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This paper investigates a model of default in financial networks where the decision by one agent 
on whether or not to default impacts the incentives of other agents to escape default. Agents’ 
payoffs are determined by the clearing mechanism introduced in the seminal contribution of 
Eisenberg and Noe (2001). We first show the existence of a Nash equilibrium of this default 
game. Furthermore, we develop an algorithm to find all Nash equilibria and guide regulatory 
intervention that relies on the financial network structure. The algorithm provides a ranking for 
the set of Nash equilibria for specific financial network structures, which can serve as a measure 
of systemic risk. Finally, we show that introducing a central clearing counterparty achieves the 
efficient equilibrium at no additional cost.

1. Introduction

Financial institutions carry out various transactions with each other, including risk–sharing and insurance. The architecture of 
the network of transactions between institutions can support financial stability because it enables them to share funding or transfer 
risk. But these linkages can also facilitate the diffusion of shocks through the system, due to chains of default and the domino effect. 
This is referred to as systemic risk. Systemic risk is costly for individuals, institutions and economies, as demonstrated by the last 
financial crisis. The obvious need for a stable financial system has led to a significant interest in policies that could reduce systemic 
risk and mitigate contagion.

This paper introduces a model of default in financial networks. We study a two-period economy where agents have a positive 
endowment in each period. The endowment represents agents’ cash flows from outside the financial system. We assume that agents 
hold each other’s financial liabilities and that this constitutes the network between them. These liabilities mature in the second 
period, and we assume that agents’ second-period endowments are small and deterministic, so that they face a risk of default. More 
specifically, the liabilities structure results in cyclical payments interdependencies that are simultaneously computed according to the 
clearing mechanism described in the seminal contribution of Eisenberg and Noe (2001). The clearing vector satisfies three criteria:
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• debt absolute priority, which stipulates that liabilities are paid in full in order to have positive asset;

• limited liability, which means that the payment made by each agent cannot exceed his inflows;

• equal seniority of all creditors, which implies pro rata repayments.

Agents can avoid default by storing part of their first-period endowment.

Due to complementarities in the payments, the decision taken by one agent to store part of his endowment exerts a positive 
externality on the other agents to whom he is connected.1 We show that the strategic interactions in the financial system modelled 
here can be investigated as a coordination game, called the default game, where agents’ decisions are simply whether to default or 
not. It is well known in the literature that coordination games will in general yield multiple pure–strategy Nash equilibria and that 
the set of pure–strategy Nash equilibria has a lattice structure—in particular, there are two extreme pure–strategy Nash equilibria. 
In our setting, the best equilibrium is the one where the largest number of agents choose the maximal action Non-Default and the 
worst equilibrium is the one where the largest number of agents choose the minimal action Default.

In the paper, we relate the multiplicity of Nash equilibria to the presence of a cycle of financial obligations.

Then, we develop a simple algorithm for finding all Nash equilibria of the default game. While there are easy algorithms for 
finding the maximal and minimal equilibria and relatively easy algorithms to compute all Nash equilibria in coordination games 
such as the default game (see Echenique, 2007), the advantage of the algorithm developed in this paper is that it relies on the 
financial network structure to inform the computation of Nash equilibria. By exploiting the network structure, our algorithm can 
quickly compute all Nash equilibria, and provide useful information on the strategic interactions between agents. In particular, the 
algorithm provides a ranking of the Nash equilibria in specific financial network structures. The ranking of the Nash equilibria is 
advantageous from a policy perspective since it can serve as a measure of systemic risk contribution of agents. More specifically, 
agents that default in all Nash equilibria will be called the first wave of default. Then, agents that default in all Nash equilibria except 
the highest Nash equilibrium will be called the second wave of default and so on.

In this paper, we show that the problem of inefficient coordination may arise in financial networks. Similar to other areas in 
economics, the strategic complementarities of payments due to the cyclical financial interconnections allow for the existence of 
multiple Nash equilibria. This gives rise to the question of which one of these equilibria will be the outcome of the underlying 
default game. From a policy perspective, given that inefficient coordination might pose a severe economic problem, there is a need 
for financial institutions fostering efficient coordination of agents’ decisions. Recently, central clearing has become the cornerstone 
of policy reform in financial markets since it limits the scope of default contagion. Our analysis shows that introducing a central 
clearing counterparty (henceforth, CCP) also allows agents playing different actions at different Nash equilibria to coordinate on the 
efficient equilibrium at no additional cost. As a consequence, our result reinforces the key role CCP’s play in stabilising financial 
markets.

This paper is structured as follows. In Section 2, we review the related literature. In Section 3 we present the model. We show 
the existence of a Nash equilibrium and develop an algorithm to find all Nash equilibria in Section 4, and Section 5 provides some 
policy implications of central clearing. Section 6 concludes the paper and Section A is an appendix devoted to the proofs.

2. Related literature

The impact of the financial network structure on economic stability has been a subject of ongoing interest since the last financial 
crisis (of 2008). The seminal contributions of Allen and Gale (2000) and Eisenberg and Noe (2001) were first to acknowledge that 
the financial network structure determines default contagion, and would serve as a basis for many subsequent contributions.

Allen and Gale (2000) investigate how symmetric financial networks lead to contagion, where links represent sharing agreements. 
Their key finding is that incomplete financial networks are less resilient and more vulnerable to contagion than their complete 
counterparts. Eisenberg and Noe (2001) develop a static model of default contagion in a financial network where agents hold each 
other’s financial liabilities and the activities and operations of each agent are condensed into one value: the operational cash flow. 
The repayment of liabilities will be interdependent, since whether an agent defaults or not is a result of his operational cash flow as 
well as the payments he receives from other agents. Eisenberg and Noe first prove the existence of a clearing payment vector that is 
unique under mild conditions. They also provide an algorithm to compute the clearing vector, which is important to predict chains 
of defaults.

Acemoglu et al. (2015) extend the Eisenberg–Noe model to accommodate agent exposure to outside shocks. They establish that 
up to a certain magnitude of shocks, the more connected the financial network is, the more stable it is; beyond this threshold, the 
connectedness of the network makes it more prone to contagion and thus more fragile. Elliott et al. (2014) introduce two concepts 
of cross-holdings that have distinctive and non-monotonic impact on default cascades. Integration, which measures the dependence 
on counterparties, expands the extent of default contagion but reduces the probability of the first failure; while diversification, 
which measures the heterogeneity of cross-holdings, increases the propagation of failure cascades but decreases the exposure level 
among pairs of financial institutions. Cabrales et al. (2017) investigate the optimal network structure that maximises risk-sharing 
benefits among interconnected firms while decreasing their risk exposure. Jackson and Pernoud (2020a,b) investigate how the 
network structure impacts agents’ investment strategies as well as optimal regulatory intervention. Other recent contributions include 
Teteryatnikova (2014) and Csóka and Herings (2016).
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1 The non-storage in our model can be equivalently interpreted as a bank run in the influential Diamond–Dybvig model.
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For a recent survey, see Jackson and Pernoud (2020a,b). Several approaches have been investigated to mitigate the domino 
effect in the financial network, such as central clearing and identifying the most systemically relevant financial institutions and then 
targeting them through cash injections. For instance, Demange (2018), following a similar approach to Eisenberg and Noe (2001), 
develops a new measure, called the threat index, which identifies the most systemically relevant agents for optimal targeted cash 
injection.

3. The model

Consider a two-period (𝑡 = 1, 2) economy with 𝑁 = {1,2, ..., 𝑛} agents. Agent 𝑖’s endowment in the first period is 𝑧1
𝑖
≥ 0 and in the 

second period is 𝑧2
𝑖
> 0. The endowment of agent 𝑖 in each period denotes the cash flows arriving from outside the financial system. 

We assume that agents hold each other’s liabilities, which mature in the second period. More specifically, given two agents 𝑖, 𝑗 ∈𝑁 , 
let 𝐿𝑖𝑗 ∈ℝ+ denote the liability that agent 𝑖 owes agent 𝑗. Then, agent 𝑖’s total liabilities are 𝐿𝑖 =

∑
𝑗∈𝑁 𝐿𝑖𝑗 . Meanwhile, ∑𝑗∈𝑁 𝐿𝑗𝑖 is 

the total assets of agent 𝑖. Let 𝜶 = (𝛼𝑖𝑗 )𝑖,𝑗∈𝑁 denote the matrix of relative liabilities, with entries 𝛼𝑖𝑗 =
𝐿𝑖𝑗

𝐿𝑖
representing the ratio of the 

liability agent 𝑖 owes to agent 𝑗 over the total amount of agent 𝑖’s liabilities.

Each agent 𝑖 can store an amount 𝑥𝑖 ∈
[
0, 𝑧1

𝑖

]
from his first-period endowment and receives an interest rate 𝑟 > 0 on his storage. 

Given the storage strategies of agents 𝐱 = (𝑥𝑖)𝑖∈𝑁 , let 𝝅𝐱 = (𝜋𝐱
𝑖
)𝑖∈𝑁 denote the clearing payment vector, uniquely defined as in 

Eisenberg and Noe (2001), such that for each agent 𝑖 it holds that

𝜋𝐱
𝑖
=min

{
𝑧2
𝑖
+ (1 + 𝑟)𝑥𝑖 +

𝑛∑
𝑗=1

𝛼𝑗𝑖𝜋
𝐱
𝑗
;𝐿𝑖

}
.

This means that 𝑧1
𝑖
− 𝑥𝑖 denotes the assets of agent 𝑖 in the first period and

𝑧2
𝑖
+ (1 + 𝑟)𝑥𝑖 +

𝑛∑
𝑗=1

𝛼𝑗𝑖𝜋
𝐱
𝑗
− 𝜋𝐱

𝑖

denotes the assets of agent 𝑖 in the second period.

The utility function of agent 𝑖 is 𝑈𝑖(𝑒1𝑖 , 𝑒
2
𝑖
) = 𝑒1

𝑖
+ 𝑒2

𝑖
, where 𝑒1

𝑖
represents assets withdrawn by agent 𝑖 at 𝑡 = 1 and 𝑒2

𝑖
is the asset of 

agent 𝑖 remaining at 𝑡 = 2 after receiving and making loan repayments. Therefore, the utility function of agent 𝑖, given the storage 
strategies of agents 𝐱 = (𝑥𝑖, 𝑥−𝑖), can be expressed as

𝑈𝑖

(
𝑧1
𝑖
− 𝑥𝑖, 𝑧

2
𝑖
+ (1 + 𝑟)𝑥𝑖 +

𝑛∑
𝑗=1

𝛼𝑗𝑖𝜋
𝐱
𝑗
− 𝜋𝐱

𝑖

)
= 𝑧1

𝑖
+ 𝑧2

𝑖
+ 𝑟𝑥𝑖 +

𝑛∑
𝑗=1

𝛼𝑗𝑖𝜋
𝐱
𝑗
− 𝜋𝐱

𝑖
.

4. Nash equilibria of the default game

First, we investigate further the economy introduced above. Observe that each agent will choose to store a positive amount of 
his first-period endowment if and only if he prefers (is better off) not to default; otherwise he will store nothing. If he prefers not 
to default, the combination of linear utility and the fixed interest rate implies that he will store his entire first-period endowment. 
Similarly, it is only the decision of an agent to default or not, rather than the amount of storage, that affects the other agents. This is 
because, if he defaults he will pay out his total second-period endowment and loan receipts, and if he does not default he will pay 
his total liability, neither of which is directly affected by his level of storage.

Therefore, the strategic interaction of agents in the economy can be investigated as a binary coordination game with two actions 
(Default) = 0 and (Non-Default) = 1 among which agents must choose. Now, define a threshold 𝜏𝑖

(
𝐚−𝑖

)
as the minimum amount agent 

𝑖 must pay in the second period to avoid default, given other agents’ actions 𝐚−𝑖 .

Proposition 1. The threshold 𝜏𝑖
(
𝐚−𝑖

)
is well-defined and decreasing in 𝐚−𝑖 .

Proof. The proof of Proposition 1, together with all our other proofs, appears in the Appendix. □

Proposition 1 shows that the threshold 𝜏𝑖
(
𝐚−𝑖

)
is well-defined. Observe that agent 𝑖 will choose to play 1 whenever

(1 + 𝑟)𝑧1
𝑖
− 𝜏𝑖

(
𝐚−𝑖

)
≥ 𝑧1

𝑖
.

Therefore, the best reply function of agent 𝑖 can be written as follows:

Ψ𝑖

(
𝐚−𝐢

)
=

{
1 if 𝑟𝑧1

𝑖
− 𝜏𝑖

(
𝐚−𝑖

)
≥ 0

0 otherwise. ( )

943

A profile of actions 𝐚∗ ∈ {0, 1}𝑁 is a Nash equilibrium if 𝑎∗
𝑖
=Ψ𝑖 𝐚∗−𝐢 .
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Fig. 1. Cyclical obligations. Unidirectional obligations.

The default game introduced above corresponds to a binary game of strategic complements. As defined in Topkis (1979), Milgrom 
and Roberts (1990), and Vives (1990) strategic complementarities arise if an increase in one agent’s strategy increases the optimal 
strategies of the other agents.2

Theorem 1. There exists a pure–strategy Nash equilibrium of the default game.

Theorem 1 shows the existence of a pure–strategy Nash equilibrium. Understandably, the existence of a pure–strategy Nash 
equilibrium follows from the strategic complementarities between agents’ actions, since the decision of an agent not to default makes 
it easier for other agents not to default too.

It is established in the literature that a binary game of strategic complements will in general have multiple pure–strategy Nash 
equilibria with a lattice structure. In particular, this class of games has two extreme equilibria: the best equilibrium is the equilibrium 
where the largest number of agents choose the maximal action (Non-Default) = 1; the worst equilibrium is the equilibrium where the 
largest number of agents choose the minimal action (Default) = 0.

For simplicity, for the remainder of this paper, we assume that at a Nash equilibrium of the default game, no agent is indifferent 
between (Non-Default) = 1 and (Default) = 0, which is likely to be the case.3 The following result highlights the connection between 
the multiplicity of equilibria and the structure of the financial network.

Proposition 2. If the default game has multiple Nash equilibria then, the financial network has cyclical obligations.

Proposition 2 shows that the presence of a cycle of financial obligations is necessary for the multiplicity of Nash equilibria as 
demonstrated in Fig. 1. Eisenberg and Noe (2001) term this phenomenon cyclical interdependence and illustrate it as follows: “A 
default by Firm A on its obligations to Firm B may lead B to default on its obligations to C. A default by C may, in turn have a feedback effect 
on A.”

In a recent contribution Roukny et al. (2018) investigate a model where defaulting agents only recover a fraction of their assets 
and establish that multiple equilibria occur if and only if there is a cycle of financial liabilities. More specifically, their result shows 
that the contagion induced by an exogenous shock is not unique if and only if there exists a cycle composed of agents such that 
each agent’s default depends on the default of his predecessor in the cycle. Interconnectedness, which is the main feature of the 
fabric of financial networks, provides therefore a feedback mechanism that can generate multiple equilibria. Similarly, our analysis 
highlights in a strategic setting that cyclical financial liabilities are the key condition for multiple equilibria. While in both settings 
multiple equilibria arise due to change in each agent’s assets between Default and Non Default, partial recovery of assets in Roukny 
et al. (2018) or forgoing interest rate in this paper. In Roukny et al. (2018), agents are exposed to exogenous shocks that propagate 
mechanically in the financial network whereas in this paper agents make strategic decisions on whether to default or not.

The next example illustrates the default game.

Example 1. Consider an economy of eight agents connected through their ownership of each other’s liabilities, among which 
only the first seven agents are strategically relevant as illustrated in Fig. 2. Agents’ endowments in the first period are 𝐳1 =
(40,45,40,25,30,75,70) and in the second period are 𝐳2 = (3,3,3,3,3,3,3) and the interest rate is 𝑟 = 0.1. All agents have the same 
utility function 𝑈𝑖(𝑒1𝑖 , 𝑒

2
𝑖
) = 𝑒1

𝑖
+ 𝑒2

𝑖
. This will result in three Nash equilibria (0, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0) (Fig. 4), (1, 1, 1, 1, 1, 1, 1)

(Fig. 5), for which computation will be provided at a later stage.

2 See, Bulow et al. (1985), Sobel (1988), Echenique and Sabarwal (2003), Amir (2005), Echenique (2007) and Barraquer (2013) for other economic applications of 
games of strategic complements.
944
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Fig. 2. A financial network with eight agents.

4.1. A financial network with a unique SCC

In the following, we will show that the close relationship between the multiplicity of Nash equilibria and the cyclical financial 
interconnections as shown in Proposition 2 is useful to solve for pure–strategy Nash equilibria of the default game. More specifically, 
we will provide an algorithm to find all pure–strategy Nash equilibria of the default game.

Recall that the financial network is strongly connected if there is a path of obligations between all pairs of agents. A strongly 
connected component (henceforth, SCC) of the financial network is a maximal4 strongly connected subnetwork.

First, for simplicity, we consider the case of a financial network with a unique strongly connected component. We will use the 
following notion of ear decomposition of a network, which is useful given its close relationship to network connectivity. An ear 
decomposition of a network is a partition of the edges into directed paths, called ears. More precisely, an ear decomposition of a 
network is a partition of the edges into 𝐸𝑝, … , 𝐸𝑗, … , 𝐸1 such that

• for each 𝑗 = 𝑝, … , 1 it holds that 𝐸𝑗 = {(𝑣𝑗1 , 𝑣𝑗2 ), … , (𝑣𝑗(𝑘−1) , 𝑣𝑗𝑘 )} is a directed path such that the start agent 𝑣𝑗1 and the end agent 
𝑣𝑗𝑘

are in 𝐸𝑗−1 ∪… ∪𝐸1 but the internal agents of 𝐸𝑗—that is, 𝑣𝑗2 , … , 𝑣𝑗(𝑘−1)—are not in 𝐸𝑗−1 ∪… ∪𝐸1.

• 𝐸1 is a cycle. That is, 𝑣11 = 𝑣1𝑘 .

A financial network is strongly connected if and only if it has an ear decomposition. In the following, we will rely on the ear 
decomposition to provide an algorithm to find all pure–strategy Nash equilibria of the default game of a financial network with a 
unique SCC.

Given an ear 𝐸𝑗 ∈ {𝐸𝑝, 𝐸𝑝−1, … , 𝐸1}, and an internal agent 𝑣𝑗𝑙 ∈ {𝑣𝑗2 , … , 𝑣𝑗(𝑘−1) }, we define the activation outflow 𝐴𝑗 (𝑣𝑗𝑙 ) as the 
minimum outflow of the start agent 𝑣𝑗1 that is sufficient for 𝑣𝑗𝑙 to escape default, conditional on the activation outflows of internal 
agents in preceding ears.

The algorithm, which we call USCCNE, builds on the above definitions and goes as follows:

Algorithm 1. (USCCNE)

(1) Compute an ear decomposition of the network (𝐸𝑝, … , 𝐸𝑗, … , 𝐸1)

(2) For each ear 𝐸𝑗 =𝐸𝑝, 𝐸𝑝−1, … , 𝐸1
(a) Calculate the activation outflow from start agent 𝑣𝑗1 that is sufficient for each internal agent 𝑢 = 𝑣𝑗2

, … , 𝑣𝑗(𝑘−1) not to default, 
conditional upon the previous activation outflows of internal agents in {𝐸𝑝, 𝐸𝑝−1, … , 𝐸𝑗+1}

(b) Add calculated activation outflows to list 𝑗 = {(𝑣𝑗2, 𝐴𝑗 (𝑣𝑗2)), ...}.

(3) For each activation outflow profile in 𝑝×… ×1, calculate repayment inflows into 𝑣𝑝1 , … , 𝑣11 and verify that the corresponding 
strategy profile is an equilibrium. Drop any strategy profiles that are not equilibria.

The USCCNE algorithm makes the search for equilibria a recursive problem. More specifically, the algorithm traverses the network 
following the structure of the ear decomposition, starting from the final ear 𝐸𝑝 and working backwards to 𝐸1. At each ear 𝐸𝑗 , the 
algorithm visits the internal agents outwards calculating their activation outflows from the start agent of the ear 𝐸𝑗 , conditional 
upon the activation outflows of internal agents in preceding ears. At this point, we can eliminate some combinations of strategy 
profiles for agents in 𝐸𝑗, 𝐸𝑗+1, ...𝐸𝑝. For example, the activation inflows for agents in 𝐸𝑗+1 may be satisfied by the agents in 𝐸𝑗 not 
defaulting. This would allow us to drop strategy profiles where the agents in 𝐸𝑗 do not default, but the agents in 𝐸𝑗+1 default. At 
the end, for each remaining strategy profile of activation outflows, the algorithm calculates repayment into each ear start agent and 
verifies whether the strategy profile is an equilibrium (that is, the repayment inflow is consistent with the activation outflow for each 
ear start agent).
945
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Proposition 3. (i) USCCNE identifies all equilibria. (ii) USCCNE returns only equilibria.

USCCNE is particularly fast when there are fewer edges (liabilities) in the default game, and as a result, fewer ears. The number 
of ears in the network is equal to |𝐸| = 𝑚 − 𝑛 + 1, where 𝑚 is the number of edges. When the network has fewer, longer ears, the 
algorithm traverses the network more quickly. For example, given a cycle network, traversal of the network and calculation of 
consistent strategy profiles is the completed in linear time.

The key feature of the USCCNE is that it transforms the SCC into partition of ears (directed paths), where the strategy profiles of 
internal agents in each ear are computed based on the outflow of the start agent, conditional on strategy profiles in preceding ears.

We revisit Example 1 to illustrate the computation of Nash equilibria using the USCCNE.

Example 1. (Revisited: Computing Nash equilibria) Consider again the financial network in Fig. 2. This network contains a unique SCC, 
{1, 2, 3, 4, 5, 6, 7}, which has three ears, 𝐸1 = {(1, 2), (2, 3), (3, 4), (4, 1)}, 𝐸2 = {(1, 5), (5, 6), (6, 4)} and 𝐸3 = {(5, 7), (7, 4)}.

In order to compute the Nash equilibria, we apply USCCNE. Fig. 3 shows the ears (directed paths) generated by the algorithm. 
Starting from 𝐸3, we can compute the activation outflow of agent 7: 𝐴3(7). Then we move to 𝐸2, calculate 𝐴2(5) and 𝐴2(6). Finally, 
the activation outflows for 𝐸1 would be 𝐴1(2), 𝐴1(3) and 𝐴1(4) (conditional on previous activation levels). We obtain the following 
3 = {(7, 40)}, 2 = {(6, 37.5), (5, 39)}. The calculation of 1 is then conditional on 3 ×2. Then, the algorithm checks the different 
remaining combinations 3 ×2 ×1 for potential equilibria. For instance, one possibility is that the outflow from agent 5 through 
ear 1 exceeds 40, the outflow from agent 1 through ear 2 exceeds 39 and the outflow from agent 1 through ear 1 to exceed 7.5. 
In this case, agents 7, 5, 6, 2, 3 and 4 do not default and pay their total liabilities. Finally we verify the repayment into each ear 
start agent (agents 1 and 5) are consistent with their outflows hence resulting in an equilibrium (the best equilibrium with no agent 
defaulting).

4.2. Policy implications of the USCCNE algorithm

The key feature of the USCCNE algorithm is that (based on the ear decomposition) it exploits the transformation of the SCC into 
ears (a partition of the edges of the network into directed paths).

Not only the USCCNE algorithm computes all the Nash equilibria of the default game, but it could also provide some concrete 
policy implications. Indeed, the USCCNE algorithm could guide regulatory interventions to achieve the best equilibrium by targeting 
the start agent of each ear. More specifically, if by relying on outside cash injection or regulation the outflow of the start agent of 
each ear is made equal to his best equilibrium outflow, then the best equilibrium is achieved. Note that both outside cash injection 
946

or regulation are budget neutral as policy interventions.
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Fig. 6. A financial network with no overarching seed agent.

It is worth noting that the properties of the USCCNE algorithm can be even exploited further so that the best equilibrium could 
be achieved by targeting a smaller subset of ears’ start agents as seed agents. In the following we will focus on a special case, where 
it is enough for the policy intervention to target just one seed agent to achieve the best equilibrium.

Definition 1. We say that the start agent of the second ear is an overarching seed agent if his outflow determines the outflows of all 
other ears’ start agents.

In interpretation, an overarching seed agent belongs to every cycle of the network, which if targeted adequately would permit to 
achieve the best equilibrium. In the following, we revisit Example 1 to illustrate policy intervention with an overarching seed agent.

Example 1. (Revisited: Policy intervention with an overarching seed agent) Consider again the financial network in Fig. 2. Using the 
USCCNE algorithm as described in Figs. 3, 4 and 5, we observe that agent 1 is an overarching seed agent and hence can be potentially 
targeted by policy intervention. More specifically, if by relying on outside cash injection or regulation the outflow of agent 1 is made 
equal to his best equilibrium outflow, that is 50, then the best equilibrium (1,1,1,1,1,1,1) is achieved.

Recall that the USCCNE algorithm ranks the internal agents in each ear by their order of non-default according to their activation 
outflows on each ear. Since in the presence of an overarching seed agent all Nash equilibria strategy profiles can be determined by 
his outflow of just one agent (the overarching seed agent) we have the following stronger prediction.

Corollary 1. If there is an overarching seed agent, the USCCNE algorithm provides as well a ranking for the set of Nash equilibria.

Corollary 1 shows that if there is an overarching seed agent the USCCNE algorithm developed in this paper based on the concept 
of ear decomposition provides the stronger property of ranking Nash equilibria within the SCC (as in Example 1). The ranking of 
Nash equilibria within the SCC follows from the fact that outflow of the overarching seed agent determines the outflows of each ear 
start agent, and consequently the outflows of all agents.

In this case, the ranking of Nash equilibria can be thought of as a measure of systemic risk based on waves of default. That is, the 
agents that default in all Nash equilibria will be called the first wave of default. Then, agents that default in all Nash equilibria except 
the highest Nash equilibrium will be called the second wave of default and so on.

Observe that, as illustrated in Fig. 6, not all financial networks have an overarching seed agent. This is due to the presence of 
non-overlapping cycles, permitting independent coordination on the best equilibrium within each cycle.

Finally, it is worth noting that the subset of ears’ start agents constitutes a feedback vertex set (FVS) of the financial network, 
which is a subset of agents 𝑆 such that removing 𝑆 makes the financial network acyclic (or equivalently, removes cyclical liabilities).
947

Proposition 4. If there is an overarching seed agent, USCCNE has a worst-case time complexity of (𝑛4).
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The key feature of USCCNE is that it allows us to traverse the network recursively, from outer ears to interior ears of the 
network. At each ear, we can collect information about the strategy profiles in outer ears that are consistent with some outflow from 
the current ear. If there is an overarching seed agent, then the set of strategy profiles consistent with equilibrium grows at worst 
linearly, as the strategies of outer ears can be determined straightforwardly from the repayments of interior ears. When we reach the 
overarching seed agent, we then need to check the remaining strategy profiles are consistent with equilibrium after accounting for 
cyclical obligations, for example by solving the linear system of repayments conditional upon each strategy profile.

4.3. Welfare

Now we investigate efficient outcomes among equilibrium and non equilibrium outcomes. Recall that the best equilibrium is the 
most efficient outcome only among equilibrium outcomes. To do so, we take a standard utilitarian approach and consider the social 
welfare function:

(𝐱)
def
=

𝑛∑
𝑖=1

𝑈𝑖

(
𝑧1
𝑖
− 𝑥𝑖, 𝑧

2
𝑖
+ (1 + 𝑟)𝑥𝑖 +

𝑛∑
𝑗=1

𝛼𝑗𝑖𝜋
𝐱
𝑗
− 𝜋𝐱

𝑖

)
,

which is the sum of utilities achieved by agents given their storage strategies 𝐱.

Proposition 5. The (possibly non-equilibrium) outcome where each agent stores his first period endowment is the most efficient outcome.

Proposition 5 shows that the possibly non-equilibrium outcome where each agent stores his first period endowment is the most 
efficient outcome. Understandably, this result holds since paying out a dividend in the first period for any agent amounts to forgoing 
the opportunity for all agents to earn the risk-free return of 𝑟.
In order to achieve the set of efficient outcome where each agent stores his first period endowment, we can consider a two steps 
policy intervention through outside cash injection. In the first step use the policy intervention described in Section 4.1 to achieve 
the best equilibrium. Then as a second step target the remaining defaulting agents using the again maximal trees developed in the 
algorithm. It is worth noting that while the first intervention is budget neutral the second one might not be budget neutral.

4.4. Arbitrary financial network

Now we investigate the case of an arbitrary financial network. Recall that an arbitrary financial network can be transformed into 
a directed acyclic graph (henceforth, DAG)—that is, a network with no cycles–by contracting each SCC into a single large node (see 
Figs. 6-7).

The algorithm described here MSCCNE is a generalisation of USCCNE. It consists of applying the USCCNE to each SCC in any 
given arbitrary network starting by the SCCs with no incoming link from any outside node or group of nodes, which are the SCCs 
that are not impacted by the other nodes in the network, and moving along the chain of SCCs.

In the following, we will rely on transitive reduction, which is a uniquely defined operation on a DAG, to compute the pure–strategy 
Nash equilibria of a financial network with multiple SCCs. A transitive reduction of a DAG is the network representation with the 
fewest possible links that preserves the chains of default of the original financial network (see Figs. 8 and 9). It is hence constructed 
by removing all the links that are unnecessary for the chain of default to be realised and only the nodes which were connected by a 
path in the original network remain connected in the transitively reduced network. For instance, if 𝐴 links to 𝐵, and 𝐵 links to 𝐶 , 
then the transitive reduction removes the link from 𝐴 to 𝐶 , if it exists.

Observe that, from the minimality of links in the transitive reduction, there exists a unique partition of the set of agents  =
{𝑊1, … , 𝑊𝑘} such that 𝑊1 corresponds to the SCCs with no incoming links, 𝑊2 corresponds to the SCCs with only incoming links 
from 𝑊1, 𝑊3 corresponds to the SCCs with only incoming links from 𝑊1 ∪𝑊2, and so on.

Then, the algorithm USCCNE can be easily extended to compute the Nash equilibria with multiple SCCs. The algorithm, which 
we call MSCCNE, goes as follows:

(1) Apply USCCNE to find all Nash equilibria for each SCC in 𝑊1.

(2) For each p Nash equilibrium of SCCs in 𝑊1, apply USCCNE to find all Nash equilibria for each SCC in 𝑊2.

(3) For each Nash equilibrium of SCCs in 𝑊1 ∪𝑊2, apply USCCNE to find all Nash equilibria for each SCC in 𝑊3.

(4) Repeat the procedure until visiting all the elements of the partition  .

The MSCCNE algorithm is a simple algorithm that exploits a network decomposition technique to find all the pure–strategy Nash 
equilibria of a financial network. It is worth noting that the MSCCNE algorithm can be easily adapted to compute the clearing 
payment vector of Eisenberg and Noe (2001).

Corollary 2. Assume that the first-period endowment of each agent 𝑖 is zero—that is, 𝑧1
𝑖
= 0. Then the MSCCNE algorithm computes the 

clearing payment vector in Eisenberg and Noe (2001).

Recall that the clearing payment vector of Eisenberg and Noe (2001) is unique under mild conditions. Hence the existence of 
948

cyclical financial interconnections, while necessary for multiple equilibria, is not sufficient.
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At the heart of the seminal contribution of Eisenberg and Noe (2001) lies the elegant fictitious default algorithm that computes the 
unique clearing payment vector. The fictitious default algorithm goes as follows. First, determine the set of agents who cannot fulfil

their obligation, even when we assume that all agents receive their due payments. These agents will be called the first wave of default. 
Then, assume that the agents in the first wave of default pay their liabilities pro rata and the new defaulting agents will be called 
the second wave of default and so on until the algorithm terminates. In this way, the fictitious default algorithm produces a natural 
measure of systemic risk, which is the number of waves required to induce a given agent to default.

Echenique (2007) provides the most efficient algorithm for computing all pure–strategy Nash equilibria in the class of games of 
strategic complements, of which the default game is a special case. The algorithm elegantly checks whether there is another Nash 
equilibrium once the smallest and largest pure–strategy Nash equilibria are computed from classical algorithms (for example, Topkis 
(1979)).

While each of the above algorithms is clearly interesting in many aspects, arguably, the advantage of the MSCCNE algorithm 
developed in this paper is that it relies on the financial network architecture to compute the Nash equilibria. Generally, algorithms 
that exploit the financial network structure such as the algorithm developed in this paper, as well as having a clear computational 
advantage, provide valuable policy guidance to achieve the best equilibrium.

5. Policy implications of central clearing

From a policy perspective, in view of the multiplicity of Nash equilibria of the default game, there is the central policy question 
of equilibrium selection. In particular, it may be desirable to implement the best equilibrium in order to achieve financial stability 
and minimise the cost of default.

Given the best and the worst equilibria, agents in the network can be classified into three types5:

(1) agents that choose 0 in the worst equilibrium and 1 in the best equilibrium;

(2) agents that choose 0 in the worst equilibrium and 0 in the best equilibrium;

(3) agents that choose 1 in the worst equilibrium and 1 in the best equilibrium.

Note that agents of type (2) and (3) are not strategically relevant since they play the same action in the worst and the best 
equilibrium. Actually, we could construct a reduced financial network containing only agents of type (1). To do so, we first eliminate 
all outgoing links emanating from agents of type (3) and, since none of them defaults, add their liabilities pro rata to the cash flow 
of the agents intercepting their outgoing links. As for agents of type (2), given that they default and pay their inflows—i.e. their 
cash flow and the payments they receive from their debtors—they can be eliminated from the network by adding their cash flow to 
the cash flow of their creditors pro rata and by extending their ingoing liabilities links to their creditors pro rata so that the new 
liabilities directly link between their debtors and their creditors.

Recently, CCP has become increasingly the cornerstone of policy reform in financial markets. Introducing a CCP in the financial 
network modifies the structure of the financial network: each liability between a debtor and a creditor is erased and replaced by two 
new liabilities—one liability between the debtor and the CCP, and another one between the CCP and the creditor. As a consequence, 
one of the key benefits of central clearing is that, by breaking down the cyclical connections of financial liabilities, it reduces the 
aggregate level of default exposure, which in turn reduces default contagion.

There is a growing literature which investigates the benefits of central clearing. Duffie and Zhu (2011) show that CCP’s reduce 
significantly the counterparty risk even when clearing across multiple derivative classes. Zawadowski (2013) suggests that a CCP 
eliminates ex ante own default externalities by making banks contribute to the insurance of counterparty risk in the form of a 
guarantee fund. In other respect, Tirole (2011) argues that centralisation should be encouraged and CCP’s enhance transparency 
and allow for multilateral netting. Acharya and Bisin (2014) study how the lack of transparency between agents sharing default risk 
produces counterparty risk externality and show that this externality disappears when introducing a centralised clearing mechanism 
which ensures transparency. They prove that the main advantage of central clearing is enhancing the aggregation of information.

The following proposition points out another potential benefit of introducing central clearing in financial markets.

Proposition 6. Introducing a CCP in each SCC of the reduced financial network achieves the best equilibrium in the default game at no 
additional cost.

Proposition 6 shows that when a CCP intermediates the liabilities of each SCC of the reduced financial network,6 the best 
equilibrium is achieved and the CCP is budget neutral. As a consequence, in addition to reducing default contagion by eliminating 
the cyclical financial interconnections, central clearing can also serve as a coordination device that achieves the best equilibrium of 
the default game.

The following example illustrates this point.

5 Obviously, it is not possible for an agent to choose 1 in the worst equilibrium and 0 in the best.
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6 That is, the financial network with only strategic relevant agents.
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Fig. 12. The intermediate equilibrium.

Example 2. Consider an economy of six agents connected through their ownership of each other’s liabilities, among which only 
the first five agents are strategically relevant. Agents’ endowments in the first period are 𝐳1 = (22,22,75,180,100) and in the second 
period are 𝐳2 = (3,3,3,3,3) and the interest rate is 𝑟 = 0.1. All agents have the same utility function 𝑈𝑖(𝑒1𝑖 , 𝑒

2
𝑖
) = 𝑒1

𝑖
+ 𝑒2

𝑖
. The financial 

liabilities of agents to each other are illustrated in the network in Fig. 10.

This financial network contains a unique SCC {1, 2, 3, 4, 5}. To compute the Nash equilibria, we apply the USCCNE algorithm 
described above. We find three Nash equilibria—the best equilibrium (1, 1, 1, 1, 1), the intermediate equilibrium (0, 0, 0, 1, 1), and the 
worst equilibrium (0, 0, 0, 0, 0)—which we illustrate in Figs. 11-13.

Adding a CCP will result in a new financial network as shown in Fig. 14, with the following liabilities vector:

𝐋̃ = (5,5,10,10,10,−40) .

Given that there are no feedback effects in the presence of the CCP, the minimum cash flow for an agent 𝑖 to escape default is equal 
to the new liability 𝐿̃𝑖. Therefore, after the introduction of a CCP, it is easy to check that the best equilibrium is implemented at no 
951

additional cost since the inflows and outflows of CCP are equal.
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6. Conclusion

This paper shows that the introduction of a CCP allows agents playing different actions at different Nash equilibria to achieve the 
best equilibrium at no additional cost. As a consequence, central clearing can serve as a coordination device in financial markets. 
While our result reinforces the key role CCP plays in financial markets, as highlighted in several important contributions by Duffie 
and Zhu (2011), Tirole (2011), Zawadowski (2013) and Acharya and Bisin (2014), it remains to be seen whether other policies can 
be designed to minimise the number of defaults, such as identifying key agents and targeting them through either cash injection or 
minimum endowment requirement.
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Appendix A

Proof of Proposition 1. Recall that the default game corresponds to a binary coordination game with two actions (Default) = 0 and 
(Non-Default) = 1 among which agents must choose.

First, for each agent 𝑖 we will show that 𝜏𝑖
(
𝐚−𝑖

)
is well-defined given other agents’ actions 𝐚−𝑖 ∈ {0, 1}𝑁−1. To do so, for each agent 

𝑖 we consider an auxiliary economy with a modified network of liabilities, where we eliminate all outgoing links emanating from 
952

agent 𝑖 and add his liabilities pro rata to the cash flow of the agents intercepting his outgoing links. Hence, the matrix of relative 
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liabilities in the auxiliary economy is 𝜶̂ = (𝛼̂𝑘𝑗 )𝑘,𝑗∈𝑁 , where 𝛼̂𝑘𝑗 = 𝛼𝑘𝑗 if 𝑘 ≠ 𝑖 and 𝛼̂𝑘𝑗 = 0 otherwise. Moreover, the (augmented) 
second-period endowment of agent 𝑗 in the auxiliary economy is 𝑧̂2

𝑗
= 𝑧2

𝑗
+ 𝛼𝑖𝑗𝐿𝑖.

Now, given other agents’ actions 𝐚−𝑖, let 𝐱𝐚−𝑖 = (𝑥𝐚−𝑖

𝑗
)𝑗∈𝑁 denote the agents’ storage strategies, where 𝑥𝐚−𝑖

𝑗
= 𝑧1

𝑗
for each agent 

𝑗 ≠ 𝑖 such that 𝑎𝑗 = 1, and 𝑥𝐚−𝑖

𝑗
= 0 otherwise. Let also 𝝅𝐱𝐚−𝑖 = (𝜋𝐱𝐚−𝑖

𝑗
)𝑗∈𝑁 denote the clearing payment vector, uniquely defined as in 

Eisenberg and Noe (2001), such that for each agent 𝑗 it holds that

𝜋𝐱𝐚−𝑖

𝑗
=min

{
𝑧̂2
𝑗
+ (1 + 𝑟)𝑥𝐚−𝑖

𝑗
+

𝑛∑
𝑘=1

𝛼̂𝑘𝑗𝜋
𝐱𝐚−𝑖

𝑘
;𝐿𝑗

}
.

Therefore, since 𝑥𝐚−𝑖

𝑖
= 0 it holds that

𝜏𝑖
(
𝐚−𝑖

)
=max

{
𝐿𝑖 − 𝑧2

𝑖
−

𝑛∑
𝑗=1

𝛼̂𝑗𝑖𝜋
𝐱𝐚−𝑖

𝑗
; 0

}
. (A.1)

Hence, the threshold 𝜏𝑖
(
𝐚−𝑖

)
is well-defined.

Moreover, it follows from Lemma 5 in Eisenberg and Noe (2001) (see, also, Theorem 6 in Milgrom and Roberts (1990)) that 
𝝅
𝐱𝐚−𝑖 is increasing in 𝐱𝐚−𝑖 , which, in turn, is increasing in 𝐚−𝑖. Hence, it follows from (A.1) that the threshold 𝜏𝑖

(
𝐚−𝑖

)
is decreasing in 

𝐚−𝑖. □

Proof of Theorem 1. Since the threshold 𝜏𝑖
(
𝐚−𝑖

)
is decreasing in 𝐚−𝑖 it follows that the best reply function of agent 𝑖

Ψ𝑖

(
𝐚−𝐢

)
=

{
1 if 𝑟𝑧1

𝑖
− 𝜏𝑖

(
𝐚−𝑖

)
≥ 0

0 otherwise

is increasing in 𝐚−𝐢. By the Knaster–Tarski Theorem, there exists a fixed point of the following map:

Ψ ∶ {0,1}𝑁 ⟶ {0,1}𝑁

Ψ(𝐚) =
(
Ψ1

(
𝐚−𝟏

)
, ...,Ψ𝑛

(
𝐚−𝐧

))
,

which will be a Nash equilibrium of the default game. □

Proof of Proposition 2. Suppose not—that is, the default game has multiple equilibria and the financial network does not have 
cyclical obligations. Let 𝑅 denote the set of agents who play 0 in the worst Nash equilibrium and 1 in the best Nash equilibrium. 
Then the subnetwork induced by 𝑅 contains an agent 𝑖 that does not have any ingoing link. As a consequence, the inflow of agent 
𝑖 does not change between the worst equilibrium and the best equilibrium, and as a result agent 𝑖 will not change his choice in the 
worst equilibrium and the best equilibrium. This is a contradiction. □

Proof of Proposition 3. Part (i): Let 𝛾 be an equilibrium strategy profile. If 𝛾 is not in Γ∗, then it must be the case that the strategy 
profile 𝛾 was eliminated by the algorithm at some point, for example when the algorithm visited 𝐸𝑗 . But the algorithm would only 
eliminate strategy profile 𝛾 if there were no outflow from 𝑣𝑗1 consistent with the strategy profile 𝛾 , in which case, 𝛾 could not be an 
equilibrium strategy profile.

Part (ii): Part (ii) is ensured by Step 3 of USCCNE. If Step 2 generates any strategy profiles that are not equilibria of the default 
game, these will be identified upon the calculation of equilibrium repayments in Step 3 and subsequently removed. □

Proof of Proposition 4. Computing the ear decomposition in Step 1 can be performed in linear time. In step 2, each agent is visited 
once. When the algorithm visits ear 𝐸𝑗 , the activation outflows for each interior agent in ear 𝐸𝑗 are computed, along with the 
outflows that activate stratefy profiles carried backward from 𝐸𝑗+1, ..., 𝐸𝑝. By Corollary 1, when there is an overarching seed agent, 
these strategy profiles are bounded by the number of interior agents in 𝐸𝑗+1, ..., 𝐸𝑝. Therefore, the time complexity of Step 2 is (𝑛2).

By Corollary 1, the set of strategy profiles generated in Step 2 of the algorithm form a total order over the space {0, 1}𝑛 , leaving 
at most 𝑛 strategy profiles to check in Step 3. These strategy profiles can be checked in (𝑛3) time, for example by solving a system 
of linear equations.7 □

Proof of Proposition 5. Using clearing properties, it holds that

(𝐱) =
𝑛∑

𝑖=1
𝑈𝑖(𝑧1𝑖 − 𝑥𝑖, 𝑧

2
𝑖
+ (1 + 𝑟)𝑥𝑖 +

𝑛∑
𝑗=1

𝛼𝑗𝑖𝜋
𝐱
𝑗
− 𝜋𝐱

𝑖
)|

7 For example, repayments can be calculated as follows:

𝜋 = (𝐈−𝐃𝛼′)−1((𝐈−𝐃)𝐋+𝐃𝐳2)
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where 𝐃 is a diagonal matrix with entry 𝐷𝑗𝑗 = 1 if and only if 𝑗 is a defaulting agent.



Games and Economic Behavior 142 (2023) 941–954N. Allouch, M. Jalloul and A. Duncan

=
𝑛∑

𝑖=1
[𝑧1

𝑖
+ 𝑧2

𝑖
+ 𝑟𝑥𝑖 +

𝑛∑
𝑗=1

𝛼𝑗𝑖𝜋
𝐱
𝑗
− 𝜋𝐱

𝑖
]

=
𝑛∑

𝑖=1
[𝑧1

𝑖
+ 𝑧2

𝑖
+ 𝑟𝑥𝑖] +

𝑛∑
𝑖=1

[
𝑛∑

𝑗=1
𝛼𝑗𝑖𝜋

𝐱
𝑗
] −

𝑛∑
𝑖=1

𝜋𝐱
𝑖

=
𝑛∑

𝑖=1
[𝑧1

𝑖
+ 𝑧2

𝑖
+ 𝑟𝑥𝑖] +

𝑛∑
𝑗=1

[
𝑛∑

𝑖=1
𝛼𝑗𝑖𝜋

𝐱
𝑗
] −

𝑛∑
𝑖=1

𝜋𝐱
𝑖

=
𝑛∑

𝑖=1
[𝑧1

𝑖
+ 𝑧2

𝑖
+ 𝑟𝑥𝑖] +

𝑛∑
𝑗=1

𝜋𝐱
𝑗
−

𝑛∑
𝑖=1

𝜋𝐱
𝑖

=
𝑛∑

𝑖=1
[𝑧1

𝑖
+ 𝑧2

𝑖
+ 𝑟𝑥𝑖].

Hence, (𝐱) is maximised when 𝑥𝑖 = 𝑧1
𝑖
, for each agent 𝑖. □

Proof of Proposition 6. Adding a CCP in the middle of the financial network will net out the liabilities and will sort agents into two 
types: debtors and creditors to the CCP. Let node 0 represent the CCP, and 𝐿̃𝑖0 the liabilities to/from the CCP such that

𝐿̃𝑖0 =
∑
𝑗∈𝑁

𝐿𝑖𝑗 −
∑
𝑗∈𝑁

𝐿𝑗𝑖.

Hence, if 𝐿̃𝑖0 is positive (resp. negative), agent 𝑖 is a debtor (resp. creditor) to the CCP.

Since the best equilibrium can be reached, it follows that whenever agent 𝑖 receives all the liabilities from his debtors, he will 
choose not default. Therefore, it holds that

𝑧2
𝑖
+ (1 + 𝑟)𝑧1

𝑖
+

∑
𝑗∈𝑁

𝐿𝑗𝑖 ≥
∑
𝑗∈𝑁

𝐿𝑖𝑗 ,

which implies

𝑧2
𝑖
+ (1 + 𝑟)𝑧1

𝑖
≥ 𝐿̃𝑖0.

Hence, the non-default condition is satisfied for each agent in the network with liabilities intermediated by the CCP and the best 
equilibrium is reached. □
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