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A B S T R A C T   

Recent research shows that the vast majority of scientific studies published in leading finance journals fails sci-
entific replication (Hou, Xue, and Zhang, 2020; Harvey, Liu, and Zhu; 2016). This study argues that p-hacking, 
publication pressure and the selection bias from leading finance journals are perhaps not the underlying root cause 
for this issue. This study shows that standard methodologies often used in finance research are inevitably sample- 
specific due to the very nature of financial markets. While the consensus of earlier research postulates a rejection of 
the time-honored Levy hypothesis, the results of this study strongly indicate that the variance of variance does not 
exist in any of the financial key markets that are considered. An unexpected finding of this study is that the variance 
process governing the U.S. dollar foreign exchange rate market is generating more extreme events than the Bitcoin 
market. The results cast doubts on the validity of methodologies currently used in finance research.   

“Truth – or more precisely, an accurate understanding of reality – is the 
essential foundation of any good outcome. Most people fight seeing what’s 
true when it’s not what they want it to be.” 

(Ray Dalio, Founder of Bridgewater Associates, and Author of 
‘Principles’) 

1. Introduction 

In a recent study, Hou, Xue, and Zhang (2020) investigate whether 
cross-sectional asset pricing phenomena documented in the finance 
literature hold up to currently acceptable standards for empirical 
finance. In their study, the authors implement a scientific replication of 
452 asset pricing anomalies which are based on 111 original research 
papers.1 Imposing the higher multiple test hurdle of 2.78, as proposed by 
Harvey, Liu, and Zhu (2016), they find that 82% of those anomalies fail 
scientific replication. This is shocking news. 

Referring to a recent study of Serra-Garcia and Gneezy (2021), The 

Guardian documents that “scientific research findings that are probably 
wrong gain far more attention than robust results, according to academics 
who suspect that the bar for publication may be lower for papers with 
grabbier conclusions. Studies in top science, psychology and economics 
journals that fail to hold up when others repeat them are cited, on average, 
more than 100 times as often in follow-up papers than work that stands the 
test of time. The finding – which is itself not exempt from the need for scrutiny 
– has led the authors to suspect that more interesting papers are waved 
through more easily by reviewers and journal editors and, once published, 
attract more attention.”2 The selection bias from leading (finance) journals is 
perhaps not surprising. The surprising issue is that top-notch journals are also 
the leading journals in publishing studies that are not replicable. 

The important question arises: Why do studies fail to replicate? 
Considering the background of the agency problem, as elaborated in 
Harvey’s (2017) study, Hou et al. (2020) argue that authors sometimes 
engage in specification search, selecting sample criteria and test proced-
ures until insignificant results become significant (p-hacking) which 
could, in turn, result in an embarrassingly large number of false positives 
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1 Table 3 in association with the reference list provided in Hou et al. (2020) reveals that 58% of those studies have been published in the leading finance journals (Journal of 
Finance, Review of Financial Studies, Journal of Financial Economics). Here, it is referred to leading finance journals to any journal that is first (i) categorized as a ‘finance 
journal’, and second (ii) exhibits a journal ranking of ABS-4* in line with the Academic Journal Guide of the Chartered Association of Business Schools (ABS).  

2 See https://www.theguardian.com/science/2021/may/21/research-findings-that-are-probably-wrong-cited-far-more-than-robust-ones-study-finds?fbclid=Iw 
AR3m7yHKFOW8RMzx1La38mlR8fi9lnkM7lkWjOOilM3nVUuGBYeHP9-zeTU. 
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that cannot be replicated in the future.3 This study argues that there could 
be another reason for why studies fail to replicate. Specifically, if the 
variance of the data generating process’s variance does not exist, a t-sta-
tistic will be inevitably sample-specific. Implicitly, this supposition is in 
line with Schwert (2003), who observes that once cross-sectional asset 
pricing phenomena are documented and analyzed in the academic liter-
ature, these cross-sectional patterns often seem to disappear, reverse, or 
attenuate. Specifically, decreasing t-statistics with increasing sample sizes 
across anomalies could be a manifestation of systematically inflated t- 
statistics. In this regard, Schwert (2003) emphasizes that one possibility 
could be that those asset pricing anomalies were simply statistical aber-
rations that attracted the attention of academics and practitioners. This 
study argues that those ‘statistical aberrations’, in the parlance of Schwert 
(2003), are manifestations of researchers relying on traditional research 
methodologies that unfortunately are not applicable in financial research 
contexts due to the very nature of financial market data.4 

The ultimate purpose of this study is to test whether research method-
ologies often used in traditional financial research, such as Ordinary Least 
Squares (OLS) or Generalized Method of Moments (GMM), are applicable to 
financial market data. The rationale for setting-up the research design of this 
study is straight forward: First (i), it is noted that most research in empirical 
finance typically relies on t-statistics derived from, for instance, OLS or GMM, 
for evaluating the validity of results. Second (ii), irrespective of (a) which 
type of research method is used, or (b) which type of t-statistics are used, any 
t-statistic can only be used for drawing statistical conclusions if and only if the 
variances of variances of the model variables do exist.5 This is definitely not a 
trivial issue because if the variance of variance is either infinite or does not 
even exist, we are not in a research environment allowing us to draw con-
clusions based on (any) t-statistics because this metric would be inevitably 
sample-specific. Hence, to explore this research question, the current study 
analyzes whether or not the second moments of five key financial market 
variables are stable. Using a research approach based on realized variances, a 
financial market variable is defined as stable if and only if the variance of the 
variance does exist. Since realized variances are heavily fat-tailed processes, 
this study follows a recent stream of literature and fits power law distribu-
tions to the realized variances of the following key financial markets: 

equities, commodities, currencies and cryptocurrencies. To test whether or 
not the power law null hypothesis is plausible, hypothesis tests based on 
Kolmogorov-Smirnov distances are employed, as proposed in the seminal 
paper from Clauset, Shalizi, and Newman (2009). Moreover, also various 
subsamples are considered, different types of data frequencies and simula-
tion experiments. 

This study has some clear and fundamentally important contribu-
tions. First, while Hou et al. (2020) argue that ‘cherry-picking’ man-
ifested in specification search or p-hacking could be a reason for the high 
rate of replication failures, this study adds to Schwert’s (2003) ‘statis-
tical aberration’ hypothesis by exploring whether data processing could 
be a root cause for the high rate of replication failures. Second, taking a 
broader perspective, this paper contributes to the literature on tail risks 
that appear to be a trademark of human-engineered systems. In this 
regard, the study of Clauset et al. (2009) is often-cited work exploring 
whether 24 real-world data sets from a range of different disciplines 
follow power law distributions. The evidence documented in Clauset 
et al. (2009) supports Taleb’s (2010) view that power law distributions 
govern many real world phenomena and help to better understand man- 
made phenomena. Another popular study in this stream of literature is 
the one of Gabaix (2009) documenting that a variety of variables such as 
income and wealth, the size of cities and firms, trading volume, inter-
national trade or executive pay, for instance, are governed by different 
power law processes. The current study contributes to this stream of 
literature by first (i) exploring whether the variances of five key financial 
market variables are governed by power laws, and second (ii) by iden-
tifying whether the second moments of the variances exist. 

Third, taking the perspective of more finance-specific research, 
power law distributions are used to model the return variation of 
financial assets. Since power laws are one-sided distributions, it may be 
not surprising that most research uses the absolute amount of an asset 
return, that is, |ret| for modeling power law functions, as pointed out in 
Lux and Alfarano (2016). Based on the seminal paper from Mandelbrot 
(1963), early contributions in this stream of literature are Gopikrishnan, 
Plerou, Amaral, Meyer, and Stanley (1999), Jansen and de Vries (1991), 
Mantegna and Stanley (1995) and Lux (1996). The studies from Gabaix 
(2009) and Lux and Alfarano (2016) provide detailed overviews on that 
literature. The current study extends this strand of literature first by 
modeling the variation of asset returns using realized variances 
computed using daily high and low prices which incorporates more in-
formation than two arbitrary points in the data series (the closing pri-
ces). It will be seen later in this study that this is not a trivial issue. 
Additionally, the current research makes use of a realized volatility 
measure based on daily data to compute monthly realized variances. 
Another novel feature of this paper is that it also investigates the vari-
ance of the largest cryptocurrency market, that is, Bitcoin exhibiting a 
market capitalization in excess of $1 trillion as of April 29, 2021. In this 
regard, Fry and Cheah (2016, p.350) highlight that “from an economic 
perspective the sums of money involved [in cryptocurrency markets] are 
substantial”. Obviously, studying the variation of cryptocurrency prices 
is both an important and timely issue. 

The results of the current research indicate that the daily variances of 
all five key asset markets are governed by power law processes. Statisti-
cally, the power law null hypothesis cannot be rejected. It is shown that 
the results are neither sample- nor method-specific. Notably, the sfindings 
of the current research strongly suggest that the variance of the variance 
does statistically not exist for any of those asset markets. Paradoxically, 
the foreign exchange market is more prone to extreme events than the 
Bitcoin market. The findings of this study have fundamentally important 
implications that cannot be swept under the carpet: First, due to the non- 
existence of the variances’ variances, standard statistical analysis based 
on standard OLS or GMM inevitably leads to sample-specific results. 
Second, simulation experiments show that in 66% of synthetic samples, 
the sample variances are underestimated which results in inflated t-sta-
tistics, provided data samples are finite. Seemingly significant asset 
pricing phenomena due to inflated t-statistics could be one manifestation 

3 Note that cherry picking may be committed intentionally or unintention-
ally. Moreover, in practice, it is perhaps difficult (or virtually impossible) to 
differentiate between those two groups. In fact, one can only observe the 
consequences and the consequences are unfortunately the same.  

4 Correctly using incorrect methodologies would be alarming news because 
Hou et al. (2020) stress out that armies of academics and investment managers 
actively engage in searching for significant anomalies and with trillions of 
dollars invested in factors-based exchange-traded funds and quantitative hedge 
funds worldwide, the financial interest is overwhelming-and in this study it is 
argued, so is the hidden risk. Referring to the bankruptcy of the hedgefunds 
Long-Term Capital Management (LTCM), in which Robert Merton Jr. and 
Myron Scholes were founding partners, Taleb (2010, p.288) points out that the 
consequences of relying on wrong methods can be destructive: “…during the 
summer of 1998, a combination of large events, triggered by a Russian financial 
crisis, took place that lay outside their models. It was a Black Swan. LTCM went 
bust and almost took down the entire financial system with it, as the exposures 
were massive.”  

5 The most often used method is perhaps the Ordinary Least Squares (OLS) 
technique used in different settings (time series regressions, cross-sectional 
regressions, panel regressions). Since OLS estimation requires some strict as-
sumptions, Hansen (1982) derived the so-called Generalized Method of Mo-
ments (GMM) estimator that relaxes many of the OLS assumptions. However, 
both the OLS and GMM estimators require that the kurtoses of the input vari-
ables exist. Moreover, in attempts to address dependency structures in the first 
and/or second moment of the (financial) variables used in the estimation 
procedures, various adjustments such as Heteroscedasticity Consistent Covari-
ance Matrix Estimator (HCCME), Heteroscedasticity and Autocorrelation 
Consistent Covariance Estimator (HAC), or some type of bootstrapped t-statis-
tics have been discussed in the literature (see White, 1980; Newey-Newey & 
West, 1987; Godfrey, 2009). 
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of what Schwert (2003) refers to as ‘statistical aberration’. As a conse-
quence, the sresults of this study cast doubts on the validity of method-
ologies often-used in financial market research. 

And here is how the story of this paper unfolds: In the next section 
the background is described. The third section describes the processing 
of the data, whereas the fourth section outlines the statistical model, and 
provides robustness checks. The last section concludes. 

2. Background 

Traditional finance research typically relies on t-statistics to assess 
the statistical significance of research results. The t-distribution is 
defined as, 

t =
x
̅̅z
v

√ , (1)  

where x is a normally distributed random variable with E[x] =μx and VAR 
[x] = σx

2, and z is a χ2(v)-distributed random variable with E[z] = μz = v 
and VAR[z] = σz

2 = 2v. The crucial point here is to note that convergence 
requires that the variance of the random variable z must exist. In empirical 
finance, the estimated t-statistic for a specific sample is then given by, 

t =
x − μx̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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where it is typically tested μx = 0. From the previous definitions, it 
follows that Eq. (2) implies that, 

t =
x − μx̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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From Eq. (1) in association with z~(μz,σz
2), it follows from Eq. (3) 

that, 
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The empirical sample’s variance of variance is then given by, 

σ̂2
z =

1
T

∑T

t=1

(
(xt − x)2

− σ2
x

)2
. (4) 

Given that x is a thin-tailed (Gaussian) process, ̂σ2
z must consequently 

be finite. It is important to note here that this often-used methodology 
requires first (i) that the Central Limit Theorem (CLT) holds, and second 
(ii) that the Law of Large Numbers (LLN) works. The idea is illustrated on 
the left-hand side of Figs. 1 and 2. 

However, it is a well-known and stylized fact that financial returns 
are typically not normally-distributed. Accounting for fat tails, a wide 
stream of literature models the absolute amount of asset returns using 
power law functions (Mandelbrot, 1963; Fama, 1963; Gopikrishnan, 
Plerou, Amaral, Meyer, and Stanley, 1999; Jansen & de Vries, 1991; 
Mantegna & Stanley, 1995; Lux, 1996; Warusawitharana, 2019). In this 
regard, Taleb (2020, p.91) argues that “[t]here are a lot of theories on 
why things should be power laws, as sort of exceptions to the way things 
work probabilistically. But it seems that the opposite idea is never pre-
sented: power laws should be the norm, and the Gaussian a special case.” 
Concerning the application of power laws to financial market data, Lux 
and Alfarano (2016, p. 4) emphasize that “power laws in returns and in 
volatility seem to be intimately related: none of them was ever observed 
without the other and it, therefore, seems warranted to interpret them as 
the joint essential characteristics of financial data.” 

If x is a (heavily) fat-tailed process (i.e., non-Gaussian), we cannot use 
1
T
∑T

t=1(xt − x)2 because Taleb (2020, p.27–28) stresses out that the LLN does 
either not work or works too slowly. Since maximum likelihood estimation 
(MLE) is a valid estimation method for fat-tailed data, Taleb advocates to use 
the so-called ‘plug-in estimation’ technique, where in the first step (i) the 
power law exponent is estimated via MLE, and in the second step (ii) the 
theoretical moments for the corresponding power law distribution are esti-
mated. Hence, using realized variances (RV) one can use MLE to reliably 
estimate the power law process governing the distribution of z. Unlike 
employing the term 1T

∑T
t=1(xt − x)2 to estimate the sample return variance, 

employing RV computed via the price range of intraday asset prices has the 
advantage that substantially more information is incorporated in the data 
than using only two arbitrary points in this series (the closing prices), as 

Fig. 1. When is the t-statistic sample-specific? 
This flow chart illustrates under which conditions the t-statistic is sample-specific. 
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pointed out in Chou, Chou, and Liu (2010). 
Deriving the moments for power law distributions (see the next 

sections for details), it follows that the variance for z is defined if and 
only if the power law processes governing z’s distribution exhibits a 
power law exponent larger than three. An undefined variance for z 
implies, in turn, that one does not observe the true mean for z in finite 
sample, which results in a sample-specific t-statistic, as illustrated on the 
right-hand side of Figs. 1 and 2. Note that the same logic can be applied 
to regression model frameworks often used in finance research. 

For instance, in asset pricing research, the statistical significance of 
cross-sectional asset pricing phenomena is typically assessed using 
regression models fulfilling the purpose of adjusting asset returns for 
potential risk factor exposures. In this regard, the Fama and French factor 
models have received enormous attention in academic work and are often 
used as benchmark models. Recently, Fama and French (2018) proposed a 
six-factor model, that accounts for the momentum factor, given by, 

Rex
i,t=ai+biMktex

t +siSMBt+hiHMLt+riRMWt+ciCMAt+miMOMt+ui,t, (5)  

where Rex
i,t typically denotes the excess return of an equity portfolio i at time t, 

Mktext denotes the return of the excess market factor at time t, SMBt and HMLt 
denote the returns of the size and value factor at time t (Fama & French, 1992, 
1993), RMWt and CMAt denote the returns of the profitability and investment 
factor at time t (Fama & French, 2015, 2017), and MOMt denotes the return of 
the momentum factor at time t (Fama & French, 2018). It is important to 
understand that similar types of factors models are also widely used for 
assessing the significance of risk-adjusted returns in other financial assets 
markets, such as traditional foreign exchange markets or cryptocurrency 
markets (Lustig, Roussanov, & Verdelhan, 2011; Shen, Urquhart, & Wang, 
2020). Hence, the same issues discussed here for the equity market apply to 
any other financial asset market also. 

Following standard econometric modeling, one can stack the risk 
factors, including a Tx1 vector of ones demoted as 1, in a regressor 
matrix X defined as, 

X =
(
1,xex

Mkt, xSMB, xHML, xRMW , xCMA, xMOM
)
,

that has the dimension Tx7. Denoting the Tx1 vector of portfolio excess 
returns as Rex and the Tx1 residual vector as u, one knows from standard 
econometrics classes that using Ordinary Least Squares (OLS), the 

estimated covariance matrix of the point estimator β̂ is given by 

̂
COV

(
β̂
)
= σ̂2

(X′X)
− 1
, (6)  

where σ̂2
= û′ û/T, û = Rex − Xβ̂ with β̂ = (X′X)

− 1X′Rex where β̂’ =

(ai, bi, si,hi, ri, ci,mi). Furthermore, in standard econometrics it is typi-

cally assumed that ui,t~IIDN(0,σ2) and, hence, 
̂

COV
(

β̂
)

is normally 

distributed also. A severe problem in this model framework arises if σ2 is 

sample-specific because if σ2 is sample-specific then 
̂

COV
(

β̂
)

will be 

sample-specific too, and critical values derived from the normal distri-
bution will be meaningless. For instance, Fergusson and Platen’s (2006) 
study provides evidence on that the unconditional distribution of daily 
returns appears to be remarkably close to the Student t distribution with 
υ = 3 degrees of freedom. Assuming that ui,t~t(3), it follows that 
ET[ui,t

2] = 3, whereas ET[ui,t
3] = ∞. 

In turn, an infinite kurtosis implies that the variance is not stable. In 
this regard, Taleb (2020, p.50) vehemently stresses out that if the kur-
tosis does not converge, “the sample error is huge; or it may not exist so 
the measurement is heavily sample dependent. If we don’t know any-
thing about the fourth moment, we know nothing about the stability of 
the second moment. It means we are not in a class of distribution that 
allows us to work with the variance, even if it exists.” Note that the same 
statement can be made for the variance of variance, that is, if we don’t 
know anything about the variance of the variance, we know nothing 
about the stability of the second moment. Using a simulation experi-
ment, later will be learnt more on the implications of this issue. 

Furthermore, Hansen (1982) proposes the Generalized Method of 
Moments (GMM) estimation technique that relaxes some of the standard 
OLS assumptions. In this regard, the key point in GMM estimation is that 
the employed variables exhibit ergodic stationarity which, again, implies 
that the fourth moment of the variables must be finite. If the variance of 
the variance does not exist, GMM is, in turn, as sample-specific as OLS. 

While the Student’s t distribution could be an interesting approxima-
tion for the unconditional distribution of daily returns in equity market 
settings, it is probably not able to capture the extremely fat tails of vari-
ance distributions, especially the variances in cryptocurrency markets 
which appear to exhibit extremely high levels of uncertainty (Baur, Hong, 
& Lee, 2018). Hence, in what follows, the variance processes of five key 
asset markets is modeled as power laws and it is tested whether these 
models reasonably describe the data generating processes. 

3. Data 

Publicly available daily data on the S&P 500, gold, crude oil, the 
exchange rate U.S. dollar against British pounds, and Bitcoin are 
downloaded from finance.yahoo.com. Due to data availability, the data 
sample ranges between September 17, 2014 to March 31, 2021 for 
Bitcoin, and April 20, 1982 to March 31, 2021 for the S&P 500. Espe-
cially, the data include the highest daily prices, lowest daily prices, and 
closing prices for each trading day of the samples. 

4. Methodology 

4.1. Realized variance 

Realized variances are computed for each asset market i, where 
={equity,gold,crude oil, U. S. dollar,cryptocurrency}. Specifically, real-
ized annualized daily variances are compounded in line with Parkinson 
(1980), that is, 

σ2
i,t = T

1
4ln(2)

(
ln
(
Hi,t
)
− ln

(
Li,t
) )

(7)  

where Hi,t and Li,t denote the highest and lowest price for asset market i 

Fig. 2. When does the Law of Large Numbers not work? 
This flow chart illustrates how to estimate the variance of the variance 
depending on whether or not the Law of Large Numbers (LLN) works. In this flow 
chart, the abbreviations RV and MLE denote realized variance and maximum 
likelihood estimation, respectively. 
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on day t, σi,t
2 denotes asset market i’s corresponding realized annualized 

variance at time t, and T = 365 for the cryptocurrency market because 
this market allows for trading 24/7, whereas T = 250 for any other asset 
market. Since the Parkinson (1980) estimator uses the price range of 
intraday asset prices, Chou et al. (2010) emphasize that it incorporates 
substantially more information than two arbitrary points in this series 
(the closing prices).6 When computing the realized variance for crude 
oil, the observations on April 20, 2020 and April 21, 2020 are excluded 
from the sample because the lowest prices were negative on those days, 
and hence, the realized variances in line with Eq. (7) are not defined.7 

In Table 1, the descriptive statistics are reported and Table 2 reports 
the share of the top 1% and the top 20% of the cumulative total of the 
distribution. From Table 1 in association with Table 2 it can be observed 
that the realized variance processes for all asset markets are heavily fat- 
tailed, which is not a surprising feature per se. 

However, a surprising observation from these tables is that the variance 
process governing the U.S. dollar foreign exchange rate market – which 
obviously is the exchange rate market of the most important national cur-
rency – is considerably heavier fat-tailed than the cryptocurrency market. 
This is surprising because Baur et al. (2018) argue that Bitcoin returns exhibit 
an extremely high kurtosis with relatively more tail events compared to other 
assets, and therefore Bitcoin serves rather as speculative asset than as a 
medium of exchange. On January 27, 2012, the exchange rate U.S.$/U.K.£ 
ranged between the highest value corresponding to 1.57 and the lowest value 
corresponding to 0.64; that is, on the same day, the exchange rate dropped by 
41%. For comparison, the largest daily drop in the history of the S&P 500 
occurred on October 19, 1987 where the S&P 500 ranged between the 
highest index value corresponding to 282.70 and the lowest index value 
corresponding to 224.83 - a relative drop by 20%. One can see that rare 
events have a considerably stronger impact in the U.S. dollar foreign ex-
change market than in the U.S. equity market. 

Next, from Table 2 it can be observed that 1% of the largest obser-
vations in the realized variance process of the U.S. dollar foreign 

exchange rate market correspond to 73.50% of the cumulative total of 
observations, whereas the share of the top 1% of the realized variance 
processes of the other asset markets comprises between 18.34% (Bitcoin 
market) and 22.96% (Crude oil market) of the cumulative total of ob-
servations. Comparing these figures with Table 3 in Taleb (2010, p.265) 
strongly suggests a Paretian tail with power law exponents close to 2.5. 

In fact, the variance of the U.S. dollar foreign exchange rate market 
considered here is the most extreme process in terms of its Paretian tail. 
Specifically, the traditional 80/20 Pareto distribution – which is the 
archetype of a power law process – suggests that 20% of the largest 
observations comprise 80% of the cumulative total of observations. As 
pointed out in Taleb (2010, p.235) according to its scalability, this 
suggests in turn, that 1% of the largest observations comprise about 50% 
of the cumulative total of observations. With respect to the foreign ex-
change market’s variance considered here, this feature is even more 
pronounced. There is no other distribution class than power laws that 
allows for this type of extremeness in fat tails as observed here. A 
fundamental follow-up question that arises is then: If Bitcoin does not 
fulfill the requirements as being a medium for exchange or store of value 
due to its high uncertainty, how can the U.S. dollar be considered stable? 
Since the 80/20 Pareto distribution does not have a variance, any 

Table 1 
Descriptive statistics.  

Metric S&P 500 Gold Crude oil U.S. dollar Bitcoin 

Mean 2.15 0.16 14.92 2.39 48.89 
Median 0.89 0.05 6.95 0.41 15.53 
Maximum 473.02 10.10 1,871.01 7,356.17 3,153.47 
Minimum 0.00 0.00 0.00 0.00 0.09 
Std. Dev. 6.99 0.40 49.72 109.83 120.75 
Skewness 35.46 9.74 20.27 66.95 10.87 
Kurtosis 2145.24 153.30 560.45 4483.45 211.39 
Observations 9,821 5,131 5,139 4,486 2,384 

This table reports the descriptive statistics for the annualized daily realized 
variance for the S&P 500, gold, crude oil, the exchange rate of the U.S. dollar 
against the British pound and Bitcoin. The annualized daily realized variances 
for each asset market i, where i = {equity,gold,crude oil, U. S. dollar,crypto-
currency} are in line with Parkinson (1980) computed as 

σ2
i,t = T

1
4ln(2)

(
ln
(
Hi,t
)
− ln

(
Li,t
) )

,

where Hi,t and Li,t denote the highest and lowest price for asset market i on day t, 
σi,t

2 denotes asset market i’s corresponding realized annualized variance, and T 
= 365 for the cryptocurrency market because this market allows for trading 24/ 
7, whereas T = 250 for any other asset market. Publicly available daily data on 
the S&P 500, gold, crude oil, the exchange rate U.S. dollar against British 
pounds, and Bitcoin were retrieved from finance.yahoo.com. 

Table 2 
Share of the top 1% and top 20%.  

% of the cumulative total of the distribution 

% of largest 
observations 

S&P 500 Gold Crude Oil U.S. 
dollar 

Bitcoin 

1% 21.01% 
(98) 

19.31% 
(51) 

22.96% 
(51) 

73.50% 
(45) 

18.34% 
(24) 

20% 69.05% 
(1,964) 

74.28% 
(1,026) 

65.71% 
(1,028) 

88.47% 
(897) 

75.13% 
(477) 

This table reports the share of the top 1% and the top 20% of the cumulative total 
of the distribution for the annualized daily realized variance for the S&P 500, 
gold, crude oil, the exchange rate of the U.S. dollar against the British pound, 
and Bitcoin. The number of observations are reported in parentheses. 

Table 3 
Estimates for power law models.  

Metric S&P 500 Gold Crude Oil U.S. 
dollar 

Bitcoin 

α̂  2.58 2.66 2.48 2.60 3.02 

x̂MIN  6.36 0.51 22.42 2.76 224.33 
KS test (p-value) 0.5830 0.3180 0.5110 0.5090 0.1660 
N 9,821 5,131 5,139 4,486 2,384 
NPL 5.96% 6.72,% 12.22% 3.66% 4.78% 
Period (MM/ 

DD/YYYY) 
4/20/ 
1982- 
3/31/ 
2021 

8/30/ 
2000- 
3/31/ 
2021 

8/23/ 
2000- 
3/31/ 
2021 

12/1/ 
2003- 
3/31/ 
2021 

9/17/ 
2014- 
3/31/ 
2021 

This table reports the estimates for power law models p(x) = (α − 1)xα− 1
MINx− α 

using maximum likelihood estimation (MLE). The tail exponent α is estimated 
as, 

α̂ = 1+N

(
∑N

i=1
ln
(

xi

xMIN

))− 1

,

where α̂ denotes the MLE estimator and N denotes the number of observations, 
provided xi ≥ xMIN. In this model, the estimate x̂MIN is assessed via the Kolmo-
gorov–Smirnov or KS statistic, which is the maximum distance between the CDFs 
of the data and the fitted model: 
D = MAXx≥xMIN |S(x) − P(x) |,

where S(x) is the CDF of the data for the observation with value at least xMIN, and 
P(x) is the CDF for the power law model that best fits the data in the region x ≥
xMIN. The estimate x̂MIN is the value of xMIN that minimizes D. NPL denotes the 
percentage of sample observations that are governed by a power law process. 

6 I acknowledge that other price range estimators have been discussed in the 
literature. Shu and Zhang (2006) investigated the relative performance of the 
various range-based volatility estimators and conclude that the performance of 
all of them is very well.  

7 The high and low price for crude oil were $17.85 and -$40.32 ($13.86 and 
-$16.74) on April 20, 2020 (April 21, 2020). 
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estimated t-statistic is consequently sample-specific. Next, power laws 
are fitted to the variance processes of the five key asset markets and then 
the power law null hypothesis is tested. 

4.2. Statistical model 

4.2.1. Moments of power laws 
To investigate the stability of the realized variance processes, the 

realized variances are modeled using the following power laws: 

P(X > x) = p(x) = Cx− α, (8)  

where C = (α − 1)xα− 1
MIN with α ∈ {ℝ+|α >1}, x ∈ {ℝ+|xMIN ≤ x <∞}, xMIN is 

the minimum value of realized variance that is governed by the power law 
process, and α is the magnitude of the specific tail exponent.8 Regarding α, 
Taleb (2020, p. 34) observed that the tail exponent of a power law function 
captures via extrapolation the low-probability deviation not seen in the data, 
which plays a disproportionately large share in determining the mean. Using 
the model framework of the current research, it can be shown that the 
expectation of the variance defined as E[X] is given by 

E[X] =
∫∞

xMIN

xp(x)dx =
(α − 1)
(α − 2)

xMIN , (9)  

whereas the second moment E[X2], or the variance of the variance, is 
defined as: 

E
[
X2] =

∫∞

xMIN

x2p(x)dx =
(α − 1)
(α − 3)

x2
MIN . (10) 

Higher moments of order k are analogously defined as: 

E
[
Xk] =

(α − 1)
(α − 1 − k)

xk
MIN . (11) 

From Eq. (9),ones knows that the mean only exists for α > 2, whereas 
the variance only exists for α > 3. 

4.2.2. Maximum-likelihood estimation 
In line with White, Enquist, and Green (2008) and Clauset et al. (2009), 

who found that maximum likelihood estimation (MLE) performs best for 

estimating power law exponents, the tail exponent is estimated as: 

α̂ = 1+N

(
∑N

i=1
ln
(

xi

xMIN

))− 1

, (12)  

where α̂ denotes the MLE estimator, N is the number of observations 
exceeding xMIN, and other notation is as before. Figs. 3–7 plot the esti-
mated parameters for α̂ depending on the value for xMIN for all five asset 
market variances.9 A crucial issue is how to determine the corresponding 
values for α̂ and xMIN to accurately estimate the probability density 
functions. Clauset et al. document that it is common practice to choose the 
value for xMIN, where beyond which ̂α is stable. From Fig. 5 in Clauset et al. 
(2009, p. 670), it can be observed that this value corresponds to the saddle 
point in a ̂α/xMIN-graph. From the Hill plots (see Figs. 3–7) it is evident that 
for most asset markets variances α̂ appears to be stable below a value of 
three. However, it is not clear which xMIN is optimal. (See Fig. 8 

4.2.3. Kolmogorov–Smirnov test statistics 
Determining the exact value for xMIN is, however, not a trivial issue. 

Clauset et al. emphasize that if one chose too low a value for xMIN, one would 
get a biased estimate of α̂ since one will be attempting to fit a power law 
model to non-power-law data. On the other hand, if one chose too high a 
value for xMIN, one would effectively remove legitimate data points 
xi < x̂MIN, which increased both the statistical error on α̂ and the bias from 
finite sample size effects. To address this issue, Clauset et al. propose an 
approach that chooses the value for the estimate x̂MIN that makes the prob-
ability distributions of the measured data and the best-fit power law model as 
similar as possible above x̂MIN. Since the analyzed data are non-normal, the 
authors make use of the Kolmogorov–Smirnov or KS statistic which is the 
maximum distance between the CDFs of the data and the fitted model: 

D = MAXx≥xMIN |S(x) − P(x) |, (13)  

where S(x) is the CDF of the data for the observation with value at least xMIN, 
and P(x) is the CDF for the power law model that best fits the data in the 
region x ≥xMIN. The estimate ̂xMIN is then the value of xMIN that minimizes D. 
Clauset et al. show that their proposed method gives excellent results in 
practice and outperforms other methods. Hence, this study uses Clauset 
et al.’s approach and reports the corresponding estimates ̂xMIN and ̂α for the 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

alpha
Fig. 3. Hill plot for the S&P 500 variance. 
This figure shows the Hill plot for the S&P 500 variance. 
The Hill plot shows the estimated α̂ as a function of xMIN 
defining the minimum value of the variance that is 
governed by the power law, given by the maximum 
likelihood estimator (MLE), 

α̂ = 1+ N
(
∑N

i=1ln
(

xi
xMIN

))− 1
, 

where α̂ denotes the MLE estimator, xi is the annualized 
daily realized variance of the S&P 500, provided xi ≥

xMIN, and N denotes the number of observations for 
which xi ≥ xMIN is satisfied. (Note for improved visual-
ization, the graph is cut off at observation x9,787 which is 
common practice.)   

8 This study follows the notation in Clauset et al. (2009). To keep the nota-
tions clear, the index i denoting the respective realized variance of the indi-
vidual asset market is dropped. Note that in this section and in the following 
sections, the realized variances are denoted as x as opposed to z in section 2. 

9 These graphs are often referred to as Hill plots. 
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variances of the five asset markets in Table 3.10 

4.2.4. Estimated power law exponents 
From Table 3 it is evident that the power law exponent for the 

variance processes of the S&P 500, gold, crude oil, and the U.S. dollar is 
below 3. From Eqs. (9), (10) it can be inferred that the variances of the 
variances do not exist for those asset markets. This means, in turn, that t- 
statistics based on the estimator in Eq. (6) and its derivatives will be, as a 
consequence, sample-specific. Interestingly, the point estimator for 
Bitcoin’s variance is α̂ = 3.02 implying that Bitcoin’s variance of vari-
ance does exist. Clauset et al. show that the standard deviation of α̂ is 

given by σ =
(α̂ − 1)̅̅̅

N
√ + O(1/n) which enables us to test 

H0: α̂Bitcoin ≤ 3.00 versus H1: α̂Bitcoin > 3.00. 

Given that α ∈ {ℝ+|α > 1}, the 95% confidence interval for the 
relevant one-sided test is (1; 3.0883].11 Hence, it can be inferred that the 
null hypothesis cannot be rejected implying that the variances of vari-
ances for all asset markets do statistically not exist.12 This result may 
somewhat come as a surprise, given that Gabaix (2009) and Lux and 
Alfarano (2016) argue that the consensus in the literature is that the 
absolute amount of an asset return denoted as |ret| and modeled as P(| 
ret| > x) = x− α exhibits a power law exponent of α ≅ 3. Interpreting the | 
ret| as measure of an asset’s price fluctuation, and hence, as a measure 
for the asset variation, α ≅ 3 would imply that the variation of the 
variation exists meaning that asset returns are not Lévy distributed. 
Using range volatility models, which according to Chou, Chou, and Liu 
(2010, pp.1273-1281) incorporate substantially more information than 
two arbitrary points in this series (the closing prices), the evidence in the 
current study does not support α ≅ 3. 
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Fig. 4. Hill plot for the gold variance. 
This figure shows the Hill plot for the gold variance. 
The Hill plot shows the estimated α̂ as a function of 
xMIN defining the minimum value of the variance 
that is governed by the power law, given by the 
maximum likelihood estimator (MLE), 

α̂ = 1+ N
(
∑N

i=1ln
(

xi
xMIN

))− 1
, 

where α̂ denotes the MLE estimator, xi is the annu-
alized daily realized variance of gold, provided xi ≥

xMIN, and N denotes the number of observations for 
which xi ≥ xMIN is satisfied. (Note for improved 
visualization, the graph is cut off at observation 
x5,116 which is common practice.) (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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Fig. 5. Hill plot for the crude oil variance. 
This figure shows the Hill plot for the crude oil variance. 
The Hill plot shows the estimated α̂ as a function of xMIN 
defining the minimum value of the variance that is 
governed by the power law, given by the maximum 
likelihood estimator (MLE), 

α̂ = 1+ N
(
∑N

i=1ln
(

xi
xMIN

))− 1
, 

where α̂ denotes the MLE estimator, xi is the annualized 
daily realized variance of crude oil, provided xi ≥ xMIN, 
and N denotes the number of observations for which xi 
≥ xMIN is satisfied. (Note for improved visualization, the 
graph is cut off at observation x5,127 which is common 
practice.)   

10 I use the code plfit written by Aaron Clauset to estimate the α̂ for each asset 
market variance. Since the code does not provide the corresponding x̂MIN as 
additional output, I assess the corresponding x̂MIN directly from the Hill plots. 
The code is available at http://www.santafe.edu/~aaronc/powerlaws/. I 
would like to thank Professor Clauset for making this code available. 

11 The 95% confidence interval for a two-sided test is [2.9389; 3.1011] and 
95% confidence intervals for one-sided tests are [2.9517; ∞) or (1; 3.0883], 
respectively. 
12 Using daily data means that one has a large number of observations avail-

able making the hypothesis test very powerful. Also, the point estimates based 
on MLE exhibit a high level of accuracy. 
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4.2.5. Implications of non-existing variances of variances of asset markets 
The question arises what are the implications of non-existing variances of 

variances? Taleb (2020, p.50) emphasizes that if the kurtosis of a random 
variable does not exist, the second moment will be unstable. Likewise, if the 
variance of the variance does not exist, the variance will be unstable. Instable 
second moments imply, in turn, that t-statistics will be heavily sample- 
dependent. Furthermore, Taleb argues that if the kurtosis does not exist, 
we are not in a class of distribution that allows us to work with the variance, 
even if it exists. Likewise, working directly with the variances using realized 
variances, the current research argues that if the variance of the variance 
does not exist, we are not in a class of distribution that allows us to work with 
the variance, even if it exists. The non-existence of the variances of our asset 
markets’ variances is manifested in sample-specific t-statistics. 

This study argues that this issue could explain the enormous failure 
rate in replicating academic studies in financial economics. It is inter-
esting to note that sample-specificity of financial data is obviously 
nothing new to some practitioners. In this regard, in a Bloomberg 
seminar covering the topic ‘Safe Havens’, Mark Spitznagel, hedge fund 
manager at the company Universa, which gained an incredible return of 
3,600% in March 2020, stressed out that “stock markets are non- 
ergodic”.13 Since non-ergodicity implies sample-specificity, the findings 
of the current research indicate that this appears to be the case for any 
other financial asset market also.14 

To harden this argument, the following simulation experiment is 
implemented: Using Eq. (8) it follows that, 

(1 − p(x) ) =
∫ xp(x)

xMIN

(α − 1)xα− 1
MINx− α, (14)  

and one can easily show that, 

xp(x) =

[

(1 − α)
[
(1 − p(x) )
(α − 1)xα− 1

MIN
+

1
(1 − α)x

(1− α)
MIN

] ] 1
(1− α)

(15) 

In Eq. (15), xp(x) denotes the corresponding value of the power law 
function that is associated with the probability p(x). Employing the es-
timates α̂ = 2.58 and x̂MIN = 6.36 for the S&P 500 and a random number 
generator giving values between 0 and 1, one can use Eq. (11) to 
simulate B = 100,000 synthetic samples of the distribution p(x) =
29.38x− 2.58. Each sample has T = 500 data observations. Interpreting 

the data as time series observations means about 42 years of data is 
analyzed. Fig. 8 shows the sample variance of each simulated sample. 
Clearly, one observes large outliers which is a typical characteristic of 
the distribution. Specifically, in 66.19% of the synthetic samples, the 
theoretical means are underestimated. Since the process p(x) =

29.38x− 2.58 governs the variance, underestimation of the variance re-
sults in inflated t-statistics. More precisely, from Eq. (6) it follows that if 

σ̂2
< σ2⟹

̂
COV

(
β̂
)
< COV(β)

Hence, inflated t-statistics could be one of the potential reasons for 
why the majority of academic studies fails to replicate.15 Dealing with 
power laws where α < 3, the popular Law of Large Numbers works too 
slow to work, and given we are dealing with finite samples, we do not 
observe the mean of the distribution (Taleb, 2020). 

4.3. Robustness checks 

4.3.1. Are the results sample-specific? A statistical replication 
Due to data availability, the data that are used in the MLEs vary be-

tween 2,384 and 9,821 daily observations for Bitcoin’s realized variance 
and the S&P 500’s realized variance, respectively. To explore the stability 
of the estimated power law exponents, all samples are restricted to include 
only the last 2,384 observations so that the estimates across asset markets 
line up with the sample comprising the least number of observations.16 

The results reported in Table 4 show that the power law exponents are 
very close the figures reported in Table 3. Using the hypothesis test as 
discussed in section 4.2.4, all power law exponents are statistically 
significantly below 3, implying that none of the asset market variance 
processes exhibits a defined second moment. The results of these robust-
ness checks strongly support the previous evidence. 

4.3.2. Are the results method- or sample-specific? A scientific replication 
While the robustness check in section 4.3.1 satisfies a statistical replica-

tion, Hou et al. (2020) express the urge for implementing scientific replica-
tions of reported results. Hence, in the following, Hou et al. (2020) is followed 
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Fig. 6. Hill plot for the U.S.$/U.K.£ exchange rate 
variance. 
This figure shows the Hill plot for the U.S.$/U.K.£ ex-
change rate variance. The Hill plot shows the estimated 
α̂ as a function of xMIN defining the minimum value of 
the variance that is governed by the power law, given 
by the maximum likelihood estimator (MLE), 

α̂ = 1+ N
(
∑N

i=1ln
(

xi
xMIN

))− 1
, 

where α̂ denotes the MLE estimator, xi is the annualized 
daily realized variance of the U.S.$/U.K.£ exchange 
rate, provided xi ≥ xMIN, and N denotes the number of 
observations for which xi ≥ xMIN is satisfied. (Note for 
improved visualization, the graph is cut off at obser-
vation x4,459 which is common practice.)   

13 Marks Spitznagel’s presentation is available here:https://www.youtube. 
com/watch?v=gGpt8VNpCxw.  
14 Note that Mark Spitznagel’s hedge fund strategy is built upon the non- 

ergodicity feature of financial markets. 

15 Note that this result supports Schwert’s (2003) hypothesis that asset pricing 
anomalies could be simply statistical aberrations that attracted the attention of 
academics and practitioners. 
16 It is noteworthy, that according to Hamermesh (2007), this type of repli-

cation is not a ‘scientific replication’ but a ‘statistical replication’ as the same 
statistical model is used to estimate the realized variances as given by Equation 
(3) in association with a different sample period. 
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and a scientific replication in the spirit of Hamermesh (2007) is imple-
mented, by first (i) using a similar but not identical methodology to estimate 
the realized variance, and second (ii), this methodology is implemented for a 
different population. Furthermore, one can argue that finance research 
typically operates with monthly as opposed to daily data.17 

To address these concerns, daily data for the S&P 500 are retrieved 
covering the period from March 4, 1957 when the original S&P 500 com-
panies were added to the index until March 31, 2021.18 Realized monthly 
variances are computed as 

∑22
j=1R2

j,t , where Rj,t denotes the daily return of the 
S&P 500 on day j in month t. Specifically, assuming 22 trading days per 
month, the realized monthly variances are computed using non-overlapping 
squared daily observations. For instance, the realized variance for the first 
month in this sample is the sum of squared daily S&P 500 returns from March 
5, 1957 until April 3, 1957, whereas the realized variance for the second 
month is the sum of squared daily S&P 500 returns from April 4, 1957 until 
May 6, 1957, and so on. This approach results in 732 consecutive (non- 
overlapping) realized monthly variances covering the March 1957 to March 
2021 period and is plotted in Fig. A.1. in the appendix.19 Descriptive statistics 
are reported in Table A.1. in the appendix. 

Using these data, again the MLE as outlined in section 4.2.2 is 
implemented. Strikingly, it can be found that α̂ = 2.56 which is virtually 
the same estimate as reported in Table 3. Further, the estimated x̂MIN =

26.83 suggests that 20% of the sample are governed by the power law 
process.20 The KS-test results in a p-value of 0.6680 suggesting that one 
cannot reject the power law null hypothesis. This study interprets this 
result as strong evidence supporting the key results.21 

4.4. Conclusion 

Recent research documented that the vast majority of studies fails 
scientific replication. Why is that? While earlier research argued that 
‘cherry-picking’ could be one possible explanation, this study argues 
that ‘cherry picking’ is probably not the underlying root cause for this 
issue. In contrast, it is argued that it is possible to identify whether or not 
research methodologies employed in a specific research environment 
are valid. A hypothetical root cause for the high rate of replication 
failures in financial economics could be that many researchers correctly 
use incorrect methods, that is, these methods do not work well, given the 
very nature of financial markets. 

Furthermore, Lux and Alfarano (2016, p.5) argue that the literature 
found a consensus in rejecting the Levy hypothesis as a power law 
exponent of 3 means that the decay of the outer part of the distribution is 
faster than allowed by this family of distributions. Modeling the varia-
tion of financial asset returns using realized variances compounded via 
daily high and low prices which incorporates more information than two 
arbitrary points in the data series (the closing prices), and using MLE, 
the results of this study strongly indicate that the power law exponent is 
statistically significantly less than 3 across different financial asset 
markets. It is also shown that the results are neither sample-specific nor 
method-specific. 

The results of this study may have some important implications for 
the education system. It is interesting to note that the well-known psy-
chologist Jordan Petersen in his publicly available lecture on ‘openness, 
intelligence and creativity’, expressed his concerns for why students in 
psychology are not sufficiently educated in using power laws, respec-
tively, Pareto distributions, despite of the fact that creative production 
in any given domain are governed by power laws.22 Peterson also 
highlights that power laws are “the inevitable consequence of multiple 
trades that are conducted randomly.”23 Assuming that financial mar-
kets, which serve the fundamental purpose of trading, would not be 
governed by power laws seems irrational. In this regard, Taleb (2020, 
p.91) stresses out that “there are a lot of theories on why things should 
be power laws, as sort of exceptions to the way things work probabi-
listically. But it seems that the opposite idea is never presented: power 
laws should be the norm, and the Gaussian a special case.” Given the 
evidence documented in Hou et al. (2020) in association with the results 
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Fig. 7. Hill plot for the Bitoin variance. 
This figure shows the Hill plot for the Bitcoin variance. 
The Hill plot shows the estimated α̂ as a function of xMIN 
defining the minimum value of the variance that is gov-
erned by the power law, given by the maximum likelihood 
estimator (MLE), 

α̂ = 1+ N
(
∑N

i=1ln
(

xi
xMIN

))− 1
, 

where α̂ denotes the MLE estimator, xi is the annualized 
daily realized variance of Bitcoin, provided xi ≥ xMIN, and 
N denotes the number of observations for which xi ≥ xMIN 
is satisfied. (Note for improved visualization, the graph is 
cut off at observation x2,365 which is common practice.)   

17 The reason for choosing daily data in the first place was to have sufficient 
statistical power to estimate the power law exponent and given that rare events 
are rare in their very nature, the usage of daily makes it more likely to reveal 
power law processes.  
18 This data set comprises 16,131 daily observations.  
19 From Fig. A.1. it is evident that the spikes in observations 351 and 722 

correspond to October 1987 and March 2020.  
20 For 147 out of 732 observations xi ≥ xMIN is satisfied.  
21 As an additional robustness check one might think of implementing 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models 
for the return series where one makes use of a t-distribution for modeling the 
innovation process in an attempt to account for fat tails. If the optimal degrees 
of freedom were less than 5, the results would be supported as it would imply 
an infinite kurtosis. Unreported results show that such a model implemented for 
the S&P 500 suggests instability because the sum of the point estimates for the 
variance equation is larger than one. Hence, this study does not make use of any 
GARCH-type models. 

22 Petersen emphasizes that the natural law governing this process a Pareto 
distribution and was studied in detail in the domain of scientific productivity by 
De Solla Price (1965). The lecture is available on Petersen’s Youtube channel: 
https://www.youtube.com/watch?v=fjtBDa4aSGM&t=0s.  
23 ebenda. 
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Table 4 
Estimates for power law models in the later subsample.  

Metric S&P 500 Gold Crude Oil U.S. dollar Bitcoin 

α̂  2.43 2.71 2.29 2.84 3.02 

x̂MIN  2.75 0.35 15.22 2.76 224.33 
KS test 

(p-value) 
0.2840 0.4590 0.8260 0.1010 0.1660 

N 2,384 2,384 2,384 2,384 2,384 
Period 

(MM/DD/YYYY) 
10/11/2011- 
3/31/2021 

9/7/2011- 
3/31/2021 

9/6/2011- 
3/31/2021 

1/9/2012- 
3/31/2021 

9/17/2014- 
3/31/2021 

This table reports the estimates for power law models p(x) = (α − 1)xα− 1
MINx− α using maximum likelihood estimation (MLE). The tail exponent α is estimated as, 

α̂ = 1+N

(
∑N

i=1
ln
(

xi

xMIN

))− 1

,

where α̂ denotes the MLE estimator and N denotes the number of observations, provided xi ≥ xMIN. In this model, the estimate x̂MIN is assessed via the Kolmogor-
ov–Smirnov or KS statistic, which is the maximum distance between the CDFs of the data and the fitted model: 
D = MAXx≥xMIN |S(x) − P(x) |,

where S(x) is the CDF of the data for the observation with value at least xMIN, and P(x) is the CDF for the power law model that best fits the data in the region x ≥ xMIN. 
The estimate x̂MIN is the value of xMIN that minimizes D. Implementing the MLE, we use only the last 2,384 observations. 
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Fig. 8. Power law model simulation. 
Using P(X > x) = p(x) = Cx− α, B = 100,000 synthetic samples are created with α = 2.58 and xMIN = 6.36. Each sample has T = 500 data observations. For each sample 
the sample variance is computed. Fig. 6 plots the estimates for the sample variances across the synthetic samples. 
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of the current research, the evidence documented in this study suggests 
that power laws should be a part of the standard education in statistical 

methodologies used in social sciences.  

Appendix A. Appendix
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Fig. A.1. Monthly realized variance of the S&P 500.  

Daily data for the S&P 500 are retrieved covering the period from March 4, 1957 when the original S&P 500 companies were added in the index 
until March 31, 2021. Realized monthly variances are computed as 

∑
j=1

22Rj, t
2, where Rj,t denotes the daily return of the S&P 500 in month t. 

Assuming 22 trading days per month, the realized monthly variances are computed as non-overlapping observations. Fig. A.1. plots the evolution of 
732 realized monthly S&P variances covering the March 1957 to March 2021 period.  

Table A.1 
Descriptive statistics.  

Metric S&P 500 

Mean 22.51 
Median 11.95 
Maximum 700.57 
Minimum 1.25 
Std. Dev. 49.67 
Skewness 9.95 
Kurtosis 119.66 
Observations 732 

This table reports the descriptive statistics 
for the monthly realized variance for the 
S&P 500. The sample is from March 1957 
until March 2021. 
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