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Introduction

Despite there being a large body of work on restaurant rev-
enue management, restaurant reservations have seen little 
attention. Given the size of the restaurant industry, for 
which sales were forecast to exceed US$552 billion in 2017 
(Anonymous, 2017), the lack of attention is surprising. 
Compared to using walk-in customers, reservations can 
offer restaurants the opportunity to plan for the number and 
timing of parties. A big driver for filling a reservation book 
is maximizing revenue. Revenue can be increased by 
accepting more parties through careful scheduling of reser-
vations, taking higher value customers, or both. A challenge 
arises, however, in dealing with the variation in dining 
duration, an issue first identified by Kimes, Chase, Choi, 
Lee, and Ngonzi (1998). If one uses only the mean dining 
time, for example, there is a notable risk that tables will not 
be ready when customers arrive for their reservations 
(Thompson, 2015b). The issue becomes, then, one of a 
trade-off between revenue and customer service. Customers 
expect their tables to be ready (Kimes, 2008) and are not 
easily pacified when they are not (McDougall & Levesque, 
1999). So, while lower levels of customer service (i.e., more 
parties needing to wait for a table) can appear to yield higher 
revenue, that really is a false revenue, because it is unlikely 
to be sustainable.

In a recent study, Thompson (2015b) presented and eval-
uated 10 optimization models for restaurant reservations. 

Decisions in the models were inward oriented—the mix of 
tables—and outward oriented—the reservation slots that 
would be made available to customers. A limitation of all 
the models is that demand was treated as static and the mod-
els were evaluated assuming all customers arrived at their 
designated reservation time. Although restaurant customers 
may have an ideal dining time, many customers have some 
flexibility in when they would accept a reservation. For 
example, a search for restaurant reservations on the popular 
restaurant reservations portal OpenTable (2018) shows that 
available dining times are listed within two or more hours 
of the requested time. The restaurant reservations portal 
Resy (2018) does not request a desired dining time, but sim-
ply lists all the available reservation slots for the day. This 
listing of all times suggests that guests will pick the option 
that best meets their needs from the available reservation 
slots.

To address the issue of demand timing flexibility, we 
extend some of the models presented by Thompson (2015b) 
and use these models to evaluate the benefits of considering 
demand timing flexibility. We perform the evaluation using 
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variation between customers’ actual arrival times and their 
designated reservation times. Compared to rigid demand 
timing, we find that a top-performing model increased rev-
enue by over 21% when demand was completely flexible. 
Fortunately for restaurateurs, the increased revenue comes 
at the expense of only a small deterioration in customer ser-
vice, as measured by the percentage of parties who need to 
wait for a table upon arrival.

The structure of the remainder of the article is as follows. 
We review relevant literature; present our models of restau-
rant reservations with flexible demand timing, describe the 
variants of the models that we evaluate, describe the test 
scenarios we created to evaluate the models, and present 
results. We close with a discussion. An Online Appendix 
shows three models for a simple restaurant reservations 
context.

Literature Review

Kimes et al. (1998) were the first to coin the term “restau-
rant revenue management.” Most of the significant body of 
work since then has been related to restaurants taking walk-
in customers. Thompson (2010) provides a summary, and 
identified reservations as one of the little-addressed topics. 
Seven studies are of notable relevance to our current work: 
one experiment-based study, one survey-oriented study, and 
five modeling studies.

McDougall and Levesque (1999), examined, via an 
experiment, attempts to diminish the effects of a table that 
was not ready at the time of a reservation. The mitigation 
efforts they examined were apologies, assistance, compen-
sation, and assistance plus compensation. None of these 
efforts led to positive future intentions toward the restau-
rant. In a convenience survey of restaurant customers, 
Kimes (2008) found that customers had high expectations 
that tables would be ready at the time of the reservation. 
The consequence of these two studies is that a restaurant 
must honor reservations, at their designated times. This 
yields the key customer service metric in our study: the per-
centage of parties that need to wait for a table upon arrival.

The first modeling investigation into restaurant reserva-
tions was conducted by Bertsimas and Shioda (2003). They 
considered rolling decisions, with the choice to accept or 
decline customers with reservations and walk-in customers. 
Given the negative implications of customers having to 
wait for a promised reservation, from the studies noted ear-
lier, turning away customers with reservations would create 
serious problems for restaurateurs.

Thompson and Kwortnik (2008) examined reservations 
in a dining context like a cruise ship, where customers were 
seated in large batches to a predetermined mix of tables. 
They focused on whether reservations should be linked to 
specific tables or pooled by table size. In a survey they con-
ducted, four fifths of restaurants reported matching specific 

tables to reservations. By contrast, they observed that pool-
ing reservations by table size yielded fewer parties waiting 
for a table at the reserved time.

The decision of whether or not to take reservations was 
examined by Alexandrov and Lariviere (2012). They evalu-
ated strategies to alleviate the effect of no-show parties, 
which was a key factor in their models. Their models did 
not distinguish between party sizes and considered capacity 
in aggregate, instead of being time dependent. Our investi-
gation assumes that reservations will be taken. Time-
dependent capacity usage is important for our investigation, 
as are differences in party sizes, both in the amount of 
capacity (i.e., the size of tables) and the duration the capac-
ity is in use.

Guerriero, Miglioni, and Olivito (2014) presented sev-
eral models for strategic and operational revenue manage-
ment decisions in restaurants. Their TMP_3 and TMP_4 
models dealt with a problem somewhat like what we exam-
ine here, in that their models determined an ideal mix of 
tables and determined which reservation slots would be 
open to customers. Both models pooled tables of given 
sizes. TMP_3 required that tables not be combined, as we 
assume here, whereas TMP_4 allowed tables to be com-
bined to seat larger parties. Both models allowed the num-
ber of different size tables to change during the meal period, 
which is impractical. TMP_4 also failed to consider the 
time required to combine tables and whether the tables to be 
combined were proximal to each other. Finally, they made 
no attempt to evaluate how well a recommended solution 
might play out, given variation in dining durations. We 
note, however, that they did consider offering parties the 
option of dining later, if their desired dining time was not 
available, with no limits on the delay time.

Notably relevant to our work is Thompson (2015b), who 
presented and evaluated 10 different integer programming 
models for restaurant reservations. The models optimized 
the mix of capacity and the reservations to make available to 
customers, and distinguished between parties based on their 
size. Reservations were staggered and overlapped. There 
were five models each of two types, one where tables were 
pooled by size and the other where reservations were 
matched to specific tables. Both types of models were imple-
mented with fixed dining durations and with flexible dining 
durations. All five of the pooled-table models fell on the 
service-level-revenue pareto frontier, as did two of the 
matched-table models. The matched-table models proved 
much more difficult to solve. The best performing model in 
the study was a fixed-dining-duration, pooled-table model, 
where the dining duration for each size party was rounded-
up to the next higher number of 15-minute periods, plus one 
period. The results of Thompson’s (2015b) study supported 
Kimes et al.’s (1998) contention that reducing variation in 
dining duration would better enable restaurateurs to deter-
mine the timing of reservations.
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A limitation of Thompson’s (2015b) models is the rigid 
timing of customer demand. Relaxing that assumption is the 
basis for our study, which allows us to examine the effects 
of demand timing flexibility. Another assumption of 
Thompson’s (2015b) study was that all customers arrived at 
their designated reservation time. We relax that assumption 
in the current study.

Integer Programming Models for 
Restaurant Reservations With Flexible 
Demand

We use five of the pooled-table, pareto-optimal models 
presented by Thompson (2015b), extended to handle flex-
ible demand, supplemented with a model for handling 
fully flexible demand. Below, we define sets and indexes, 
parameters, and decision variables. Most of these were 
defined in Thompson (2015b); we note the components 
new to our models.

Indices and sets:

c = index for party sizes;
i = index for table seats;
j = index for specific tables;
l, l’ = index for dining length, in periods;
p, p’ = index for periods;
m = index for moved periods for demand (new);
C = set of customer (party) sizes;
P = set of dining periods in which reservations are 

accepted;
S = set of table sizes; and
Lc = set of possible meal durations (in periods) for a 

party of c people.

Parameters:

dmdcp = demand for reservations (in number of parties) 
of size c at period p;

lenminc = minimum meal duration (in periods) for a 
party of c people;

lenmaxc = maximum meal duration (in periods) for a 
party of c people;

lenpropcl = probability that a party of c people will take 
longer than l periods to dine;

mxtblsi = maximum number of individual tables of i 

seats = spaceavl
spacei







;

mxsftpr = maximum number of periods that demand can 
be shifted (new);

mxsftm = maximum proportion of demand in a period that 
can be shifted ± m periods, where m ⩽ mxsfrtr (new);

mxsftresc = maximum number of reservations that can 
be shifted for a party of size c (new);

spaceavl = space available for seating in the restaurant;
spacei = space required for a table of i seats; and
valuec = value of a party of c people.

Decision variables:

acpp’ = number of reservations for a party of size c, pre-
ferred in period p, but accepted in period p’ (new);

ni = number of tables with i seats; and
gclpi = number of reservations accepted for a party of 

size c, length (duration) l, at period p, placed in a 
generic (pooled) table with i seats.

The basic pooled-table model presented by Thompson 
(2015b), which he called TP1, is
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The objective expressed in Equation 1 maximizes the total 
value of the served parties. Equation 2 ensures that the 
space used for all tables does not exceed the available space. 
Equation 3 requires that the number of parties served, by 
period and table size, does not exceed the number of appro-
priate-sized tables. Equation 4 limits the number of parties 
served to the available demand. Equations 5 and 6 impose 
the integrality restrictions for the number of tables and par-
ties accepted. We have modified Equations 3, 4, and 6 from 
those presented by Thompson (2015b), to ensure parties can 
be seated only in tables with sufficient seats, an apparent 
oversight in the presentation of his models.

Thompson (2015b) implemented TP1 using a fixed din-
ing duration for each party size, which resulted in the sets  
Lc each having only a single member. He examined TP1(0), 
TP1(1) and TP1(2), which set the dining duration to the 
rounded-up number of periods plus zero, one, and two peri-
ods, respectively. These three variants, which we also con-
sider, all fell on the revenue-service-level pareto frontier.
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The second pooled-table model presented by Thompson 
(2015b), which he called TP2, is the combination of 
Equations 1, 2, 3, 4, 5, 6, and

g lenprop g c C
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l L l l
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The additional constraint set expressed in Equation 7 in TP2 
ensures that a sufficient proportion of longer duration par-
ties are included in the accepted reservations. We modified 
this constraint as well, for the reason noted earlier. A model 
parameter under user control is the size of the Sets Lc, for 
each party size. Thompson (2015b) limited the size of the 
sets to one and five periods more than the rounded-up mean 
dining duration.

TP1Dflex, our first new model, is an extension of TP1. 
TP1Dflex, which represents demand timing flexibility with 
new variables, is the combination of Equations 2, 3, 5, and
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In addition to the revenue originating from the reservations, 
the objective of TP1Dflex expressed in Equation 8 includes 

a small penalty for demand being moved, with larger move-
ments having larger penalties. This ensures the solution is 
parsimonious in its use of demand movements. Equation 9 
ensures that the total accepted reservations for each party 
size, originating from a period, does not exceed the demand 
for the period and party size. Equation 10 limits the amount 
that demand can be shifted, by party size, period, and shift 
amount. The limit is the rounded-down amount of demand 
that can be moved, shown in the right-hand side of Equation 
10. Equation 11 ensures, for each party size and period, that 
the number of parties served equals the amount of demand 
across the range of periods from which the demand can be 
shifted. Equation 12 allows one to limit the total amount of 
demand shifted to other periods for each party size. This 
would allow, for example, one to use the model to explore 
the response curve between revenue and the amount of 
demand being shifted. Finally, Equation 13 imposes the 
appropriate integrality restrictions for the reservation vari-
ables in this, more flexible model.

Note that when mxsftpr = 0, TP1DFlex is identical to 
TP1. When implementing TP1Dflex, there are the issues of 
the dining duration inflation and the value of mxsftpr used. 
As such, we use TP1Dflex (DurIncInPrds, mxsftpr) to fully 
describe the model.

The second new model that incorporates demand timing 
flexibility, TP2Dflex, is based on Thompson’s (2015b) TP2 
model. It is the combination of Equations 2, 3, 5, 7, 8, 9, 10, 
11, 12, and 13.

As with TP1DFlex, TP2Dflex has the issues of the size 
of the Sets Lc for each party size, so we use TP2Dflex(MaxLc, 
mxsftpr) to fully denote the model.

Our third new model, TP1DFullFlex is the combination 
of Equations 1, 2, 3, 5, and
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Equation 14 requires, for each party size, that the total num-
ber of parties served cannot exceed the total demand. 
Equation 15 imposes the appropriate integrality restrictions 
for the fully flexible demand. When implementing 
TP1DFullFlex, there is the issue of the dining duration 
inflation and so we use TP1DFullFlex(DurIncInPrds) to 
fully describe the model. The Online Appendix shows 
TP1(1), TP1Dflex (DurIncInPrds = 1, mxsftpr = 2), and 
TP1DFullFlex(DurIncInPrds = 1) for a sample problem.
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Model Variants Examined

We evaluated three variants of TP1Flex, based on different 
round-up values, and three variants of TP2Flex, based on 
different sizes of the Lc sets. The three TP1Flex round-up 
values were zero, one, and two periods, matching the values 
used by Thompson (2015b). We used limits of the rounded-
up mean dining duration plus one, two, and five periods for 
the three variants of TP2Flex. Thompson (2015b) used one 
and five periods only. For TP1DFullFlex we used limits of 
the rounded-up mean dining duration plus two periods.

For each of our TP1Flex and TP2Flex models, we exam-
ined four levels of demand timing flexibility, as summa-
rized in Table 1. This table reports the proportion of the 
demand that can be shifted. For example, at the highest 
level of flexibility, one third of demand can be shifted by ± 
45 minutes (± three 15-minute periods). At the lowest flex-
ibility, no demand can be shifted.

Test Scenarios

To test the benefits of demand flexibility across the models, 
we created a set of 3,840 test scenarios based on those of 
Thompson (2015b), as summarized in Table 2. Below, we 
give a brief description of the factors and factor levels. 
Thompson (2015b) provides a rationale for the inclusion of 
these factors, which we briefly note.

Our three restaurant sizes were 40, 80 and 160 seats. 
Although the largest size falls between the median and 
mean number of seats in a survey reported by Thompson 
(2011a), he included the smaller restaurant sizes because 
“the smaller pool of available tables would reduce flexibil-
ity” (Thompson, 2015b, p. 312). The reduced flexibility 
was manifested in the models, typically showing the poor-
est service levels in the 40-seat restaurant, where service 
was measured as the proportion of customers waiting for a 
table upon their arrival.

The demand load factor had four levels, from a high of 
120% of full capacity to a low of 90% of full capacity. Earlier 
studies, all for restaurants taking walk-in parties only, used 
load factors between 90% of full capacity (Thompson, 2015a) 

and 300% of full capacity (Thompson, 2011b), with the 
majority around or slightly over full capacity. Thompson 
(2015b) hypothesized that higher demand loads could lead to 
fuller restaurants and reduced service levels, which proved to 
be the case. Demand load comes into play as follows. The 
mean number of reservations per 15-minute period is equal to 
the number of seats in the restaurant, times the demand load 
factor divided by 100, divided by four (to convert to 15-min-
ute periods), divided by the mean party size (described below).

Two day lengths were used: 2 and 4 hours, each broken 
into 15-minute periods. Thompson (2015b) expected that 
service levels would decline under the longer day length 
because the longer day would give more timing flexibility 
and so results in fuller restaurants. In his study, the worst 
service levels occurred under the longer day length with 
four of the seven pareto-optimal models; while day length 
was not a distinguishing factor for the other three.

Mean party size had two levels: 2.5 and 3.0 people per 
party. Earlier studies reported mean party sizes of 2.5 peo-
ple (Kimes & Robson, 2004), 2.55 people (Thompson, 
2011b), and from 2.5 to 2.9 people across the days of the 
week (Kimes & Thompson, 2005). Although Thompson 
(2015a) explicitly stated no expectation about the effect of 
party size on customer service, the worst service level 
results for five of the seven pareto-optimal models occurred 
with the larger mean party size.

It has been observed previously that larger parties take 
longer to dine (Bell & Pliner, 2003; Kimes & Robson, 2004, 
and Kimes & Thompson, 2004). There were two levels of 
the factor that addressed this phenomenon. Across-party 
duration variation factor had ratios of the dining duration of 
a party of 10 to the dining duration of a party of one, being 

Table 1.
Demand Timing Flexibility.

Demand Timing 
Flexibility Level

Extent of Demand Movement

± 15 Min 
(1 Period)

± 30 Min 
(2 Periods)

± 45 Min 
(3 Periods)

0 0 0 0
1 0.333 0 0
2 0.667 0.333 0
3 1 0.667 0.333

Table 2.
Factors and Factor Levels for the Test Environments.

Factor
Number of  

Levels: Levels

Restaurant size (seats) 3: 40, 80, 160
Demand load factor (% of full capacity) 4: 90, 100, 110, 120
Day length (hr) 2: 2, 4
Mean party size (people) 2: 2.5, 3.0
Across-party duration variation (ratio 

of mean duration of a party of 10 
people to mean duration for a party 
of one person)

2: 1.5, 2.0

Within-party duration variation 
(coefficient of variation)

2: 0.15, 0.30

Average check variation (ratio of spend 
per person for parties of 10 to the 
spend per person of parties of one)

2: 0.9, 0.8

Mean arrival time discrepancy (mean 
of the actual arrival time minus the 
designated reservation time)

5: –10, –5, 0, 5, 10
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1.5 and 2.0, consistent with Thompson (2015a). Thompson 
(2015b) did not have any a priori expectations of the effect 
of party size on service. However, four (one) of the seven 
pareto-optimal models had the worst-case service levels 
under the lower (higher) ratio, whereas for two models this 
was not a distinguishing factor in worst-case performance.

The factor within-party duration variation had two lev-
els, representing coefficients of variation in same-size 
party dining durations of 0.15 and 0.30, which are within 
the ranges reported in the literature of 0.16 to 0.50 (Bell 
& Pliner, 2003; Kimes & Robson, 2004). Thompson’s 
(2015b) expectation, based on the statements of Kimes 
et al. (1998), was that the higher level of this factor would 
result in lowered service levels. This was indeed the case 
in his study for worst-case performance of all seven 
pareto-optimal models.

Average check variation represented differences in the 
spend per person across party sizes, as it has been observed 
that larger parties spend less per person than smaller parties 
(Kimes & Robson, 2004; Kimes & Thompson, 2004). The 
two levels had a ratio of the per-person-spend for a party of 
10 compared with that of a party of one of 0.8 and 0.9. 
Thompson (2015b) explicitly stated no expectation about 
this factor’s effect on service levels and it was not a distin-
guishing factor in the worst-case performance of any of the 
seven pareto-optimal models in his study.

Despite not being able to find any information on the 
discrepancy between customers’ actual arrival time com-
pared with their designated reservation time, we wished to 
explore the effect of such differences. We used five levels 
for the mean arrival time discrepancy: means of −10, –5, 0, 
5, and 10. Negative (positive) values indicate arrivals before 
(after) the assigned reservation time, on average. In all 
cases, we assumed that the standard deviation would be 
3.67 minutes, resulting in 99.7% of parties arriving within 
plus or minus 11 minutes of the mean discrepancy.

The full-factorial design, with the levels of the eight fac-
tors reported in Table 2 yielded 1,920 scenarios. For each of 
these, as did Thompson (2015b), we created two sets of res-
ervation demand patterns, giving a total of 3,840 test sce-
narios. TP1DFullFlex and the four demand-shifting versions 
of the six total variants of TP1Dflex and TP2Dflex were 
evaluated across all scenarios.

We followed the same procedure for solving the models 
as described by Thompson (2015b). We developed a model 
for a particular context, attempted to solve it optimally, 
and simulated how well the solution would perform. 
Details on each step follow. To create the model, we used 
a mathematical programming system file generator we 
developed in Excel® using a Visual Basic for Applications 
macro. We then used the Gurobi solver (Gurobi, 2015), run 
from the command line, with a time limit of 10 minutes  
per problem. After solving a problem, we loaded the 

solution and simulated 100 days of that reservation mix 
using a Visual Basic for Applications macro in Excel®. 
All of our investigations were performed on an Intel 
i5-based personal computer, with four cores, which has a 
Linpack (Dongarra & Luszczek, 2011) benchmark of 
1,737.7 MFLOPS. Our procedure for solving TP1DFullFlex 
was different: We created a model in Excel® and solved it 
using OpenSolver (OpenSolver, 2018). Like the other 
models, however, 100 days of the reservation mix was 
simulated.

The simulation incorporated randomness in the dining 
durations. Following Thompson (2015b), we used a lognor-
mal distribution for dining times, because the longer right 
tail matches the extended durations commonly seen in res-
taurants. Like Thompson (2015b), we assumed that parties 
would be assigned to the first available table of the appro-
priate size (from the model solution), and that parties would 
remain in the same table for the duration of service. In con-
trast to Thompson (2015b), we did not assume that parties 
arrived on time. Rather a party would arrive at the desig-
nated reservation time, plus the mean arrival time discrep-
ancy, plus a normal random variate with a mean of 0.00 and 
a standard deviation of 3.67 minutes.

Like Thompson (2015b), from the simulation we col-
lected performance metrics on the average revenue, the 
average percentage of parties that waited upon arrival for a 
table, and the average wait time of those parties who waited 
for a table. Of these metrics, we consider the average per-
centage of parties who waited for a table on arrival to be the 
key customer service metric. The rationale for the metric 
was described earlier: Customers expect their tables to be 
ready (Kimes, 2008) and are not easily pacified when they 
are not (McDougall & Levesque, 1999).

Results

The results of our study are presented in Figures 1 and 2 and 
Tables 3 to 6. Table 3 reports the sizes and solution times of 
TP1Dflex and TP2Dflex. Across all the models, model size 
and solution times grows across the levels of demand tim-
ing flexibility. In most instances, other than for TP2Dflex 
using one extra period, average solution times were under 
0.5 seconds. As observed by Thompson (2015b) for TP2, 
solution times for TP2Dflex were faster when the model 
used more extra periods, despite being larger in size.

Table 4 compares our daily revenue results with no 
demand timing flexibility to those of Thompson (2015b). 
As we based our study on the same experimental factors, we 
expected that the no-flexibility results would closely match. 
The results match closely for all the models, offering a vali-
dation of our results.

Table 5 gives the average daily revenue and percentage 
of parties waiting for a table, for the variants of TP1Dflex 
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and TP2Dflex, ordered by increasing revenue, under the 
case of no demand timing flexibility. The revenue and ser-
vice differences were large. Comparing the models at the 
extremes, TP1Dflex (round-up = 0) had 1.58 times the rev-
enue of TP2Dflex (extra periods = 5), but between 4,544 
and 5,747 times as many parties waiting for a table across 
the levels of mean arrival time discrepancy.

Figure 1 shows the relationship between the percent-
age of parties who wait for a table and revenue, by level 
of demand timing flexibility, for the models. As expected, 
increasing the level of demand timing flexibility increases 
revenue; that is, the curves shift to the right. Also as 
expected, increasing the level of demand timing flexibil-
ity increases the percentage of customers who wait for a 
table; that is, the same-model comparisons shift upward. 
Noteworthy are the two models at the pronounced inflec-
tion point on the curves—TP1Dflex (round-up = 2) and 
TP2Dflex (extra periods = 2). These models provide an 
excellent combination of revenue and customer service.

Table 6 presents the improvement in revenue across  
the levels of demand flexibility. For all models, the 

improvement in revenue from no demand timing flexibility 
to a low level of demand timing flexibility was between 
1.4% and 3.7%. For the models that were closest to the pro-
nounced inflection point in the service-level-revenue rela-
tionship—TP1Dflex (round-up = 2) and TP2Dflex (extra 
periods = 2)—the revenue bump of moving from no 
demand timing flexibility to the highest demand timing 
flexibility was the greatest, in both cases in excess of a 16% 
revenue bump. The two models at the extremes of the ser-
vice-level-revenue pareto frontier—TP2Dflex (extra peri-
ods = 5) and TP1Dflex (round-up = 0)—had the lowest 
revenue bumps from moving from no demand timing flex-
ibility to high demand timing flexibility, under 9% for both 
models.

Figure 2 shows the relationship between the percent-
age of parties who wait for a table upon their arrival, 
across the levels of mean arrival time discrepancy, for the 
four variants of TP1Dflex (round-up = 2) and 
TP1DFullFlex (round-up = 2). With demand shifts of two 
periods or fewer, there was little effect on customer ser-
vice. Customer service deteriorated somewhat with a 

Figure 1.
Relationship between revenue and the percentage of parties that wait for a table upon arrival by model and dining 
flexibility level for a mean arrival time discrepancy of zero.
Note. From left to right, for each level of demand timing flexibility, the models are TP2Dflex (extra periods = 5), TP1Dflex (DurIncInPrds = 2), 
TP2Dflex (extra periods = 2), TP1Dflex (DurIncInPrds = 1), TP2Dflex (extra periods = 1), and TP1Dflex (DurIncInPrds = 0).
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Figure 2.
Relationship between the percentage of parties that wait for a table upon arrival and the mean arrival time 
discrepancy for TP1Dflex (DurIncInPrds = 2) and TP1DFullFlex(DurIncInPrds = 2).

Table 3.
Model Size and Solution Times by Model and Level of Demand Timing Flexibility.

Model Mxsftpr

Number of

Solution Time (s)Variables Constraints Nonzeros

TP1Dflex 0 227.1 181.0 1,348.4 0.09
1 326.2 308.5 1,437.3 0.19
2 335.8 333.3 1,519.9 0.21
3 579.4 333.3 2,443.3 0.31

TP2Dflex (extra periods = 1) 0 671.3 901.0 5,229.5 0.19
1 770.3 1,028.5 4,874.2 1.93
2 780.0 1,053.3 4,956.9 3.00
3 1,169.4 1,053.3 7,089.9 29.28

TP2Dflex (extra periods = 2) 0 893.4 1,261.0 8,106.2 0.11
1 992.4 1,388.5 7,528.8 0.18
2 1,002.1 1,413.3 7,611.5 0.24
3 1,464.5 1,413.3 10,647.7 0.45

TP2Dflex (extra periods = 5) 0 1,351.8 2,057.5 16,027.6 0.06
1 1,450.9 2,185.0 14,991.8 0.08
2 1,460.5 2,209.8 15,074.5 0.08
3 2,092.8 2,209.8 20,944.7 0.13

Note. Mxsftpr = maximum number of 15-minute periods that demand can be shifted.
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demand shift of up to three periods and even more under 
full demand flexibility. We note though, that even if the 
parties arrive on average 10 minutes before their desig-
nated reservation time, that just over 1.2% of parties will 
be forced to wait for a table upon their arrival. The dete-
rioration in customer service occurs because the restau-
rant is filled more fully when there is greater demand 
timing flexibility.

Discussion and Conclusions

The results of our study show the benefit of considering the 
demand timing flexibility. Compared to the assumption that 
demand timing is inflexible, a high level of demand timing 
flexibility increased revenue by as much as 21% across the 
models we evaluated. There are several implications from 
these findings. First, while modeling demand flexibility 

Table 6.
Percentage Increase in Revenue From Higher Demand Timing Flexibility.

Model (Listed in Order of 
Increasing Revenue)

Demand Timing Flexibility Change (Level > Level)

0 > 1 1 > 2 2 > 3 3 > FF 0 > 2 0 > 3 0 > FF

TP2Dflex (extra periods = 5) 1.35% 0.84% 5.74% NA 2.21% 8.07% NA
TP1Dflex (DurIncInPrds = 2) 3.38% 2.05% 10.29% 4.19% 5.50% 16.35% 21.23%
TP2Dflex (extra periods = 2) 3.45% 2.11% 10.92% NA 5.64% 17.17% NA
TP1Dflex (DurIncInPrds = 1) 2.71% 1.28% 9.15% 3.21% 4.03% 13.55% 17.20%
TP2Dflex (extra periods = 1) 3.73% 1.50% 7.92% NA 5.28% 13.61% NA
TP1Dflex (DurIncInPrds = 0) 1.98% 0.16% 4.45% NA 2.14% 6.68% NA

Note. Results in bold are for the models near the pronounced inflection point in the service-revenue relationship.

Table 4.
Average Daily Revenue by Model With No Demand Timing Flexibility From the Current Study and From Thompson 
(2015b).

Our Results With No Timing Flexibility Thompson’s (2015b) Results
Daily Revenue 
DiscrepancyModel ADR Model ADR

TP2Dflex (extra periods = 5) US$3,261.72 TP2 (extra periods = 5) US$3,254.72 US$7.00
TP1Dflex (DurIncInPrds = 2) US$4,005.98 TP1 (DurIncInPrds = 2) US$4,005.44 US$0.54
TP2Dflex (extra periods = 2) US$4,013.97 NA NA NA
TP1Dflex (DurIncInPrds = 1) US$4,508.49 TP1 (DurIncInPrds = 1) US$4,531.54 (US$23.05)
TP2Dflex (extra periods = 1) US$4,645.86 TP2 (extra periods = 1) US$4,651.31 (US$5.45)
TP1Dflex (DurIncInPrds = 0) US$5,129.23 TP1 (DurIncInPrds = 0) US$5,130.54 (US$1.31)

Note. ADR = average daily revenue.

Table 5.
Average Daily Revenue and Percentage of Parties Waiting for a Table, by Model, With no Demand Timing 
Flexibility.

Model
Average Daily 

Revenue

Average Percentage of Parties Waiting for a Table Upon Arrival

MAT–10 MAT −5 MAT 0 MAT +5 MAT +10

TP2Dflex (extra periods = 5) US$3,261.72 0.0035 0.0028 0.0026 0.0025 0.0031
TP1Dflex (DurIncInPrds = 2) US$4,005.98 0.231 0.198 0.180 0.180 0.171
TP2Dflex (extra periods = 2) US$4,013.97 0.234 0.189 0.173 0.167 0.171
TP1Dflex (DurIncInPrds = 1) US$4,508.49 1.38 1.17 1.09 1.05 1.06
TP2Dflex (extra periods = 1) US$4,645.86 2.49 2.00 1.77 1.71 1.71
TP1Dflex (DurIncInPrds = 0) US$5,129.23 18.5 15.9 14.5 14.2 14.1

Note. MAT = mean arrival time relative to the designated reservation time.
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increases the size of the integer programming models and 
the time required to solve them, the solution time increases 
are modest. As such, restaurateurs should consider using 
demand timing flexibility.

Second, our results should allow restaurateurs to select 
an integer programming model and appropriate parameters 
that meet their requirements for maximizing revenue while 
maintaining high levels of customer service. The models at 
the pronounced inflection points in the service-level-reve-
nue chart—TP1Dflex (DurIncInPrds = 2) and TP2Dflex 
(extra periods = 2)—would seem to offer the best all round 
performance. Interestingly, of his TP1 versions, Thompson 
(2015b) found the one that used the rounded-up dining 
duration plus one period, TP1(1) to be the most well-
rounded model. In our study, because demand timing flex-
ibility increases the number of reservations that can be 
accepted, it proved better to inflate the rounded-up dining 
duration by two periods. This highlights that parameters, 
and even the choice of a model, are dependent on a restau-
rant’s specific setting.

Third, while we have demonstrated the benefits of using 
demand timing flexibility, the extent of demand timing 
flexibility in real restaurant settings has yet to be estab-
lished in the literature. Demand timing flexibility is likely 
to be context dependent, being higher in popular restau-
rants, for example. Establishing the extent of demand tim-
ing flexibility is an opportunity for future research. Until 
such research has been conducted, and perhaps even after, 
restaurateurs would be well advised to go slowly: conduct-
ing some live experiments to establish the flexibility in 
their environment.

Fourth, customer service implications are another reason 
for restaurateurs to move cautiously. The higher revenue 
from demand timing flexibility came at the expense of 
lower customer service levels. However, even with full 
demand timing flexibility, TP1DFullFlex (round-up = 2) 
only required that 1.22% of parties wait for a table when the 
parties arrived 10 minutes early, on average. When parties 
arrived no more than 5 minutes early, on average, less than 
1% of parties had to wait for table when they arrived.

Finally, our results demonstrate the value of a restau-
rant delivering the basics of great food and great service. 
Customers are much more likely to adapt their dining 
plans to the availability of the reservation slots when they 
know they will have a great experience. Returning to the 
OpenTable (2018) example described earlier, a 2-hour 
window before or after the desired reservation time would 
be equivalent to full timing flexibility in the 2-hour dining 
window condition we considered, and well beyond the 
45-minute shifting level for the 4-hour dining window 
condition we considered.

In terms of limitations, we note that we did not define 
demand movement limits separately for earlier arrivals ver-
sus later arrivals. However, this would be a straightforward 

extension to the models we presented. In addition, we 
assumed that table sizes were proportional to the number of 
seats, which is not always the case in restaurants. We see no 
reason to expect different results for model performance or 
the value of demand timing flexibility, though this remains 
to be investigated. We believe that a worthwhile but non-
trivial extension to this work would be developing an inte-
grated optimization model for reservations and walk-in 
customers.
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