77% –
ALS 94% 84% 85% 85% 86% 86% –

4.5. Robustness checks

To further robustify our results, we carry out the following two exercises. First, we use a different data frequency, namely monthly
ata. Second, we stick to the daily frequency but use alternative (past-window) sample sizes 𝑛, corresponding to one year, two years,

five years, and ten years.
To save space, we simply report the main findings here; but the detailed results are also available upon request.
For the monthly data frequency we consider only the most common sample sizes, being 𝑛 = 60 and 𝑛 = 120, that is, five and ten

ears of past data. Compared to daily data the sample size is very small, however, if we consider more than ten years of past data the
nvestment universe shrinks significantly. In sum, we find similar, but less impressive results for monthly stock returns and factors.
lso for monthly data we find evidence that WLS and especially ALS reduce HC3 standard errors, however the reduction is often
375
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Fig. 9. Five-factor-model boxplots for the market factor 𝛽 ratios defined in (4.1) for large-cap stocks. For any year, we plot first the WLS/OLS boxplots in blue,
ollowed by the ALS/OLS boxplots in green. In each box, the bar indicates the median ratio whereas the diamond-shaped symbol indicates the average ratio.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

arginal. Nevertheless, ALS still reduces the HC3 standard errors compared to OLS in 95% of the cases, whereas WLS achieves
he same in only 55% of the cases. Consequently, using ALS (or WLS) results in shorter confidence intervals for all investigated
oefficients compared to using OLS most of the time, too. However, with monthly data the confidence intervals cannot be reduced
s much as for daily data, since conditional heteroskedasticity is less pronounced: On average only in about 15% of the cases the
ull of homoskedasticity gets rejected.

In terms of different (past-window) sample sizes 𝑛, while sticking to the daily frequency, the results are also robust and lead
o similar overall conclusions compared to Sections 4.3 and 4.4. Nevertheless, some deviations do exist owing to the fact that the
maller is 𝑛, the larger is the eligible investment universe. As the universe increases (by lowering 𝑛), most of the additional stocks
re micro-caps, so that the percentage of micro-caps increases as well. As a consequence, for smaller sample sizes 𝑛, the results

become more dispersed and there are more outliers in the boxplots, which leads to somewhat less favorable findings on balance,
that is, combined over all caps. On the other hand, within each category — (i) large-cap stocks, (ii) small-cap stocks, and (iii)
micro-cap stocks — the benefits of upgrading from OLS to ALS are roughly ‘constant’ across the different sample sizes 𝑛 considered;
in particular, the largest benefits are obtained throughout for large-cap stocks.

5. Conclusion

In this paper, we show that conditional heteroskedasticity is a common occurrence in CAPM and multi-factor-model regressions
and how to carry out improved inference for corresponding regression coefficients. The use of WLS, and especially ALS, has been
promoted before by Romano and Wolf (2017). However, we need to extend their theory, since they assume i.i.d. data, which is
unrealistic for financial returns. We now demonstrate that the validity of their proposed inference methods based on WLS and ALS
continues to hold under a more general set of assumptions that is reasonable for financial factor models; in particular, volatility
clustering and (G)ARCH effects can be accommodated.

We run an extensive empirical analysis and find that weighted least squares (WLS) and adaptive least squares (ALS) generally
lead to smaller HC standard errors compared to ordinary least squares (OLS). This finding directly translates into shorter confidence
intervals and more powerful hypothesis tests. Additionally, we find that ALS consistently outperforms WLS in terms of the percentage
of standard errors that are reduced compared to OLS. Note that especially for monthly data, where conditional heteroskedasticity
is less pronounced, the flexibility of ALS to choose between WLS and OLS is advantageous. We also find differences with respect to
the market capitalization: Generally, the larger the stock, the larger the benefit of using WLS and ALS instead of OLS.
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Fig. 10. Five-factor-model boxplots for the SMB, HML, RMW and CMA 𝛽’s ratios defined in (4.1) for large-cap stocks. Due to readability we plot only the
ALS/OLS boxplots in green. However, in unreported results we find similar patterns for WLS/OLS. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

It can be seen that especially during times of financial turmoil the confidence intervals based on WLS and ALS are much shorter
compared to OLS for most of the stocks. This is due to the fact that after a stock market crash or during a financial crisis, volatility
clustering is much more pronounced, especially for daily data. For some years, and larger stocks, WLS and ALS can cut standard
errors almost in half compared to OLS. Further research could investigate if our findings hold for stocks outside of the US and, more
generally, for other asset classes.

To sum up, the still-quite-common practice of using OLS in conjunction with the ‘usual’ standard errors based on an assumption
of conditional homoskedasticity should be abandoned because it generally leads to invalid inference. Using OLS in conjunction with
HC standard errors fixes this problem but an even better practice is to use WLS or ALS with HC standard errors. In the end, our
specific proposal is to use ALS with HC3 standard errors for the overall best performance.

Last but not least, our methodology should not be used when asset or factor returns display noticeable serial correlation as is,
for example, the case in hedge-fund performance evaluation; for example, see Fung et al. (2008) and the references therein.
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Appendix. Proof of Theorem 3.1

To show that the stated results of Romano and Wolf (2017) continue to hold under our more general set of assumption always
377

uses the same method of verification. For this reason, it is enough consider Lemma 3.1 as a typical example.
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Fig. 11. Percentages of standard-error ratios (4.1) that lie below one for the five-factor model (1.5) based on large-cap stocks.

Consider the Proof of Lemma 3.1 in Appendix B.1 of Romano and Wolf (2017). Equality (B.1) of course continues to hold and
o we are still left to show (B.2) and (B.3).

(B.2) follows by ergodic stationarity, that is, by our more general Assumption (A.2) from the Ergodic Theorem; for example,
ee Hayashi (2000, p. 101).

To show (B.3) note that

𝑋′𝑊 −1𝑋 =
𝑛
∑

𝑡=1
𝑢𝑡 with 𝑢𝑡 ..=

𝑥𝑡𝜀𝑡
𝑤(𝑥𝑡)

.

It follows from Assumption (A.2) that the sequence {𝑢𝑖} is strictly stationary and ergodic. It follows from Assumption (A.3) that
{𝑢𝑡} is a martingale difference sequence; to see this let 𝑧𝑡 ..= (𝑥𝑡, 𝜀𝑡)′ and use the ‘‘tower property’’ of conditional expectation, for
xample, see Williams (1991, Section 9.7):

E(𝑢𝑡|𝑢𝑡−1,… , 𝑢𝑡) = E(E(𝑢𝑡|𝑥𝑡, 𝑧𝑡−1,… , 𝑧1)|𝑢𝑡−1,… , 𝑢1) .

Since

E(𝑢𝑡|𝑥𝑡, 𝑧𝑡−1,… , 𝑧1) = E
(

𝑥𝑡𝜀𝑡
𝑤(𝑥𝑡)

|𝑥𝑡, 𝑧𝑡−1,… , 𝑧1

)

=
𝑥𝑡

𝑤(𝑥𝑡)
E(𝜀𝑡|𝑥𝑡, 𝑧𝑡−1,… , 𝑧1) = 0 ,

here the final equality follows from our more general Assumption (A.3), we have established that E(𝑢𝑡|𝑢𝑡−1,… , 𝑢𝑡) = 0, that is, the
378
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The MDS property implies that E(𝑢𝑡) = 0. The fact that E(𝑢𝑡𝑢′𝑡) = 𝛺1∕𝑤 is derived in the identical fashion as in the proof of Romano
and Wolf (2017). The result (B.3) then follows by applying the CLT for ergodic stationary MDS; for example, see Hayashi (2000,
p. 106). This ends the proof.

The proof of Lemma 3.1 illustrates the same two ‘tricks’ that are used over and over again also in the proofs of the remaining
results. On the one hand, the fact that sample averages converge in probability to population expectations follows from the Ergodic
Theorem, as opposed to the strong law of large numbers for i.i.d. sequences; this is where our more general Assumption (A.2)
comes into play. On the other hand, the fact that certain (standardized) quantities have a limiting normal distribution follows from
the CLT for ergodic stationary MDS, as opposed to the Lindeberg–Lévy CLT for i.i.d. sequences; this is where our more general
Assumption (A.3) comes into play.
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