
Energy Economics 127 (2023) 107079

A
0

Contents lists available at ScienceDirect

Energy Economics

journal homepage: www.elsevier.com/locate/eneeco

Do clean and dirty cryptocurrencies connect with financial assets differently?
The role of economic policy uncertainty
Kun Duan a, Yanqi Zhao a, Andrew Urquhart b, Yingying Huang c,∗

a School of Economics, Huazhong University of Science and Technology, 430074, China
b ICMA Centre, Henley Business School, University of Reading, RG6 6BA, UK
c School of Management, Harbin Institute of Technology, 150000, China

A R T I C L E I N F O

JEL classification:
Q4
G10
G11
G15

Keywords:
Clean cryptocurrencies
Dirty cryptocurrencies
Green assets
Traditional assets
Time-varying networks
Nonlinear causality

A B S T R A C T

This paper analyzes time-varying networks of clean and dirty cryptocurrencies with green and traditional assets
through a dynamic connectedness approach established by the time-varying parameter vector autoregressive
(TVP-VAR) model. The underlying asymmetry of the dynamic pairwise connectedness when facing uncertainty
shocks is further studied through a non-parametric quantile causality method. Our results demonstrate a limited
information transmission of volatility from cryptocurrencies to both traditional and green assets, while the
connection of clean cryptocurrencies (CI) with the financial system is even weaker compared to that of dirty
cryptocurrencies (DI), especially after the COVID-19 pandemic. In contrast, connection within the financial
system is found to be relatively closer. Moreover, causal relationships between economic policy uncertainty
(EPU) and cryptocurrency-financial asset linkages are generally enhanced after the pandemic onset, while
such the causality of uncertainty with DI related asset linkages tends to be even stronger. Most of the above
causalities are shown to be negligible during market depression, further implying the sheltering role of the
market linkages against uncertainty.
1. Introduction

Since the introduction of the first cryptocurrency, Bitcoin, there
has been a rapid growth in the size and number of cryptocurren-
cies given their promising independence from political and economic
unrest of Sovereign nations and ability to serve as an underlying
investment shelter for financial markets. Despite economic benefits,
conventional cryptocurrencies built on Proof-of-Work (PoW) algorithms
feature heavy carbon footprints due to massive energy consumption
for mining and trading activities, leading to widespread attention to
their environmental impact in terms of global warming (Corbet and
Yarovaya, 2020). Due to complex and heavy PoW algorithms, the es-
timated annualized electrical energy usage of Bitcoin has now reached
204.5 TWh, being comparable to the power consumption of Argentina.1
The urgency of reducing and/or replacing energy-intensive cryptocur-
rencies to environmentally-friendly ones has been recently highlighted
by the general public (Schinckus, 2021). Accordingly, relatively cleaner
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cryptocurrencies built on energy-efficient algorithms involving Proof-
of-Stake (PoS), Ripple Protocol, and Stellar Protocol etc (Ren and
Lucey, 2022) have experienced ongoing development, contributing to
low-carbon transition of the cryptocurrency market. At the same time,
to combat global warming, green assets have also raised widespread
attention against traditional assets, shaping a promising direction for
financial market development (Naeem and Karim, 2021).2

Moreover, with rising popularity and volumes of cryptocurrency
trading over time, there are emerging exposures of investment port-
folios to cryptocurrency-related products (Conlon et al., 2020). The
dynamics of cryptocurrencies and its connection with the financial
system have therefore attracted heated discussion, while no consen-
sus has been reached by far.3 On the one hand, widespread adop-
tion of cryptocurrency-related products in financial investments could
strengthen such the connection (Elsayed et al., 2022). On the other
hand, cryptocurrencies are known to perform a weak or even negative
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linkage with financial assets due to the investment sheltering role of
the former (Huang et al., 2021; Bouri et al., 2020). Moreover, several
important questions also remain to be answered. Whether and how do
energy-intensive (dirty) cryptocurrencies and energy-efficient (clean)
cryptocurrencies connect with financial assets differently? How do the
above connections differ for different asset types, i.e., traditional and
green assets? Whether and how would these cross-market connections
be altered in the face of various uncertainty degrees and the COVID-19
pandemic?

Against the above backdrop, our paper fills the gap by studying the
dynamic and bi-directional market networks in volatility of clean cryp-
tocurrencies (CI) and dirty cryptocurrencies (DI) with traditional and
green assets over time by using a time-varying parameter vector autore-
gressive (TVP-VAR) framework. The asymmetric and non-linear causal
relationship between the above-obtained various market networks and
uncertainty is further examined using a non-parametric causality test.
In addition, the potential changes of the market networks and the role
of uncertainty are investigated when facing the COVID-19 pandemic
shock. In terms of the target variables, CI and DI are two value-
weighted market indices that are constructed based on major clean and
dirty cryptocurrencies, respectively, following Ren and Lucey (2022).
Four major stock indices including S&P500 Index (SP500), Financial
Times Stock Exchange 100 Index (FTSE), Toronto Stock Exchange Index
(TSX), and Australian Securities Exchange Index (ASX) are identified
as traditional assets, while green assets are represented by four leading
indices of Dow Jones Sustainability World Index (SWI), S&P ESG Leader
Index (ESGLI), S&P Green Bond Index (GBI), and S&P Global Clean
Energy Index (GCEI), in spite of the extant literature (e.g., Huang et al.,
2021, 2023). Our sample period spans from 01 March 2018 to 31 March
2022, wherein the whole sample are split as sub-samples of before and
after the pandemic onset, being in line with the existing studies (see,
e.g., Goodell and Goutte, 2021; Huang et al., 2021).

Our paper contributes to the existing research in the following
aspects. Unlike missing the fact that cryptocurrencies can be energy-
intensive or -efficient, we provide an in-depth comparison on the
underlying different linkages of clean and dirty cryptocurrencies with
financial assets. Our research is among the firsts to analyze the dynamic
differential linkages of clean and dirty digital currencies with green
and traditional assets, contributing to not only enhanced understanding
of the above cross-market spillover but also low-carbon transition of
the economic and financial system. In addition, we further extend the
literature by analyzing the causal relationship between the above built
spillover networks and uncertainty in the economy in a non-linear
setting. Through this, whether and how would the linkages of cryp-
tocurrencies and financial assets be affected by changing uncertainties
over the data distribution can be captured. Moreover, our employed
time-varying parameter (TVP) VAR model advances the traditional
DY-type of connectedness approach proposed by Diebold and Yılmaz
(2012, 2014) by better accommodating underlying time variations of
the cross-market spillover. That is, rather than relying on the rolling
window approach to allow for the time-varying spillover, our employed
TVP-VAR method is known to well capture the potential time variation
of the spillover.

Noteworthy, while there exists similar research (e.g., Ren and
Lucey, 2022) to ours, we are different from it in the following main
aspects. First, rather than only focusing on the linkage of cryptocur-
rencies with the clean energy sector, we further extend the literature
by providing a comparison of the market linkage of (clean and dirty)
cryptocurrencies with traditional and green financial assets, respec-
tively. In particular, we have followed the extant literature (Naeem and
Karim, 2021) by using a comprehensive representation of the green
asset through a value-weighted index, which involves not only the
clean energy sector but also other aspects including Sustainability, ESG
Leadership, and Green Bonds archived from the S&P Dow Jones Indices
database. The traditional asset is also represented in a comprehensive
2

manner that includes important stock markets worldwide. Through
this, potentially different market linkages depending on whether the
target asset is clean/green or not can be studied. Second, in addition
to building the market linkage, we move a step further by studying the
potentially asymmetric response of the same when facing uncertainty
shocks over the data distribution. This further enhances the interpreta-
tion on dynamics of the cross-market connection in the cryptocurrency
and financial system under uncertainty and stress.

We find that the information transmission between cryptocurrency
and both traditional and green assets is limited, and the connection
of energy-efficient ‘clean’ cryptocurrency (CI) with financial assets is
even weaker especially after the pandemic onset against that of energy-
intensive dirty one (DI), revealing the hedge and safe heaven role of
cryptocurrency. At the same time, the market nexus between different
asset types within the ecosystem of traditional and green assets is
relatively closer. The implications of the above-obtained spillovers are
further explored by employing the optimal hedge ratios and portfolio
weights, supporting that dirty and clean cryptocurrencies can provide
diversification gains against most green and traditional assets, espe-
cially during the COVID-19 pandemic period. Moreover, the causal
relationship between the above-obtained market nexus and uncertainty
is shown to feature evident asymmetry and non-linearity. Specifically,
the causal relationship is found to be generally enhanced after the
outbreak of the pandemic, and such the relationship of uncertainty with
the DI-financial system nexus is relatively stronger, further confirming
better performance of CI for diversification and risk mitigation. In
addition, most of the above causal relationship appears to be negligible
during the period of market depression at extremely low quantiles. This
indicates the investment sheltering role of the cryptocurrency-financial
asset nexus for uncertainty irrespective of whether target assets are
carbon-intensive and/or -friendly. We further discuss that our findings
are consistent with both our expectations and existing related literature.

The remainder of the paper proceeds as follows. Section 2 presents
the data and preliminary analysis. Section 3 describes employed es-
timation techniques. Section 4 discusses our empirical results and
corresponding theoretical explanations. Section 5 concludes with a
discussion of results in the context of policy.

2. Literature review

Our paper is connected to the extant literature in the following
strands, notably involving the market linkages of clean/dirty cryptocur-
rencies with financial assets, and the role of the uncertainty level in
the economy in the above linkages. Key related literature has been
summarized in the table in Appendix B to report existing findings in
this regard. Existing research has studied the market nexus between
traditional assets and cryptocurrencies with a particular focus on the
potential investment sheltering role of cryptocurrencies notably includ-
ing Bitcoin (Dutta et al., 2020; Bouri et al., 2020; Conlon et al., 2020).
However, little attention has been brought to the sheltering role of a
broad set of cryptocurrencies against the emerging green asset class.

The limited literature to date studies the role of dirty cryptocurren-
cies, where Dutta et al. (2020) employ DCC-GARCH models and point
out the role of Bitcoin as a diversifier for crude oil fluctuations in a
time-varying setting. Wang et al. (2019) study the investment shelter-
ing role of Bitcoin for financial assets in China, and find the hedging
role of Bitcoin for stocks, bonds and the monetary market, while its
safe haven role occurs in the latter at extreme conditions. Charfeddine
et al. (2020) also support the viewpoint that cryptocurrencies can be
applied for the investment diversification, while they also find that the
relationship between Bitcoin/Ethereum and traditional assets is sensi-
tive to external economic and financial shocks. Conlon et al. (2020)
test the safe haven properties of Bitcoin, Ethereum, and Tether during
the COVID-19 pandemic, and suggest that two of the three are not safe
havens for most international equity markets examined. Rehman and

Kang (2021) examine the time–frequency relationship between Bitcoin
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and energy commodity markets by suggesting that a lead–lag price
connection exists between oil and gas with Bitcoin.

At the same time, existing research also studies clean cryptocur-
rencies, although the corresponding eco-friendly feature of the latter
is neglected. For example, Gil-Alana et al. (2020) exhibit the bilateral
linkages of two clean and four dirty cryptocurrencies with stock market
indices using fractional integration techniques. Both clean and dirty
cryptocurrencies are decoupled from the mainstream financial and
economic assets, which implies the role of cryptocurrencies as a diver-
sifier. Hsu et al. (2021) apply a diagonal BEKK model to examine the
risk spillovers of Bitcoin (dirty), Ethereum (dirty), and Ripple (clean)
to ten leading traditional currencies and two gold prices. While the two
types of cryptocurrencies display different co-volatility spillovers with
various financial assets, both have hedging or safe haven opportunities
for the traditional currency market. Ghorbel and Jeribi (2021) point
out that Ripple (clean), Ethereum (dirty), and Monero (dirty) are more
volatile than Bitcoin (dirty) and Dash (clean) concerning the dynamic
correlations with Cboe Volatility Index (VIX).

Moreover, recent empirical evidence finds that the market linkage
of between cryptocurrencies and financial assets could be uni- or bi-
directional and be varying over time (see, e.g., Symitsi and Chalvatzis,
2018; Okorie and Lin, 2020). For example, Le et al. (2021) establish
a time and frequency domain VAR system to examine the spillovers
among Fintech, green bonds, and Bitcoin. They suggest that Bitcoin
acts as a net contributor of volatility shocks in the system, whereas
green bonds are net receivers. Pham et al. (2021) elaborate on the time-
varying market connection, and suggest that the spillovers between
cryptocurrencies and green/fossil fuel investment are small during non-
crisis periods but increase during crisis periods. Similarly, Naeem and
Karim (2021) investigate the asymmetric and time-varying dependence
structure between Bitcoin and green financial assets, and further con-
firm the hedging effect of green assets by using AGDCC-GARCH models.
However, Ren and Lucey (2022) demonstrate that clean energy is
not a direct hedge for either clean or dirty cryptocurrencies. Using a
generalized VAR model, they suggest that clean energy is more likely to
be a safe haven for dirty cryptocurrencies than that for clean cryptocur-
rencies, especially in periods of high uncertainty. In addition, Wang
et al. (2020) document the safe haven property of stablecoins against
traditional cryptocurrencies in specific status, and find that such the
property tends to vary across market conditions.

As for the role that economic policy uncertainty (EPU) plays in the
market linkage between cryptocurrencies and financial assets, existing
research is scant, while the attention is more focused on searching
for instruments to hedge against EPU. Wang et al. (2019) use the
US EPU index, equity market uncertainty index, and VIX as proxies
for the uncertainty level to determine the risk spillover effects from
uncertainty to Bitcoin, and conclude that the spillover is negligible
in most of the market conditions. Cheema et al. (2020) argue that
cryptocurrencies might not act as a hedge or safe haven against other
financial assets during uncertain times due to the strong predictability
of EPU for the cryptocurrency returns over different time horizons.
Using an non-parametric causality-in-quantile approach, Fasanya et al.
(2021) demonstrate that the connectedness between Bitcoin and pre-
cious metals with the US EPU is stronger around the median and
higher quantiles, indicating that the connectedness might not act as an
investment shelter for the uncertainty. Elsayed et al. (2022) investigate
the dynamic connectedness of return- and volatility spillovers among
cryptocurrency index, gold, and uncertainty by showing that gold
is susceptible to uncertainty shocks and affected by cryptocurrency
markets.

Overall, existing literature has widely discussed the relationship
of cryptocurrencies notably Bitcoin with traditional financial assets,
while no consensus has been reached by far in regard to the direction,
strength, and significance. Moreover, whether generation of the specific
cryptocurrency is energy intensive or eco-friendly, and its potentially
3
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distinct linkages with traditional and green financial assets still lack in-
depth research. How does the cross-market linkage vary in the face of
uncertainty shocks under different market conditions also entails care-
ful investigation. Having been jointly inspired by extant literature and
the nature of energy consumption for target assets of our research, the
following research hypotheses can be developed. That is, while there
is an increasing popularity of cryptocurrency in investment activities,
it could perform a weak or even negative linkage with financial assets,
showing as an investment shelter. Whether the target asset is energy-
intensive or energy-efficient could alter the linkage of cryptocurrency
and financial assets. Fluctuations in uncertainty could affect the above
linkage, and the impact varies over the data distribution.

Our research fills the gaps by first distinguishing between clean
cryptocurrencies (CI) and dirty cryptocurrencies (DI) depending on the
relatively low- and high-energy consumption of their built algorithms.
We then study the dynamic and potentially time-varying cross-market
linkage between cryptocurrencies (including both CI and DI) and fi-
nancial assets (with both the traditional and green types) by using a
time-varying parameter vector autoregressive (TVP-VAR) framework.
The asymmetric response of the above obtained cross-market linkage
when encountering the uncertainty shocks over the data distribution
and its potential dynamics before and after the COVID-19 pandemic is
further analyzed by using a non-parametric causality test.

3. Data and preliminary analysis

We have follow Ren and Lucey (2022) by constructing two value-
weighted indices of dirty and clean cryptocurrencies (i.e., DI and CI).
DI is built based on five major dirty cryptocurrencies including Bitcoin
(BTC), Ethereum (ETH), Bitcoin Cash (BCH), Ethereum Classic (ETC),
and Litcoin (LTC); CI is built based on five major clean cryptocurren-
cies including Cardano (ADA), Ripple (XRP), IOTA (MIOTA), Stellar
(XLM), and Nano (NANO). We select the above five dirty and five
clean cryptocurrencies following the existing literature (e.g., Ren and
Lucey, 2022; Pham et al., 2022). The daily data of cryptocurrencies
are from CoinMarketCap.4 Moreover, in spirit of the extant literature
e.g., Huang et al., 2021, 2023), the traditional asset dynamics are cap-
ured by four major stock indices worldwide involving S&P 500 Index
SP500), Financial Times Stock Exchange 100 Index (FTSE), Toronto
tock Exchange Index (TSX), and Australian Securities Exchange Index
ASX), and the corresponding data are from Investing.5 These are

four of the largest and well-respected stock exchanges in the world
and therefore represent traditional assets. Regarding green assets, they
are represented by the following four leading sources including Dow
Jones Sustainability World Index (SWI), S&P ESG Leader Index (ESGLI),
S&P Green Bond Index (GBI), and S&P Global Clean Energy Index
(GCEI), and are from S&P Dow Jones Indices database.6 In addition,
the data of US Economic Policy Uncertainty Index (EPU) are from Baker
et al. (2016).7 A detailed description of each incorporated variable is
summarized in Table 1.

To clearly capture the potential variation of the market linkage
as well as the role of EPU on the linkage when facing the onset of
the COVID-19 pandemic, our whole sample is divided into two sub-
samples on 11 March 2020, which is the first day of the COVID-19
being announced as a pandemic by the WHO.8 Accordingly, in spirit
of the extant literature (see, e.g., Goodell and Goutte, 2021; Huang
et al., 2021), pre- and post-COVID-19 periods are represented by the

4 Data source from https://coinmarketcap.com.
5 Data source from https://www.investing.com.
6 Data source from https://www.spglobal.com.
7 Data source from http://www.policyuncertainty.com.
8 See details about key dates of COVID-19 announced by the WHO

t https://www.who.int/emergencies/diseases/novel-coronavirus-2019/intera

tive-timeline.
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Table 1
Variable description.

Market/ Variable Label Description
Uncertainty index

Cryptocurrency Dirty cryptocurrency index DI The value-weighted index of five major dirty
cryptocurrencies including Bitcoin (BTC),
Ethereum (ETH), Bitcoin Cash (BCH), Ethereum
Classic (ETC) and Litcoin (LTC)

Clean cryptocurrency index CI The value-weighted index of five green
cryptocurrencies including Cardano (ADA),
Ripple (XRP), IOTA (MIOTA), Stellar (XLM),
and Nano (NANO)

Financial assets Canadian stock index TSX Toronto stock exchange index
UK stock index FTSE Financial times stock exchange 100 index
Australian stock index ASX Australian securities exchange index
US stock index SP500 S&P 500 index

Green assets Sustainability index SWI Dow Jones Sustainability World Index
ESG leader index ESGLI S&P ESG Leader Index
Green bond index GBI S&P Green Bond Inde
Clean energy index GCEI S&P Global Clean Energy Index

Uncertainty Economic policy uncertainty EPU Policy-related economic uncertainty
Fig. 1. Dynamics of Price series of variables.
Note: This figure plots the time-varying dynamics of eleven target series under research including dirty and clean cryptocurrency indices (i.e., DI and CI), four financial assets
(i.e., TSX, FTSE, ASX, and SP500), four green assets (i.e., SWI, ESGLI, GBI, and GCEI), and US Economic Policy Uncertainty Index (EPU). Red line denotes the first day of the
COVID-19 being announced as a pandemic by the WHO, which is 11 March 2020. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
sub-samples of 01 March 2018–10 March 2020 and that of 11 March
2020–31 March 2022, respectively.

The time-varying evolution of the price series of (dirty and clean)
cryptocurrency indices, (traditional and green) assets, and EPU is
shown in Fig. 1. Generally, it is clear that most of the series being
considered have witnessed a marked fluctuation on 11 March 2020,
i.e., the announcement date of COVID-19 as a pandemic. Although the
indices of dirty and clean cryptocurrencies remained relatively stable in
the coming pandemic period, both of them vary dramatically thereafter.
At the same time, the dynamics of financial assets have witness a
gradual recovery after the sudden slump caused by the pandemic
shock. In contrast, EPU suffered from a short-run skyrocket since the
pandemic onset, and then its magnitude declined gradually. The above
therefore provides an intuitive demonstration of further splitting the
whole sample before and after the pandemic onset and examining the
potential difference in the financial market network.
4

In our case, to explore the volatility spillover of cryptocurrencies
with financial assets, each of the incorporated variables is transformed
in the format of the realized volatility via 𝑌𝑡 = ((log(𝑃𝑡)−log(𝑃𝑡−1))×100)2

where 𝑃 is the price series of the target series. As for EPU, it is
employed in the logarithmic format to ensure the stationarity. Table 2
summarizes the descriptive statistics for all the transformed series
in both sub-samples of pre- and post-COVID-19 periods, respectively.
Generally, all the transformed series are found to possess larger mean
values with higher standard deviations since the COVID-19 was an-
nounced as a pandemic. Moreover, it is worth noting that the standard
deviations of the cryptocurrencies indices after the pandemic are much
greater than that before the pandemic, indicating marked fluctuations
in the cryptocurrency market after the pandemic onset. In addition, the
large positive skewness and kurtosis values of all incorporated series ex-
cept for the EPU depict non-normality of the data feature. This indicates
the necessity of using a quantile framework to depict the asymmetric
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Table 2
Summary statistics.

Mean Std. Dev. Minimum Maximum Skewness Kurtosis

Panel A: Pre-Covid-19
DI 11.8987 27.5808 0.0000 233.9221 4.4469 24.1759
CI 42.7051 87.7133 0.0000 697.3695 4.3626 23.6273
TSX 0.5873 5.8309 0.0000 156.8665 26.0916 696.2151
FTSE 0.6996 2.3031 0.0000 47.0268 12.5721 226.9174
ASX 0.6352 2.5305 0.0000 58.3833 16.8521 367.2354
SP500 0.7976 3.2017 0.0000 62.4264 11.8430 195.6027
SWI 0.4443 1.8754 0.0000 43.6714 17.4474 383.4870
ESGLI 0.8552 3.3051 0.0000 61.9114 11.0084 169.8628
GBI 0.0340 0.0758 0.0000 0.8529 5.2625 38.0429
GCEI 0.8274 4.8558 0.0000 123.6402 22.3188 553.6142
EPU 4.5067 0.5303 1.3987 5.9563 −0.9491 3.3230
Panel B: Post-Covid-19
DI 16.9905 82.3163 0.0000 2118.2855 22.4227 565.1887
CI 79.9536 392.2437 0.0000 7428.4353 12.7033 196.4408
TSX 1.5228 9.7311 0.0000 181.5971 13.5511 208.2424
FTSE 1.4616 6.7602 0.0000 149.4212 16.0189 320.9157
ASX 1.8574 7.7649 0.0000 138.1113 10.7995 150.7337
SP500 1.6773 8.7560 0.0000 162.9507 12.6130 190.8641
SWI 1.0588 5.8275 0.0000 112.3966 13.8617 225.8536
ESGLI 1.7146 9.0124 0.0000 168.5060 12.7405 194.0351
GBI 0.0959 0.3740 0.0000 5.8078 11.3277 152.8140
GCEI 3.5124 10.9818 0.0000 156.1818 8.3090 89.3476
EPU 5.2149 0.6175 3.0267 6.7582 0.1103 −0.5226
𝜑

d
𝑁

v
v
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response of market linkages between cryptocurrency-financial assets
when facing uncertainty shocks.

4. Methodology

In this section, we introduce the methodology employed in the em-
pirical analysis that explores the time-varying volatility spillover net-
works between dirty/clean cryptocurrency and financial/green assets
through a dynamic connectedness approach using a time-varying pa-
rameter vector autoregressive (TVP-VAR) framework, and further stud-
ies the underlying asymmetry and non-linearity of the above-obtained
dynamic connectedness in the face of uncertainty shock (i.e., economic
policy uncertainty, EPU) by employing a non-parametric causality-
in-quantile test. Our methodology proposed is upon the research ob-
jectives and hypotheses to determine whether and how the energy-
intensive and energy-efficient cryptocurrencies connect with finan-
cial and green assets differently, and how these cross-market linkages
would be altered when facing the uncertainty in the economy in an
asymmetric and non-linear setting.

4.1. Time-varying parameter VAR: The dynamic connectedness

We adopt the dynamic connectedness measure based on a TVP-
VAR model (Antonakakis et al., 2020) to evaluate the cross-market
dynamic spillovers of dirty/clean cryptocurrencies with financial and
green assets. This method advances the DY connectedness framework
proposed by Diebold and Yılmaz (2012, 2014) by allowing for time-
variations of the spillover effect without an arbitrary imposition of the
window setting as in the rolling analysis. We begin with the TVP-VAR
model with a lag order of 𝑝 formulated as follows:

𝑌𝑡 = 𝐵𝑡𝑋𝑡−1 + 𝜖𝑡, 𝜎𝑡 ∼ 𝑁(0, 𝛴𝑡), (1)

𝑣𝑒𝑐(𝐵𝑡) = 𝑣𝑒𝑐(𝐵𝑡−1) + 𝑢𝑡, 𝑢𝑡 ∼ 𝑁(0, 𝑈𝑡), (2)

where 𝑋𝑡−1 = (𝑌 ′
𝑡−1,… , 𝑌 ′

𝑡−𝑝)
′ and 𝐵𝑡 = (𝐵1𝑡,… , 𝐵𝑝𝑡). 𝑌𝑡 and 𝑋𝑡−1 are 𝑛×1

and 𝑛𝑝 × 1 vectors of variables, 𝐵𝑡 represents the matrix of parameters
ith the dimension of 𝑛×𝑛𝑝, which follows a random walk process, and
𝑡 indicates an 𝑛×1 vector of i.i.d. error term. Note that the dimensions
f time-varying covariance matrices 𝛴𝑡 and 𝑈𝑡 are 𝑛 × 𝑛 and 𝑛2𝑞 × 𝑛2𝑞,
nd 𝑣𝑒𝑐(𝐵 ) is an 𝑛2𝑞 × 1 vector.
5

𝑡

By transforming the TVP-VAR model to its vector moving average
(VMA) representation following the Wold theorem, we can rewrite
Eq. (1) as:

𝑌𝑡 =
∞
∑

𝑗=0
𝐴𝑗𝑡𝜖𝑡−𝑗 , (3)

where 𝐴𝑗𝑡 denotes an 𝑛 × 𝑛 matrix of coefficients determined as 𝐴𝑗𝑡 =

𝑀 ′𝑉 𝑗
𝑡 𝑀 with 𝑀 ′ = (𝐼, 0,… , 0) and 𝑉𝑡 =

(

𝐵𝑡
𝐼𝑛(𝑝−1) 0𝑛(𝑝−1)×𝑛

)

.

Through a VMA representation of TVP-VAR model, the 𝐻-step-
ahead forecast error variance is decomposed to measure the impact
of variable 𝑗 on variable 𝑖 on the basis of its forecast variance share,
and then normalized by summing up each row to one, showing that
100 percent of variable 𝑖’s forecast error variance is illustrated by all
variables. In accordance with Antonakakis et al. (2018) and Fasanya
et al. (2021), the generalized forecast error variance is calculated as:

𝜑𝑖𝑗,𝑡(𝐻) =
𝜎−1𝑗𝑗,𝑡

∑𝐻=1
𝑡=0

(

𝜗′𝑖𝐴𝐻,𝑡𝛴𝑡𝜗𝑗
)2

∑𝐻−1
𝑡=0

(

𝜗′𝑖𝐴𝐻,𝑡𝛴𝑡𝐴′
𝐻,𝑡𝜗𝑖

) , (4)

̃𝑖𝑗,𝑡(𝐻) =
𝜑𝑖𝑗,𝑡(𝐻)

∑𝑁
𝑗=1 𝜑𝑖𝑗,𝑡(𝐻)′

, (5)

where ∑𝑁
𝑗=1 �̃�𝑖𝑗,𝑡(𝐻) = 1 and ∑𝑛

𝑖,𝑗=1 �̃�𝑖𝑗,𝑡(𝐻) = 𝑛. 𝜎𝑗𝑗,𝑡 is the standard
eviation of the error term 𝜖𝑡 for variable 𝑗 at period 𝑡, and 𝜗𝑗 is an
×1 selection vector with one as the 𝑗th element, and zero otherwise.
Next, we construct the spillover indices to measure the considered

olatility spillover effects. By using the technique of the forecast error
ariance in Eq. (5), the total spillover (𝑇𝑆𝑡) that shows how a shock in
ne variable spills over to other variables is deduced by:

𝑆𝑡(𝐻) =
∑

𝑖,𝑗=1,𝑖≠𝑗 �̃�𝑖𝑗,𝑡(𝐻)
∑𝑛

𝑖,𝑗=1 �̃�𝑖𝑗,𝑡(𝐻)
× 100 =

∑

𝑖,𝑗=1,𝑖≠𝑗 �̃�𝑖𝑗,𝑡(𝐻)
𝑁

× 100. (6)

To further evaluate the directional spillovers through the dynamic
connectedness approach, we define the directional spillover from others
(𝐷𝑆𝑖←𝑗,𝑡) used to present shocks in variable 𝑖 receives from all other
variables 𝑗, and the directional spillover to others (𝐷𝑆𝑖→𝑗,𝑡) that indi-
cates variable 𝑖 transmits its shocks to all other variables 𝑗, which are
formulated as:

𝐷𝑆𝑖←𝑗,𝑡(𝐻) =
∑

𝑗=1,𝑖≠𝑗 �̃�𝑖𝑗,𝑡(𝐻)
∑𝑛 × 100 =

∑

𝑗=1,𝑖≠𝑗 �̃�𝑖𝑗,𝑡(𝐻)
× 100, (7)
𝑖,𝑗=1 �̃�𝑖𝑗,𝑡(𝐻) 𝑁
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𝐷𝑆𝑖→𝑗,𝑡(𝐻) =
∑

𝑗=1,𝑖≠𝑗 �̃�𝑗𝑖,𝑡(𝐻)
∑𝑛

𝑖,𝑗=1 �̃�𝑗𝑖,𝑡(𝐻)
× 100 =

∑

𝑗=1,𝑖≠𝑗 �̃�𝑗𝑖,𝑡(𝐻)
𝑁

× 100. (8)

The net total spillover (𝑁𝑇𝑆𝑖,𝑡) is then calculated by subtracting
irectional spillover from others (𝐷𝑆𝑖←𝑗,𝑡) in Eq. (7) from directional
pillover to others (𝐷𝑆𝑖→𝑗,𝑡) in Eq. (8):

𝑇𝑆𝑖,𝑡(𝐻) = 𝐷𝑆𝑖→𝑗,𝑡(𝐻) −𝐷𝑆𝑖←𝑗,𝑡(𝐻), (9)

his net spillover index denotes the effect of variable 𝑖 on the analyzed
pillover network. Therefore, if 𝑁𝑇𝑆𝑖,𝑡 > 0, variable 𝑖 has more impact
n the network than being impacted, otherwise, variable 𝑖 is passive in
he network.

Finally, we compute the net pairwise spillovers (𝑁𝑃𝑆𝑖𝑗,𝑡) to measure
the bidirectional connectedness between variables 𝑖 and 𝑗, which is
defined as:

𝑁𝑃𝑆𝑖𝑗,𝑡(𝐻) =
(

�̃�𝑖𝑗,𝑡(𝐻) − �̃�𝑗𝑖,𝑡(𝐻)
)

× 100, (10)

where a positive 𝑁𝑃𝑆𝑖𝑗,𝑡 stands for variable 𝑗 being dominates by
variable 𝑖 while a negative 𝑁𝑃𝑆𝑖𝑗,𝑡 mean variable 𝑗 dominates variable
𝑖.

4.2. Nonparametric causality-in-quantile test

To further examine whether and how the uncertainty affects the
dynamic market connectedness between cryptocurrencies and finan-
cial assets over the data distribution, we employ a nonparametric
causality-in-quantile test initially developed by Nishiyama et al. (2011)
and Jeong et al. (2012). This approach has been widely embraced in
existing literature to test for the asymmetric Granger causality between
factors (see, e.g., Duan et al., 2021). In our analysis, the nonlinear
Granger causality in quantile is set to test the hypotheses as follows:
the EPU (𝑝𝑡) does not cause volatility spillovers (𝑠𝑡) in the 𝜌-th quantile
with respect to a 𝑞-lag vector of both EPU and volatility spillovers
𝑍𝑡−1 = (𝑠𝑡−1,… , 𝑠𝑡−𝑞 , 𝑝𝑡−1,… , 𝑝𝑡−𝑞) if

𝑄𝜌(𝑠𝑡|𝑍𝑡−1) = 𝑄𝜌(𝑠𝑡|𝑆𝑡−1), (11)

and the 𝑝𝑡 is a prima facie cause of 𝑠𝑡 in the 𝜌-th quantile with respect
to 𝑍𝑡−1 if

𝑄𝜌(𝑠𝑡|𝑍𝑡−1) ≠ 𝑄𝜌(𝑠𝑡|𝑆𝑡−1), (12)

where 𝑄𝜌(𝑠𝑡|⋅) is the 𝜌th quantile of 𝑠𝑡 given (⋅) with 𝜌 ∈ (0, 1), and
𝑆𝑡−1 = (𝑠𝑡−1,… , 𝑠𝑡−𝑞) denotes the lag-vector of volatility spillovers. Let
𝐹𝑠𝑡|𝑍𝑡−1

(𝑠𝑡|𝑍𝑡−1) and 𝐹𝑠𝑡|𝑆𝑡−1
(𝑠𝑡|𝑆𝑡−1) represent the conditional distribu-

tion functions of 𝑠𝑡 given 𝑍𝑡−1 and 𝑆𝑡−1, respectively, and we assume
𝐹𝑠𝑡|𝑍𝑡−1

(𝑠𝑡|𝑍𝑡−1) to be absolutely continuous in 𝑠𝑡 for almost all 𝑍𝑡−1
following Jeong et al. (2012). Then, the probability of 𝐹𝑠𝑡|𝑍𝑡−1{

𝑄𝜌(𝑠𝑡|𝑍𝑡−1)
}

= 𝜌 will be 1 if denoting 𝑄𝜌(𝑍𝑡−1) ≡ 𝑄𝜌(𝑠𝑡|𝑍𝑡−1).
Therefore, the hypotheses to be tested in terms of definitions made in
Eqs. (11) and (12) are:

𝐻0 = 𝑃
{

𝐹𝑠𝑡|𝑍𝑡−1

{

𝑄𝜌(𝑠𝑡|𝑍𝑡−1)
}

= 𝜌
}

= 1, (13)

𝐻1 = 𝑃
{

𝐹𝑠𝑡|𝑍𝑡−1

{

𝑄𝜌(𝑠𝑡|𝑍𝑡−1)
}

= 𝜌
}

< 1, (14)

To consistently test the hypothesis in Eq. (13), a distance measure
proposed by Jeong et al. (2012) is employed, which has the following
form:

𝐷 = 𝐸[(𝐹𝑠𝑡|𝑍𝑡−1

{

𝑄𝜌(𝑠𝑡|𝑍𝑡−1)
}

− 𝜌)2𝑓𝑍 (𝑍𝑡−1)], (15)

where 𝑓𝑍 (𝑍𝑡−1) indicates the marginal density function of 𝑍𝑡−1. Note
that 𝐷 is a non-negative number and 𝐷 = 0 holds if and only if 𝐻0
in Eq. (13) is true, while 𝐷 > 0 holds under 𝐻1 in Eq. (14). The distance
measure 𝐷 can thus be a proper indicator for the consistent test of the
null hypothesis 𝐻0. Following Jeong et al. (2012), we use a feasible
kernel-based method to estimate 𝐷 as follows:

𝐷𝑇 = 1
2𝑞

𝑇
∑

𝑇
∑

𝐾
(

𝑍𝑡−1 −𝑍𝑘−1
𝑏

)

𝜖𝑡𝜖𝑠, (16)
6

𝑇 (𝑇 − 1)𝑏 𝑡=𝑞+1 𝑘=𝑞+1,𝑘≠𝑡 C
where 𝐾(⋅) is the kernel function with a bandwidth of 𝑏. 𝑇 is the
ample size, and 𝜖𝑡 is an estimated regression error, specified as 𝜖𝑡 =
{

𝑠𝑡 ≤ �̂�𝜌(𝑆𝑡−1)
}

− 𝜌. Using the nonparametric kernel method, we
an further estimate the 𝜌th conditional quantile of 𝑠𝑡 given 𝑆𝑡−1 as
̂ 𝜌(𝑆𝑡−1) = 𝐹−1

𝑠𝑡|𝑆𝑡−1
(𝜌|𝑆𝑡−1), where the 𝐹𝑠𝑡|𝑆𝑡−1

(𝑠𝑡|𝑆𝑡−1) is the Nadaraya–
atson kernel estimator computed by 𝐹𝑠𝑡|𝑆𝑡−1

(𝑠𝑡|𝑆𝑡−1) =
∑𝑇

𝑘=𝑞+1,𝑘≠𝑡 𝐾
′
( 𝑆𝑡−1−𝑆𝑘−1

𝑏

)

1(𝑠𝑘≤𝑠𝑡)
∑𝑇

𝑘=𝑞+1,𝑘≠𝑡 𝐾
′
( 𝑆𝑡−1−𝑆𝑘−1

𝑏

) with the kernel function of 𝐾 ′(⋅) and a

andwidth of 𝑏.

. Empirical results

.1. The dynamic market networks

We begin our analysis by analyzing the directional spillover be-
ween the considered variables in volatility, through which the dynamic
arket networks of (dirty and clean) cryptocurrencies with (traditional

nd green) assets are investigated. The corresponding results based on
he whole sample are presented in Table 3. Specifically, values in the
ows depict the individual spillover from the variable placed at the
olumn head (𝑖) to variables in the row (𝑗). The sum of these represents
otal contribution (𝑇𝑆) of the information spillover from the variable
to others (𝑗), i.e., 𝐷𝑆𝑖→𝑗 . At the same time, the values in row-wise
epict the contribution (𝐹𝑟𝑜𝑚) received by the variable in the specific
ow of the first column (𝑗) from different variables (𝑖), i.e., (𝐷𝑆𝑖←𝑗). The
iagonal values are explained as the own shocks received by and/or
btained from the variable itself. Moreover, the net total spillover
ndex (𝑁𝑇𝑆) implies a variable that gives (receives) more shocks than
eceiving (or giving) from other variables. A positive value of 𝑁𝑇𝑆
eveals that the variable is considered as a net giver with more shocks
o other variables than it receives, while a negative result depicts a net
eceiver of the variable that is more influenced to shocks from others. In
ddition, the net pairwise directional volatility connectedness between
ariables is denoted as the net piece-wise spillover (𝑁𝑃𝑆) to measure
hether a variable affects (gets affected by) other variables.9

Based on the whole sample period, Table 3 summarizes the average
ynamic market networks of cryptocurrencies with financial assets.
verall, it is shown that the total connectedness index is 67.1%, in-
icating that more than two thirds of the total variation of the forecast
rror in the system over the sample can be explained by the information
pillovers, while the rest of the variation is explained by idiosyncratic
hocks. This finding is also corroborated by the graphical analysis of the
otal spillover presented in Fig. 2. Regarding the directional spillover
cross markets, it can be seen that information spillovers between (dirty
nd clean) cryptocurrency indices and (traditional and green) assets
re found to be relatively weak in the system, and vice versa. For
xample, both dirty cryptocurrencies (DI) and clean cryptocurrencies
CI) are shown to transmit only limited information to financial assets
ith the largest related case is the transmission from DI to the forecast
ariance of Financial Times Stock Exchange 100 Index (FTSE) with
.2%. However, except for the self-transmission, the contribution to
he forecast error of financial assets can be as large as 22.2% from
he traditional asset S&P 500 Index (SP500) to the green asset S&P
SG Leader Index (ESGLI). Thus, as for the information receiving, the
ajority of the information received by financial assets are from others
ithin the same group instead of cryptocurrencies.

It is clear that financial assets including both traditional and green
ssets contribute to most of the information transmission within the
arket network in our case. Specifically, the green asset, i.e., Dow

ones Sustainability World Index (SWI), is ranked as the largest in-
ormation giver that contributes to the innovation dynamics of the

9 The 10-step ahead forecast horizon of the TVP-VAR system is considered,
nd the optimal lag order is selected as 1 based on the Akaike Information
riterion (AIC) when measuring 𝑇𝑆, 𝐷𝑆, 𝑁𝑇𝑆, and 𝑁𝑃𝑆.
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Table 3
Volatility spillovers during the whole sample period.

DI CI TSX FTSE ASX SP500 SWI ESGLI GBI GCEI FROM

DI 53.7 9.7 6.1 6.9 2.3 2.9 7.0 2.7 4.2 4.5 46.3
CI 10.6 67.1 3.6 3.4 1.9 1.6 3.4 1.4 2.1 4.8 32.9
TSX 3.0 1.9 23.7 9.9 7.4 11.9 15.3 11.3 3.6 11.9 76.3
FTSE 4.2 2.2 13.9 28.1 6.7 8.3 15.3 7.9 4.1 9.4 71.9
ASX 1.7 1.5 11.8 7.1 25.7 12.9 13.2 12.5 3.1 10.4 74.3
SP500 1.7 1.0 11.9 6.2 7.3 22.0 16.7 21.7 2.1 9.4 78.0
SWI 3.2 1.7 14.1 10.3 7.1 15.1 20.2 14.8 3.3 10.3 79.8
ESGLI 1.7 1.1 11.7 6.1 7.2 22.2 16.8 22.2 2.1 9.1 77.8
GBI 4.1 2.7 10.3 7.1 7.1 6.5 9.6 6.2 36.2 10.3 63.8
GCEI 2.9 2.6 13.7 7.4 7.4 10.3 12.3 9.7 3.9 29.8 70.2
TO 33.1 24.4 97.1 64.3 54.2 91.7 109.7 88.3 28.5 80.0 671.3
NTS −13.2 −8.5 20.9 −7.6 −20.1 13.6 29.9 10.4 −35.3 9.8 TS
NPS 7.0 7.0 2.0 5.0 6.0 3.0 1.0 4.0 8.0 3.0 67.1
Transmitter

Note: This table describes the time-average connectedness of cryprocurrency-financial asset markets based on the whole sample
period. Interpretations of abbreviations of incorporated variables and different terms depicting various connectedness are from
Section 3 and Section 5.1, respectively.
Table 4
Volatility spillovers in the pre-COVID-19 period.

DI CI TSX FTSE ASX SP500 SWI ESGLI GBI GCEI FROM

DI 82.5 14.3 0.5 0.3 0.2 0.6 0.4 0.6 0.1 0.5 17.5
CI 14.1 81.3 1.4 0.2 0.4 0.7 0.5 0.7 0.4 0.4 18.7
TSX 0.2 0.9 35.4 7.1 5.8 11.5 14.0 11.0 0.5 13.7 64.6
FTSE 0.1 0.3 11.6 43.5 4.6 7.2 14.5 7.1 0.9 10.2 56.5
ASX 0.3 0.3 9.3 4.4 33.7 14.1 14.1 13.9 0.9 9.0 66.3
SP500 0.2 0.2 9.2 4.1 3.8 26.7 18.0 26.5 0.6 10.6 73.3
SWI 0.2 0.2 11.8 8.0 5.6 17.6 25.2 17.4 0.9 13.1 74.8
ESGLI 0.3 0.3 8.9 4.0 3.8 26.9 18.1 27.0 0.6 10.2 73.0
GBI 0.5 0.8 5.9 3.4 4.2 3.7 5.5 3.6 67.1 5.3 32.9
GCEI 0.3 0.2 13.5 6.4 5.8 12.3 16.0 11.8 0.6 33.0 67.0
TO 16.2 17.5 72.1 37.9 34.3 94.7 100.9 92.6 5.5 72.9 544.5
NTS −1.4 −1.2 7.5 −18.7 −31.9 21.4 26.1 19.6 −27.4 6.0 TS
NPS 6.0 5.0 3.0 6.0 6.0 2.0 1.0 3.0 8.0 4.0 54.5
Transmitter

Note: This table describes the time-average connectedness of cryprocurrency-financial asset markets during the pre-pandemic
periods. Interpretations of abbreviations of incorporated variables and different terms depicting various connectedness are
from Section 3 and Section 5.1, respectively.
hole system with 109.7%, involving that of ESGLI (16.8%) and fol-
owed by SP500 (16.7%), Toronto Stock Exchange Index (TSX, 15.3%),
TSE (15.3%), Australian Securities Exchange Index (ASX, 13.2%), S&P
lobal Clean Energy Index (GCEI, 12.3%), S&P Green Bond Index (GBI,
.6%), DI (7.0%), and CI (3.4%). The green asset, i.e., SWI, is ranked
s the largest information receiver that contributes to the innovation
ynamics of the whole system with 79.8%, involving that of SP500
15.1%) followed by ESGLI (14.8%), TSX (14.1%), FTSE (10.3%), GCEI
10.3%), ASX (7.1%), GBI (3.3%), DI (3.2%), and CI (1.4%).

Overall, the dynamics of cryptocurrencies are shown to be weakly
onnected with that of both traditional and green assets with CI ranked
s the most isolated type of cryptocurrencies to the financial system.
hus, it is concluded that the cryptocurrency (with both types of clean
nd dirty) can help with diversification and risk mitigation against
oth traditional and green assets, and vice versa. Moreover, regarding
he net total spillovers (NTS), cryptocurrencies (DI and CI), traditional
tock assets in the UK and Australian stock markets (FTSE and ASX),
nd green asset GBI are found to act as net receivers of shocks in
he whole system with negative values of NTS with GBI is ranked as
he largest net receiver (−35.3%). In contrast, SWI is shown to be
he largest net information giver with about 29.9% of the shocks in
he system. These findings can be further confirmed by the graphical
nalysis of NTS for each incorporated variables shown in Fig. 2.

To further study whether and how the COVID-19 pandemic alters
he market networks of cryptocurrencies with financial assets, we
ecompose the whole sample into sub-samples of pre- and post-COVID-
9 periods with the dynamic spillover results shown in Tables 4 and
. Overall, the total connectedness of the market system before and
7

fter the pandemic is 54.5% and 62.4%, respectively, which is slightly
lower than that of the whole sample. Moreover, although the market
network remains weak irrespective of the pandemic, the extent of the
network slightly raise in the post-pandemic era. Generally, the finding
of the weak market connection of dirty and clean cryptocurrencies
with traditional and green assets in the whole sample keeps being
consistent after the sample split, implying that the sheltering role of the
dirty and clean cryptocurrencies for financial assets holds irrespective
of the pandemic onset. It is also worth noting that the connection of
clean cryptocurrencies (CI) with the financial system is found to be
even weaker compared to that of dirty cryptocurrencies (DI) after the
pandemic as shown by the fact that the information received by CI is
only around one third by DI. The above finding corroborate the existing
findings on the connectedness between cryptocurrencies and financial
markets (see, Ji et al., 2019; Naeem and Karim, 2021; Ren and Lucey,
2022), and further indicates that the sheltering role of CI appears to be
more effective than that of DI since the pandemic onset.

In specific, our results regarding the market network of cryptocur-
rencies with financial assets connect with existing literature in various
aspects. First, existing research has found a weak dependence between
cryptocurrency and financial assets, whereas that within the financial
system tends to be relatively strong. This is in line with our find-
ings that connection within the ecosystem of finance is closer than
the financial-cryptocurrency linkage. For example, Bouri et al. (2020)
employ the wavelet coherency approach to ascertain that the depen-
dence between Bitcoin/gold/other commodities and the stock market
is not very strong, with Bitcoin being the most isolated type. Mensi
et al. (2019) examine the asymmetric volatility connectedness between
Bitcoin and major precious metals, and suggest that the majority of

the information received by precious metals is from sources within the
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Fig. 2. Plots of total spillover and net total spillover.
Note: The left-hand-side plots illustrate the dynamic degree of the overall spillover of the cryprocurrency-financial asset linkages over time; the right-hand-side plots depict the
degree of the net total spillover from each target market to others being considered over time.
same group instead of Bitcoin. Moreover, the findings hold valid and
are supported by Ren and Lucey (2022) and Gil-Alana et al. (2020)
after division of cryptocurrencies are into clean and dirty groups. Ren
and Lucey (2022) find the return and volatility connectedness between
clean energy and both clean and dirty cryptocurrencies is much lower
than that between clean energy and other equity markets, suggesting
that both types of cryptocurrencies are more isolated and act as a
separate asset class. Gil-Alana et al. (2020) find evidence that the two
clean and four dirty cryptocurrencies under research can provide di-
versification gains for investors since there is no cointegration between
cryptocurrencies and mainstream financial assets. Our findings are
consistent with the above literature that the market linkage between
8

dirty/clean cryptocurrencies and financial traditional/green assets is
weak, and main sources of the spillover is found within the system of
financial assets.

Second, our findings are supported by the literature that both dirty
and clean cryptocurrencies act as the investment sheltering role for
financial assets, and such the role remains consistent irrespective of
the pandemic outbreak. Among related applications, Hsu et al. (2021)
apply a Diagonal BEKK model to investigate the risk spillovers of
Bitcoin (dirty), Ethereum (dirty), and Ripple (clean) to traditional
currencies and gold prices, and document that cryptocurrencies can act
as a diversifier for most traditional currencies and gold during both
the whole research sample and the financial turmoil associated with
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Table 5
Volatility spillovers in the post-COVID-19 period.

DI CI TSX FTSE ASX SP500 SWI ESGLI GBI GCEI FROM

DI 68.6 5.6 3.6 3.3 2.4 2.9 4.0 2.9 3.0 3.7 31.4
CI 6.4 88.1 0.5 0.6 0.5 0.4 0.5 0.4 0.3 2.5 11.9
TSX 1.0 1.0 23.0 10.4 8.2 14.4 16.5 13.8 2.7 9.0 77.0
FTSE 1.3 1.2 15.9 28.7 7.3 10.4 15.6 9.8 2.5 7.3 71.3
ASX 0.6 2.7 12.4 6.4 25.5 14.8 13.2 14.7 2.4 7.4 74.5
SP500 0.6 0.9 12.7 5.8 9.5 21.9 18.1 21.6 1.3 7.5 78.1
SWI 0.9 1.2 14.5 9.2 8.5 18.0 20.7 17.7 1.8 7.7 79.3
ESGLI 0.7 0.9 12.4 5.6 9.6 22.0 18.2 22.0 1.4 7.3 78.0
GBI 2.2 1.0 8.9 5.3 7.6 8.2 8.5 8.2 44.2 5.9 55.8
GCEI 1.6 1.7 12.2 6.6 6.5 12.1 12.0 11.6 2.3 33.5 66.5
TO 15.1 16.2 93.1 53.1 60.2 103.0 106.6 100.8 17.6 58.3 623.9
NTS −16.3 4.3 16.1 −18.2 −14.4 24.9 27.2 22.8 −38.2 −8.2 TS
NPS 8.0 5.0 3.0 5.0 6.0 1.0 1.0 3.0 8.0 5.0 62.4
Transmitter

Note: This table describes the time-average connectedness of cryprocurrency-financial asset markets during the post-pandemic
periods. Interpretations of abbreviations of incorporated variables and different terms depicting various connectedness are
from Section 3 and Section 5.1, respectively.
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he COVID-19 pandemic. In contrast, Pham et al. (2021) only include
irty cryptocurrencies (Bitcoin and Ethereum) with fossil fuel and
reen investments in the market network. They find that the spillover
f cryptocurrencies with assets an is weak during non-crisis periods
ut increases significantly during crisis periods. Thus, it is clear that
here exists no consensus on the sensitivity of the market dependence
f cryptocurrencies and financial assets to the COVID-19 pandemic,
ossibly due to the fact that the types of cryptocurrencies considered
re not comprehensive enough. Our paper conducts a comprehensive
nalysis that distinguishes between clean and dirty cryptocurrencies,
nd studies the linkage of both types of cryptocurrencies with finan-
ial assets and its dynamics before/after the pandemic, extending the
elated literature in this regard.

Noteworthy, our research adds to the existing literature by focus-
ng on the potentially different effectiveness of the sheltering role of
lean and dirty cryptocurrencies. By far, there exists limited literature
iscussing the different linkage of dirty and clean cryptocurrencies
ith financial assets. Ren and Lucey (2022) find that clean energy

s a more effective safe haven for dirty cryptocurrencies than for
lean cryptocurrencies during the period with increasing uncertainty.
lthough existing literature finds the sheltering role of clean cryptocur-
encies for financial assets (Gil-Alana et al., 2020; Hsu et al., 2021),
t fails to provide an in-depth comparison of its effectiveness with
irty cryptocurrencies for different types of financial assets. Our paper
herefore analyzes whether and how dirty and clean cryptocurrencies
onnect with green/traditional assets differently by pointing out that
lean cryptocurrencies tend to transmit less information than dirty
ryptocurrencies to financial assets, especially during the COVID-19
andemic period.

.2. The role of uncertainty in a non-linear setting

Whether and how does evolution of the uncertainty level in the
conomy alter the cross-market networks between cryptocurrencies and
inancial assets? Correspondingly, what is the underlying difference
n the network response when the target agent (either cryptocurren-
ies or financial assets) is eco-friendly or carbon-intensive? Since the
on-linearity of our data sample, we further employ a causality-in-
uantiles test to study the nonlinear causal effects of the economic
olicy uncertainty (EPU) on the net pairwise spillovers (𝑁𝑃𝑆𝑖𝑗) be-
ween cryptocurrency and financial assets as gauged in the last section.
he corresponding results based on the whole sample, pre-, and post-
OVID-19 sub-samples are depicted in Tables 6–8, respectively. Gener-
lly, the lower, middle and higher quantiles respectively corroborate
he periods of bearish, normal and bullish market conditions. For
ntuitive illustration, we have further plotted the non-linear causality
9

est results that present in Appendix A.
Intuitively, some important patterns emerge as follows. First, the
PU dynamics tend to exert an enhanced causal impact on the market
etwork after the COVID-19 pandemic as evinced by increasing signif-
cance of the causality from EPU to the market linkage. It can be seen
hat causal relations between EPU and pairwise market spillovers ap-
ear to be insignificant at many quantiles in the pre-COVID-19 period,
hile majority of the quantiles turns to become significant during the
OVID-19 period. Specifically, the EPU has causal effects on twelve
arket networks such as that between dirty cryptocurrency (DI) /

lean cryptocurrency (CI) and the Australian stock market (ASX) / Dow
ones Sustainability World Index (SWI) in the period after the pandemic
nset. In contrast, before the COVID-19 pandemic, only six causalities
rom EPU to pair-wise market spillovers are found to be significant and
nly at few quantiles, including market spillovers between DI/CI and
he US stock market (SP500) / S&P ESG Leader Index (ESGLI), as well
s DI and Canadian stock market (TSX) / S&P Global Clean Energy
ndex (GCEI). Interestingly, it is worth noting that while in the post-
OVID-19 period there exist causalities in most quantiles between EPU
nd most of the pairwise market spillovers, the spillover between CI
nd ASX is found to have no response when facing an uncertainty shock
ver the data distribution.

Overall, there exists an enhancement of the significance of causali-
ies between EPU and cryptocurrency-financial asset market spillovers
fter the pandemic. An underlying reason may be that EPU captures the
ynamics of economic fundamentals including alternations in policy-
aking, and it tends to attract more attention during the post-pandemic
eriod when the economy witnesses marked fluctuations in uncer-
ainty (Adekoya and Oliyide, 2021). Moreover, given that trading of
ryptocurrency has had an increasing popularity over time, it makes
he crypto market dynamics gradually closer to the financial system,
urther leading to the cross-market linkages being more vulnerable
o uncertainty. Specifically, the total market capitalization of crypto
ssets has increased dramatically from less than $20 billion in January
017 to more than $3 trillion in November 2021 (Iyer, 2022). As
ncreases in market capitalization and trading volume of cryptocurren-
ies, their widespread adoption could result in financial stability risks
iven their highly volatile prices, rising use of leverage in their trading,
nd increasing exposures of financial institutions to cryptocurrency-
elated assets (Iyer, 2022). Some literature has confirmed the increasing
arket network between cryptocurrencies and financial assets during

he market stress (Conlon and McGee, 2020; Elsayed et al., 2022);
owever, the literature that discusses whether the uncertainty level
lters the cross-market network is rather limited. Among limited ap-
lications, Pham et al. (2022) find that EPU significantly impacts the
ull-distributional connectedness among carbon, green and non-green
ryptocurrency markets on extreme lower (5th) and extreme upper
95th) quantiles, but they do not analyze the potential differences
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Table 6
Causality tests in quantiles during the whole sample period.

Ho: EPU does not Granger-cause: Nonlinear causality 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2

Net volatility spillover between DI and TSX 2.719*** 2.293** 1.955 2.830*** 4.446*** 5.982*** 6.372*** 4.886*** 2.078**
Net volatility spillover between DI and FTSE 2.260** 3.402*** 3.526*** 3.774*** 4.156*** 4.149*** 4.033*** 3.211*** 1.744
Net volatility spillover between DI and ASX 2.062** 5.663*** 9.073*** 7.016*** 2.811*** 1.459 2.512** 3.666*** 1.267
Net volatility spillover between DI and SP500 0.944 0.636 0.914 1.090 0.757 1.044 0.922 1.035 0.855
Net volatility spillover between DI and SWI 3.553*** 4.562*** 2.546** 1.335 2.868*** 4.515*** 6.348*** 5.679*** 2.457**
Net volatility spillover between DI and ESGLI 0.688 0.530 1.048 1.003 0.756 0.629 0.925 1.128 0.790
Net volatility spillover between DI and GBI 1.659 2.716*** 4.217*** 4.128*** 2.924*** 2.468** 1.929 1.724 1.592
Net volatility spillover between DI and GCEI 2.019** 3.170*** 4.569*** 2.993*** 2.019** 4.295*** 5.223*** 5.290*** 2.103**
Net volatility spillover between CI and TSX 1.519 3.381*** 2.586*** 1.174 1.287 2.349** 3.514*** 2.151** 1.243
Net volatility spillover between CI and FTSE 1.275 2.123** 2.455*** 2.612*** 3.040*** 1.820 1.906 1.964** 1.407
Net volatility spillover between CI and ASX 1.509 2.583*** 1.996** 1.680 0.541 0.745 1.630 2.676*** 1.569
Net volatility spillover between CI and SP500 0.374 1.577 1.350 1.309 0.683 1.062 1.285 1.261 0.538
Net volatility spillover between CI and SWI 3.044*** 3.724*** 4.131** 4.269*** 4.730*** 4.709*** 4.903*** 4.782*** 3.502***
Net volatility spillover between CI and ESGLI 0.278 1.050 1.415 1.468 0.798 0.898 1.187 1.472 0.506
Net volatility spillover between CI and GBI 2.608*** 3.821*** 3.797*** 2.596*** 1.551 1.164 1.798 2.488** 2.039**
Net volatility spillover between CI and GCEI 0.758 1.428 1.479 0.896 1.525 2.802*** 2.699*** 2.745*** 1.267

Note: This table reports the causality from economic policy uncertainty (EPU) to various linkages between cryptocurrency and financial asset markets based on the whole sample.
*** Represents the significance at 1%.
** Represents the significance at 5%.
Table 7
Causality tests in quantiles during the pre-pandemic period.

Ho: EPU does not Granger-cause: Nonlinear causality 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2

Net volatility spillover between DI and TSX 0.639 1.170 1.646 3.350*** 2.117** 2.501** 2.492** 1.400 0.662
Net volatility spillover between DI and FTSE 1.176 1.746 1.757 1.559 1.182 1.124 1.682 1.542 1.067
Net volatility spillover between DI and ASX 0.546 1.165 1.402 1.287 1.394 1.553 1.648 1.193 1.200
Net volatility spillover between DI and SP500 1.707 2.722*** 2.808*** 2.865*** 2.426** 2.279** 2.570** 1.840 1.391
Net volatility spillover between DI and SWI 0.738 1.103 1.411 1.543 1.679 1.204 1.535 1.079 0.804
Net volatility spillover between DI and ESGLI 1.898 2.557** 2.853*** 2.869*** 2.759*** 2.499** 2.225** 1.891 1.270
Net volatility spillover between DI and GBI 0.930 1.457 1.468 1.908 1.909 1.514 1.573 1.252 1.155
Net volatility spillover between DI and GCEI 4.064*** 4.801*** 5.294*** 5.570*** 6.071*** 5.459*** 4.529*** 3.847*** 2.335**
Net volatility spillover between CI and TSX 0.429 0.477 1.005 0.901 0.638 0.630 1.013 0.912 0.565
Net volatility spillover between CI and FTSE 0.965 0.982 1.169 1.432 1.289 1.217 1.082 1.042 0.894
Net volatility spillover between CI and ASX 1.071 0.906 1.046 0.838 0.478 0.716 0.813 0.851 0.841
Net volatility spillover between CI and SP500 0.687 1.420 1.677 2.480** 1.886 1.935 1.810 1.355 0.901
Net volatility spillover between CI and SWI 0.587 1.114 1.467 1.889 1.317 0.990 1.120 1.002 0.745
Net volatility spillover between CI and ESGLI 0.897 1.992 1.788 2.793*** 2.644*** 2.214** 1.881 0.974 1.087
Net volatility spillover between CI and GBI 1.071 1.352 1.475 1.830 1.747 1.649 1.687 1.558 0.916
Net volatility spillover between CI and GCEI 0.842 0.936 0.795 0.565 0.821 0.804 1.319 1.420 1.146

Note: This table reports the causality from economic policy uncertainty (EPU) to various linkages between cryptocurrency and financial asset markets during the pre-pandemic
periods.
*** Represents the significance at 1%.
** Represents the significance at 5%.
of the market connection before and after the COVID-19 pandemic.
Our findings of underlying changes in the causal impacts due to the
pandemic onset extends the extant literature that studies the effects
of EPU on cross-market spillovers (e.g., Albulescu et al., 2019 for the
oil and commodity currency market; Das et al., 2019 for the stock
markets; Fasanya et al., 2021 for the precious metals markets).

Second, the causal effect from EPU to cross-market linkages depicts
idiosyncratic features depending on whether cryptocurrencies/financial
assets are eco-friendly or carbon-intensive. The causality degree tends
to be relatively stronger between DI and financial assets, especially
after the pandemic onset. It is clear that numbers of quantiles where
the DI-asset linkages are significant are relatively greater than the case
of the CI-asset linkages. In specific, before the pandemic, the spillover
between CI and financial assets mostly remains unchanged in the face
of EPU, while the DI-related spillover tends to have a closer relation
with EPU. While the cross-market spillovers tend to be more vulnerable
to the uncertainty shock after the pandemic, the spillovers related to
different types of cryptocurrencies (i.e., CI and DI) and asset types
(i.e., traditional and green) behave clearly different patterns. Therefore,
10
the spillover (in volatility) of the two types of cryptos (i.e., CI and DI)
with financial assets has different response in the face of the uncertainty
shock. In addition, we further find that most of the causalities turns to
be insignificant at extreme low quantiles, i.e., 10% quantile, in both
sub-samples before and after the COVID-19 pandemic. This implies the
sheltering role of the cryptocurrency-financial asset linkages against the
uncertainty level irrespective of whether the cryptocurrencies/financial
assets are carbon-intensive or -friendly.

Existing literature has studied the hedging role of financial assets
against EPU, while little has studied how EPU impacts the market
linkages between cryptocurrencies and financial assets. More-so, far
little has distinguished different types of cryptocurrencies and finan-
cial assets according to whether the asset is eco-friendly. Haq and
Bouri (2022) examine co-movements between conventional and sus-
tainable cryptocurrencies by considering two cryptocurrency uncer-
tainty indices (i.e., UCRY price and UCRY policy), and find a weak co-
movement. Cheema et al. (2020) investigate the predictability of EPU
for cryptocurrency returns over different time horizons and conclude
that cryptocurrencies might not act as a safe haven against financial
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Table 8
Causality tests in quantiles during the post-pandemic period.

Ho: EPU does not Granger-cause: Nonlinear causality 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2

Net volatility spillover between DI and TSX 1.010 1.232 1.266 4.188*** 8.661*** 15.651*** 13.360*** 8.656*** 2.933***
Net volatility spillover between DI and FTSE 3.189*** 4.037*** 4.394*** 4.394*** 4.767*** 4.870*** 4.422*** 3.869*** 2.230**
Net volatility spillover between DI and ASX 1.710 2.535** 1.946** 2.479** 6.339*** 11.788*** 8.491*** 4.336*** 1.090
Net volatility spillover between DI and SP500 0.768 1.714 2.066** 2.369** 3.179*** 3.802*** 3.901*** 2.530** 1.018
Net volatility spillover between DI and SWI 0.749 0.997 0.696 1.893 6.095*** 11.895*** 12.226*** 7.983*** 2.890***
Net volatility spillover between DI and ESGLI 0.909 1.503 2.014** 2.443** 3.354*** 3.775*** 4.305*** 3.633*** 1.449
Net volatility spillover between DI and GBI 0.497 0.637 1.081 1.633 3.318*** 3.407*** 2.715*** 1.977** 0.842
Net volatility spillover between DI and GCEI 1.302 2.087** 2.057** 1.507 1.635 2.694*** 4.837*** 5.486*** 2.086**
Net volatility spillover between CI and TSX 0.862 2.837*** 3.744*** 2.500** 3.159*** 3.952*** 1.477 0.907 0.752
Net volatility spillover between CI and FTSE 0.169 1.026 2.300** 0.782 0.745 0.375 1.121 0.686 0.619
Net volatility spillover between CI and ASX 0.778 1.040 1.568 1.580 1.765 1.641 1.135 1.075 0.494
Net volatility spillover between CI and SP500 1.931 2.367** 2.696*** 2.612*** 3.261*** 2.999*** 2.351** 1.820 1.383
Net volatility spillover between CI and SWI 0.319 1.777 4.499*** 3.154*** 1.310 1.026 0.748 1.199 0.479
Net volatility spillover between CI and ESGLI 2.017** 2.222** 2.394** 2.564** 3.463*** 3.108*** 2.451** 1.844 1.267
Net volatility spillover between CI and GBI 1.939 3.458*** 2.754*** 1.933 1.722 1.812 2.547** 5.401*** 3.088***
Net volatility spillover between CI and GCEI 0.531 2.865*** 6.159*** 7.905*** 6.094*** 3.757*** 1.014 0.644 0.978

Note: This table reports the causality from economic policy uncertainty (EPU) to various linkages between cryptocurrency and financial asset markets during the post-pandemic
periods.
*** Represents the significance at 1%.
** Represents the significance at 5%.
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assets when facing a high degree of uncertainty. Recently, Fasanya et al.
(2021) analyze how EPU connects with the cross-market spillover. They
include Bitcoin and precious metals in their built market networks and
argue that the cross-market connectedness might lack a hedging effect
for EPU, especially around the median and higher quantiles.

Our paper adds to the literature by revealing that the spillovers of
the dirty and clean cryptocurrencies with financial assets act differently
under the uncertainty shock. It is found that the causality from EPU
to DI-asset linkages tends to be stronger than CI-asset linkages. An
underlying reason may be that dirty cryptocurrencies appear to be
more strongly connected within the network of cryptocurrencies than
clean cryptocurrencies, making dirty cryptocurrencies relatively more
vulnerable to information transmission from one of them Milunovich
(2022). Specifically, Milunovich (2022) observes that dirty cryptocur-
rencies import price volatility from the same group and export future
price volatility to both dirty and clean cryptocurrencies, while clean
cryptocurrencies transmit some uncertainty amongst themselves and
export less price risk to dirty cryptocurrencies. Accordingly, if one
of the DI-asset linkages exhibits a strong connection with EPU, other
DI-asset linkages under consideration might be also affected, further
increasing the degree of causality from EPU to each pair of the DI-asset
linkage.

5.3. Hedge ratios and portfolio weights

To further explore the implications of our obtained results for port-
folio diversification and risk management, we evaluate the merits of
involving dirty and clean cryptocurrencies in portfolio risk analysis by
employing optimal hedge ratios and portfolio weights. Specifically, the
optimal hedge ratios are constructed by the proportion of long position
in volatility of dirty/clean cryptocurrencies 𝑖 that can be hedged with a
hort position in one of the green and traditional assets’ price volatility
, so as to minimize the variance of portfolio. Following Antonakakisa
t al. (2018) and Maghyereh et al. (2017), the hedge ratio between
he volatility of asset 𝑖 (i.e., DI/CI volatility) and that of asset 𝑗
i.e., financial asset volatility) is calculated as

∗
𝑖𝑗,𝑡 =

𝐶𝑜𝑣(𝑌𝑖𝑡, 𝑌𝑗𝑡)
𝑣𝑎𝑟(𝑌𝑗𝑡)

=
𝐻𝑖𝑗,𝑡

𝐻𝑗𝑗,𝑡
(17)

here 𝐻𝑖𝑗,𝑡 denotes the conditional covariance of DI/CI volatility 𝑖
nd financial asset volatility 𝑗 at time 𝑡, and 𝐻𝑗𝑗,𝑡 refers to the con-
11

itional variance of financial asset’s price volatility 𝑗 at time 𝑡, which f
s estimated from the DCC-GARCH model following Engle (2002). The
ptimal portfolio weights are then given by

∗
𝑖𝑗,𝑡 =

𝐻𝑗𝑗,𝑡 −𝐻𝑖𝑗,𝑡

𝐻𝑖𝑖,𝑡 − 2𝐻𝑖𝑗,𝑡 +𝐻𝑗𝑗,𝑡
, with 𝑤∗

𝑖𝑗,𝑡 =

⎧

⎪

⎨

⎪

⎩

0, 𝑖𝑓 𝑤∗
𝑖𝑗,𝑡 < 0

𝑤∗
𝑖𝑗,𝑡, 𝑖𝑓 0 ≤ 𝑤∗

𝑖𝑗,𝑡 ≤ 1

1, 𝑖𝑓 𝑤∗
𝑖𝑗,𝑡 > 1

(18)

here 𝑤∗
𝑖𝑗,𝑡 is the weight of DI/CI volatility 𝑖 in a one-dollar portfolio

t time 𝑡, while the weight of financial asset volatility 𝑗 is computed as
−𝑤∗

𝑖𝑗,𝑡.
The time-varying evolutions of hedge ratios and portfolio weights

re shown in Figs. 3 and 4. Overall, hedge ratios and portfolio weights
etween dirty/clean cryptocurrencies and green/traditional assets are
idely volatile over time, suggesting the necessary of active portfo-

io diversification and risk management when considering the DI/CI
olatility. Specifically, it can be seen from Fig. 3 that the hedge ratios is
elatively low when dirty/clean cryptocurrencies is taken as a long po-
ition. This is consistent with our findings shown in Section 5.1, which
uggests that dirty and clean cryptocurrencies tend to transmit little
nformation to green and traditional assets while are mainly impacted
y these financial asset volatilities. Moreover, the hedge ratios reach
peak after the announcement of COVID-19 as a pandemic, i.e., 11
arch 2020, indicating an increased hedging cost after the pandemic

nset. According to Fig. 4, the optimal portfolio weights in most case
how a one dollar investment in the volatility of dirty/clean cryptocur-
encies, suggesting that the minimum-variance portfolio is constructed
y a single-asset portfolio of dirty or clean cryptocurrency volatility.
nterestingly, the optimal weights have witnessed a severe turbulence
fter pandemic oneset, with almost all of the weights drop sharply, ex-
ept for the weight of green asset of GBI with clean cryptocurrency. This
hows that dirty and clean cryptocurrencies can provide diversification
ains for investors, especially during the COVID-19 pandemic period,
eing in line with the existing literature (e.g., Gil-Alana et al., 2020;
su et al., 2021).

To further study the impact of COVID-19 pandemic shock, we esti-
ate the hedge ratios and portfolio weights during the whole sample,
re-COVID-19, and post-COVID-19 period, and report the summary
tatistics of three sample periods in Table 9. From Table 9 panel A,
n average, both dirty and clean cryptocurrencies are cheap hedge
or green and traditional asset volatilities with their associated hedge
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Fig. 3. Dynamic hedge ratios.
Note: Red line denotes the first day of the COVID-19 being announced as a pandemic by the WHO, which is 11 March 2020. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
ratios being close to zero, wherein clean cryptocurrency provides the
cheaper hedging opportunities compared to the dirty one for three
sample periods. For example, the most expensive hedge for a $1 long
position in dirty cryptocurrency is obtained by take a short position of
only 7 cents on green asset of GCEI in the whole sample period. This
suggests that GCEI is the least useful asset to hedge against DI volatility.
Moreover, it is noticed that the average hedge ratios during the post-
COVID-19 period is higher than that during the pre-COVID-19 period,
showing the critical role of the COVID-19 pandemic shock on the hedg-
ing strategy of dirty/clean cryptocurrencies for the market volatility
interactions. Turning to Table 9 panel B, the majority of portfolios
shows high weights of dirty/clean cryptocurrencies with values close
to one, indicating that for $1 portfolio, nearly all cents are invested
in dirty or clean cryptocurrency volatility. We also observe that there
are higher average weights after the COVID-19 period compared to
that before the pandemic. Therefore, these findings also support that
dirty and clean cryptocurrencies can act as a diversifier for most green
and traditional assets during the financial turmoil associated with the
COVID-19 pandemic.

5.4. Robustness check

How sensitive are our main results to changes in the research de-
sign? In this section, we conduct the robustness analyses in the face of
alternative estimation strategy, i.e., changes in forecast horizon and lag
length, replacement of key green assets, and inclusion of commodities,
respectively.
12
5.4.1. Changes in forecast horizon and lag-length
To test the robustness of our findings regarding the volatility

spillover networks of dirty and clean cryptocurrencies with green and
traditional assets, we start by changing estimation strategy of forecast
horizon and lag-length. In specific, following the extant literature
(e.g., Diebold and Yılmaz, 2012; Fasanya et al., 2021; Iyer, 2022), we
have updated the forecast horizon of 12-step ahead forecast and lag
length of 2 in the TVP-VAR model, respectively, when re-estimating the
volatility spillover dynamics of dirty and clean cryptocurrencies with
green and traditional assets.

Overall, as an intuitive illustration through the dynamic connect-
edness approach, it is observed that the results tend to be in line
with the estimations without changing forecast horizon and lag order.
In particular, the volatility spillover networks when using alternative
forecast horizon and lag length for the whole sample period are pre-
sented in Tables 10 and 11, respectively, which results are similar
to the corresponding counterparts in the main analysis shown in Ta-
ble 3. The weak interactions between dirty/clean cryptocurrencies and
green/traditional assets is broadly consistent when the forecast horizon
and lag length is modified, further showing that our results remain
robust in the face of changes in estimation strategy.

5.4.2. Replacement of green assets with alternative ones
As an additional robustness check, we follow Ren and Lucey (2022)

and Huang et al. (2023) by considering the WilderHill Clean Energy
Index (CEI) that measures the overall performance of clean energy
sector, and conduct a re-estimation of our volatility spillover and
causality test by replacing the S&P Global Clean Energy Index (GCEI).

Our obtained results after the replacement of GCEI by CEI have been
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Fig. 4. Dynamic portfolio weights.
Note: Red line denotes the first day of the COVID-19 being announced as a pandemic by the WHO, which is 11 March 2020. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
visually exhibited by the volatility spillover of the whole sample period
depicted in Table 12 and the impact of economic policy uncertainty on
these spillover dynamics shown in Table 13. The dynamic volatility in-
teraction of clean and dirty cryptocurrencies with green and traditional
assets, and the impact of uncertainty shock on the above networks
generally mimic that obtained in our main findings shown in Tables 3
and 6, although there are more significant Granger causalities of the
economic policy uncertainty on market linkages between dirty/clean
cryptocurrencies and green assets. This therefore indicates that our
results are not sensitive to the replacement of the green assets.

5.4.3. Inclusion of commodities
To further examine the robustness of our main results, following

the existing literature (Bouri et al., 2020; Mensi et al., 2019; Ren
and Lucey, 2022), we include commodities in our empirical analysis.
Specifically, we re-estimate the market interaction of clean and dirty
cryptocurrencies with green and traditional assets by using dynamic
connectedness approach and the role of uncertainty shocks on above-
obtained market networks, while considering the commodities of gold
and oil. The corresponding results are reported in Tables 14 and 15,
respectively. Particularly, the volatility spillovers for the dirty/clean
cryptocurrencies and financial assets and the asymmetry of the dy-
namic networks in the face of uncertainty shocks with the inclusion
of commodities are found to be not much different from the main
results respectively depicted in Tables 3 and 6. Importantly, the market
linkages between dirty/clean cryptocurrencies and gold/oil is not very
strong, although there are significant impacts of uncertainty shocks
on the above volatility spillovers. The above speaks in favor of the
weak sheltering role of clean and dirty cryptocurrencies in the market
13
dynamics, further demonstrating that our results are not sensitive to
inclusion of additional commodities.

6. Conclusion

In the era of the digital economy, widespread attention has been
recently raised on the market nexus between digital currencies and
the financial ecosystem for various purposes such as studying the
cross-market information transmission, and sheltering the financial
investment, etc., while in-depth research in this regard remains to be
explore further. This paper therefore investigates dynamic and pos-
sibly bidirectional volatility linkages of energy-intensive (i.e., dirty)
cryptocurrencies and energy-efficient (i.e., clean) cryptocurrencies with
financial assets over time in a TVP-VAR framework. For the latter,
both traditional and recently-emerging green assets are considered. The
causal effects of the uncertainty level in the economy on the above-
obtained market linkages are further studied in a setting of asymmetry
and non-linearity by using a non-parametric causality test.

Our results generally demonstrate a limited market connection be-
tween cryptocurrencies and the system of financial assets, and the
information transmission from clean cryptocurrencies (CI) to the fi-
nancial system is even relatively weaker compared to that from dirty
cryptocurrencies (DI) especially after the pandemic onset. Within the
financial system, there exist a close connection instead between tra-
ditional and green assets, indicating the investment sheltering role of
cryptocurrencies. We further examine the portfolio diversification and
risk management of our obtained market connection with the use of
optimal hedge ratios and portfolio weights, and find that dirty and
clean cryptocurrencies can act as a diversifiers for investors, especially
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Table 9
Hedge ratios and portfolio weights.

Full sample Min Pre-COVID 19 Min Post-COVID-19 Min

Mean St.Dev Max Mean St.Dev Max Mean St.Dev Max

Panel A: Hedge ratios
DI/TSX 0.03 0.03 0.22 0.00 0.01 0.01 0.12 −0.03 0.08 0.05 0.36 0.03
DI/FTSE 0.03 0.03 0.19 −0.01 0.00 0.01 0.04 −0.05 0.07 0.03 0.17 0.03
DI/ASX 0.01 0.02 0.15 −0.04 0.00 0.01 0.06 −0.05 0.03 0.03 0.16 0.00
DI/SP500 0.04 0.03 0.22 −0.03 0.00 0.02 0.09 −0.10 0.10 0.05 0.36 0.04
DI/SWI 0.04 0.03 0.20 −0.01 0.00 0.01 0.05 −0.05 0.08 0.04 0.29 0.03
DI/ESGLI 0.04 0.04 0.22 −0.03 0.00 0.02 0.09 −0.10 0.10 0.05 0.35 0.04
DI/GBI 0.01 0.01 0.04 0.00 0.00 0.00 0.01 −0.01 0.01 0.00 0.03 0.01
DI/GCEI 0.07 0.05 0.26 −0.01 0.01 0.01 0.07 −0.05 0.16 0.05 0.33 0.07
CI/TSX 0.01 0.02 0.12 0.00 0.00 0.01 0.05 −0.02 0.03 0.02 0.18 0.01
CI/FTSE 0.01 0.01 0.11 0.00 0.00 0.01 0.04 −0.02 0.03 0.01 0.08 0.01
CI/ASX 0.01 0.01 0.09 −0.01 0.01 0.01 0.05 −0.01 0.01 0.01 0.09 0.00
CI/SP500 0.02 0.02 0.14 0.00 0.00 0.01 0.09 −0.02 0.04 0.03 0.21 0.01
CI/SWI 0.02 0.02 0.13 0.00 0.00 0.01 0.06 −0.01 0.03 0.02 0.15 0.01
CI/ESGLI 0.02 0.02 0.14 0.00 0.01 0.01 0.09 −0.02 0.04 0.03 0.20 0.01
CI/GBI 0.00 0.00 0.02 0.00 0.00 0.00 0.01 −0.01 0.00 0.00 0.02 0.00
CI/GCEI 0.02 0.02 0.14 0.00 0.01 0.01 0.04 −0.01 0.05 0.02 0.16 0.02
Panel B: Portfolio weights
DI/TSX 0.98 0.05 1.00 0.37 0.97 0.04 1.00 0.41 1.00 0.01 1.00 0.89
DI/FTSE 0.96 0.03 1.00 0.79 0.93 0.03 1.00 0.76 0.98 0.03 1.00 0.90
DI/ASX 0.94 0.06 1.00 0.63 0.94 0.03 1.00 0.71 0.93 0.05 1.00 0.68
DI/SP500 0.97 0.05 1.00 0.49 0.94 0.06 1.00 0.52 1.00 0.02 1.00 0.80
DI/SWI 0.99 0.03 1.00 0.71 0.96 0.03 1.00 0.70 1.00 0.00 1.00 0.96
DI/ESGLI 0.97 0.05 1.00 0.51 0.93 0.07 1.00 0.51 1.00 0.02 1.00 0.85
DI/GBI 1.00 0.00 1.00 0.98 1.00 0.00 1.00 0.99 1.00 0.00 1.00 1.00
DI/GCEI 0.93 0.09 1.00 0.49 0.94 0.05 1.00 0.51 0.93 0.06 1.00 0.71
CI/TSX 0.99 0.02 1.00 0.72 0.99 0.02 1.00 0.67 1.00 0.01 1.00 0.89
CI/FTSE 0.99 0.01 1.00 0.94 0.98 0.01 1.00 0.91 0.98 0.03 1.00 0.90
CI/ASX 0.99 0.02 1.00 0.79 0.99 0.01 1.00 0.88 0.93 0.05 1.00 0.68
CI/SP500 1.00 0.02 1.00 0.82 0.98 0.02 1.00 0.77 1.00 0.02 1.00 0.80
CI/SWI 1.00 0.00 1.00 0.93 0.99 0.01 1.00 0.88 1.00 0.00 1.00 0.96
CI/ESGLI 1.00 0.02 1.00 0.83 0.98 0.03 1.00 0.77 1.00 0.02 1.00 0.85
CI/GBI 1.00 0.00 1.00 0.99 1.00 0.00 1.00 0.99 1.00 0.00 1.00 1.00
CI/GCEI 0.98 0.04 1.00 0.73 0.99 0.02 1.00 0.76 0.93 0.06 1.00 0.71
Table 10
Robustness: Volatility spillovers during the whole sample period with the change in forecast horizon.

DI CI TSX FTSE ASX SP500 SWI ESGLI GBI GCEI FROM

DI 53.7 9.7 6.1 6.9 2.3 2.9 7.0 2.7 4.2 4.5 46.3
CI 10.6 67.0 3.7 3.4 1.9 1.6 3.4 1.4 2.1 4.9 33.0
TSX 3.0 1.9 23.7 9.9 7.4 11.9 15.3 11.3 3.6 11.9 76.3
FTSE 4.2 2.2 13.9 28.0 6.7 8.3 15.3 7.9 4.1 9.4 72.0
ASX 1.7 1.5 11.9 7.1 25.6 12.9 13.2 12.5 3.1 10.4 74.4
SP500 1.7 1.1 12.0 6.2 7.3 21.9 16.7 21.7 2.1 9.4 78.1
SWI 3.2 1.7 14.2 10.3 7.1 15.1 20.1 14.7 3.3 10.3 79.9
ESGLI 1.7 1.1 11.7 6.1 7.2 22.1 16.8 22.1 2.1 9.1 77.9
GBI 4.1 2.7 10.3 7.1 7.1 6.5 9.6 6.2 36.0 10.3 64.0
GCEI 2.9 2.6 13.7 7.4 7.4 10.3 12.3 9.7 4.0 29.8 70.2
To 33.1 24.4 97.5 64.3 54.3 91.7 109.7 88.3 28.5 80.3 672.1
NTS −13.2 −8.6 21.1 −7.7 −20.1 13.6 29.8 10.4 −35.5 10.0 TS
NPS 7.0 7.0 2.0 5.0 6.0 3.0 1.0 4.0 8.0 3.0 67.2
Transmitter

Note: This table describes the time-average connectedness of cryprocurrency-financial asset markets based on the whole sample
period. Interpretations of abbreviations of incorporated variables and different terms depicting various connectedness are from
Section 3 and Section 5.1, respectively.
hen suffering from financial turmoil associated with the COVID-19
andemic. Moreover, the causal relationship between uncertainty and
he above-obtained market nexus is shown to be enhanced in the post-
andemic period, and the causality from uncertainty to the market
exus with DI is relatively stronger than that with CI. In addition, the
ajority of the market linkages are shown to be negligible at extremely

ow quantiles, further indicating effectiveness of the hedge and safe
aven role of cryptocurrencies especially CI for the financial system as
ell as the uncertainty in depression.

Our results possess important implications to various stakeholders.
s for market investors, the obtained weak market linkages between
ryptocurrencies and the financial system demonstrate the investment
heltering role of cryptocurrencies for adverse fluctuations in the port-
olio built by traditional and/or green assets. In particular, since that
14
eco-friendly clean cryptocurrencies (CI) behave a more weakened link-
age with financial assets than energy-intensive dirty cryptocurrencies
(DI) and the CI related asset linkage further demonstrates a weak
relationship with uncertainty, these findings indicate the presence of
an effective clean and green safe haven. Cryptocurrencies especially the
clean ones are therefore known to contribute to not only diversifica-
tion and risk mitigation in the financial investment portfolio but also
sheltering against uncertainty. As for policymakers, the aforementioned
sheltering role of clean cryptocurrencies contributes to achievement of
the important dual goal of risk management and green market tran-
sition, enhancing the financial stability of the system in a low-carbon
manner.

Given that the current research scope lies in the relation of cryp-
tocurrencies with financial assets, future research could extend the
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Table 11
Robustness: Volatility spillovers during the whole sample period with the change in lag length.

DI CI TSX FTSE ASX SP500 SWI ESGLI GBI GCEI FROM

DI 54.1 9.9 6.0 7.1 2.4 2.7 6.8 2.6 3.9 4.5 45.9
CI 10.8 68.4 3.5 3.6 1.8 1.2 3.1 1.1 1.8 4.6 31.6
TSX 3.0 1.9 25.4 9.9 7.3 11.2 15.3 10.6 3.1 12.3 74.6
FTSE 4.4 2.4 13.3 29.1 6.1 8.4 15.5 8.1 3.5 9.2 70.9
ASX 1.7 1.5 11.9 6.8 26.9 12.7 13.1 12.2 2.7 10.5 73.1
SP500 1.3 0.7 11.2 5.8 6.1 23.7 17.3 23.4 1.3 9.3 76.3
SWI 3.0 1.5 13.8 10.3 6.3 15.7 21.0 15.3 2.6 10.4 79.0
ESGLI 1.3 0.7 10.9 5.7 5.9 23.9 17.4 23.9 1.3 9.0 76.1
GBI 3.8 2.3 10.3 6.5 7.3 6.5 9.1 6.2 37.6 10.4 62.4
GCEI 2.8 2.4 13.8 7.3 7.2 10.3 12.3 9.8 3.2 30.9 69.1
To 32.4 23.4 94.6 63.1 50.3 92.5 109.8 89.3 23.3 80.1 658.9
NTS −13.5 −8.2 20.1 −7.8 −22.8 16.2 30.8 13.2 −39.0 11.0 TS
NPS 7.0 8.0 2.0 5.0 6.0 2.0 1.0 4.0 8.0 3.0 65.9
Transmitter

Note: This table describes the time-average connectedness of cryprocurrency-financial asset markets based on the whole sample
period. Interpretations of abbreviations of incorporated variables and different terms depicting various connectedness are from
Section 3 and Section 5.1, respectively.
Table 12
Robustness: Volatility spillovers during the whole sample period with the replacement of green assets.

DI CI TSX FTSE ASX SP500 SWI ESGLI GBI CEI FROM

DI 54.0 9.7 6.1 7.0 2.4 3.1 7.2 2.9 4.3 3.3 46.0
CI 10.6 67.0 3.7 3.5 1.8 1.8 3.6 1.6 2.2 4.2 33.0
TSX 3.1 2.0 24.0 10.1 7.4 12.5 15.8 11.9 3.6 9.6 76.0
FTSE 4.3 2.3 14.0 28.8 6.7 8.6 15.7 8.2 4.1 7.3 71.2
ASX 1.6 1.5 11.6 7.1 25.6 13.0 13.3 12.6 3.2 10.5 74.4
SP500 1.7 1.1 11.7 6.0 7.1 21.6 16.4 21.4 2.1 11.0 78.4
SWI 3.2 1.8 14.1 10.3 7.0 15.4 20.3 15.0 3.4 9.5 79.7
ESGLI 1.7 1.1 11.5 6.0 7.0 21.8 16.5 21.8 2.1 10.7 78.2
GBI 4.1 2.7 9.8 7.0 7.1 6.7 9.8 6.3 37.8 8.8 62.2
CEI 2.2 2.1 10.9 5.8 7.2 12.7 11.6 12.1 3.3 32.1 67.9
To 32.4 24.4 93.4 62.9 53.7 95.4 109.9 92.0 28.1 74.9 667.0
NTS −13.6 −8.6 17.4 −8.3 −20.7 17.0 30.3 13.7 −34.2 7.0 TS
NPS 7.0 7.0 2.0 5.0 6.0 2.0 1.0 4.0 8.0 4.0 66.7
Transmitter

Note: This table describes the time-average connectedness of cryprocurrency-financial asset markets based on the whole sample
period. Interpretations of abbreviations of incorporated variables and different terms depicting various connectedness are from
Section 3 and Section 5.1, respectively.
Table 13
Robustness: Causality tests in quantiles during the whole sample period with the replacement of green assets.

Ho: EPU does not Granger-cause: Nonlinear causality 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2

Net volatility spillover between DI and TSX 2.873*** 2.728*** 2.317** 2.502** 4.326*** 6.548*** 6.594*** 4.877*** 2.674***
Net volatility spillover between DI and FTSE 1.448 2.266** 2.390** 1.258 1.884 3.361*** 4.549*** 3.391*** 1.407
Net volatility spillover between DI and ASX 1.818** 4.082*** 5.514*** 2.946*** 1.288 2.962*** 3.492** 3.524*** 1.384
Net volatility spillover between DI and SP500 1.011 0.720 1.006 2.048** 2.197** 1.837 1.602 1.793 0.920
Net volatility spillover between DI and SWI 3.392*** 4.538*** 2.331** 2.301** 3.827*** 6.144*** 6.784*** 5.929*** 2.840***
Net volatility spillover between DI and ESGLI 0.851 0.520 0.698 1.174 1.683 1.443 1.006 1.098 0.909
Net volatility spillover between DI and GBI 1.480 2.982*** 3.769*** 3.380*** 2.259** 2.235** 1.525 1.857 1.166
Net volatility spillover between DI and CEI 1.426 2.299** 3.228*** 2.149** 3.630*** 6.917*** 6.534*** 4.615*** 2.205**
Net volatility spillover between CI and TSX 2.199** 3.619*** 3.698*** 2.843*** 2.395** 3.463** 4.011*** 3.559*** 1.953**
Net volatility spillover between CI and FTSE 1.210 2.04** 2.424** 2.621*** 2.904*** 1.833 1.917 1.886 1.447
Net volatility spillover between CI and ASX 1.521 2.864*** 2.739*** 2.018** 1.684 1.482 1.719 1.994** 1.696
Net volatility spillover between CI and SP500 0.468 1.255 1.627 1.790 1.354 1.414 2.247** 1.837 0.840
Net volatility spillover between CI and SWI 1.614 1.835 1.879 2.399** 2.807*** 4.472*** 5.511*** 5.724*** 3.672***
Net volatility spillover between CI and ESGLI 0.539 1.211 1.716 1.700 1.396 2.010** 2.358** 2.007** 1.013
Net volatility spillover between CI and GBI 2.573*** 3.806*** 3.674*** 2.739*** 1.494 1.120 1.781 2.574*** 1.893
Net volatility spillover between CI and CEI 1.494 2.743*** 2.029** 1.706 0.994 1.395 1.988** 2.887*** 1.010

Note: This table reports the causality from economic policy uncertainty (EPU) to various linkages between cryptocurrency and financial asset markets based on the whole sample.
*** Represents the significance at 1%.
** Represents the significance at 5%.
15
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Table 14
Robustness: Volatility spillovers during the whole sample period with the inclusion of commodities.

DI CI GOLD OIL TSX FTSE ASX SP500 SWI ESGLI GBI GCEI FROM

DI 51.0 9.3 2.0 1.8 5.9 6.7 2.4 2.8 6.8 2.6 4.3 4.4 49.0
CI 10.3 65.5 1.5 0.8 3.7 3.5 1.9 1.5 3.3 1.4 2.1 4.6 34.5
GOLD 1.8 2.4 36.9 2.9 7.4 6.9 5.8 5.8 8.0 5.5 8.3 8.4 63.1
OIL 1.1 0.9 1.3 48.0 9.2 5.2 6.7 6.0 7.1 5.8 2.0 6.8 52.0
TSX 2.8 2.0 2.9 3.5 22.1 9.4 6.9 11.1 14.5 10.6 3.3 10.9 77.9
FTSE 3.9 2.2 4.6 3.2 13.0 25.8 6.3 7.5 14.2 7.2 3.7 8.6 74.2
ASX 1.6 1.4 3.4 3.5 11.1 6.8 24.3 11.8 12.3 11.4 2.9 9.4 75.7
SP500 1.5 0.9 2.6 2.7 11.4 5.8 6.9 21.0 16.0 20.8 1.9 8.6 79.0
SWI 2.9 1.6 3.4 2.9 13.4 9.7 6.7 14.1 18.9 13.8 3.1 9.5 81.1
ESGLI 1.5 1.0 2.5 2.7 11.1 5.7 6.8 21.2 16.0 21.2 1.9 8.3 78.8
GBI 3.9 2.8 7.4 3.3 9.5 6.4 6.6 5.6 8.7 5.3 31.4 9.2 68.6
GCEI 2.6 2.5 3.8 3.6 12.9 6.8 6.9 9.3 11.3 8.8 3.7 28.0 72.0
To 33.7 27.1 35.4 30.8 108.6 72.9 63.8 96.7 118.0 93.1 37.2 88.7 806.0
NTS −15.3 −7.4 −27.7 −21.2 30.7 −1.3 −11.9 17.7 36.9 14.3 −31.4 16.7 TS
NPS 8.3 7.7 9.2 8.4 1.9 5.0 6.0 2.8 0.8 3.9 8.9 3.2 67.2
Transmitter

Note: This table describes the time-average connectedness of cryprocurrency-financial asset markets based on the whole sample
period. Interpretations of abbreviations of incorporated variables and different terms depicting various connectedness are from
Section 3 and Section 5.1, respectively.
Table 15
Robustness: Causality tests in quantiles during the whole sample period with the inclusion of commodities.

Ho: EPU does not Granger-cause: Nonlinear causality 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2

Net volatility spillover between DI and Gold 1.641 2.588*** 2.787*** 3.017*** 3.593*** 4.316*** 4.126*** 2.906*** 1.572
Net volatility spillover between DI and Oil 1.217 2.732*** 2.712*** 3.268*** 3.018*** 1.496 2.373** 1.849 1.033
Net volatility spillover between DI and TSX 2.042** 2.687*** 2.136** 2.681*** 4.805*** 7.417*** 9.340*** 6.243*** 1.750
Net volatility spillover between DI and FTSE 1.783 3.277*** 2.796*** 1.624 1.706 2.525*** 2.473** 3.436*** 1.772
Net volatility spillover between DI and ASX 3.714*** 4.515*** 2.504** 1.300 2.886*** 4.595*** 6.238*** 5.732*** 2.403**
Net volatility spillover between DI and SP500 0.887 1.200 1.530 1.582 1.607 1.761 1.526 0.876 0.822
Net volatility spillover between DI and SWI 3.333*** 4.522*** 3.049*** 2.191** 4.537*** 7.492*** 8.122*** 6.617*** 2.716***
Net volatility spillover between DI and ESGLI 1.215 1.473 1.846 1.839 2.100** 2.626*** 2.330** 1.298 1.140
Net volatility spillover between DI and GBI 1.802 4.152*** 3.027*** 1.222 1.484 2.385** 3.078*** 2.050** 1.139
Net volatility spillover between DI and GCEI 1.615 3.478*** 3.118*** 0.741 2.353** 6.270*** 6.171*** 4.781*** 1.863
Net volatility spillover between CI and Gold 1.085 2.414** 2.320** 2.107** 1.666 1.964** 1.560 1.684 0.906
Net volatility spillover between CI and Oil 2.397** 5.489*** 7.000*** 7.837*** 4.724*** 1.345 1.349 1.812 1.451
Net volatility spillover between CI and TSX 1.410 1.990** 1.184 0.821 1.293 3.040*** 2.192** 1.771 1.169
Net volatility spillover between CI and FTSE 1.339 2.204** 2.468** 2.549** 2.111** 1.765 2.312** 2.636*** 1.483
Net volatility spillover between CI and ASX 1.002 1.923 2.088** 1.219 1.287 2.936*** 3.369*** 3.303*** 2.932***
Net volatility spillover between CI and SP500 0.600 1.390 1.757 1.009 0.875 1.426 1.707 1.723 0.936
Net volatility spillover between CI and SWI 1.923 2.778*** 1.815 1.886 2.137** 3.864*** 4.489*** 4.782*** 2.123**
Net volatility spillover between CI and ESGLI 0.797 1.511 1.273 0.764 0.683 1.497 2.820*** 2.161** 1.219
Net volatility spillover between CI and GBI 3.522*** 7.322*** 10.822*** 12.071*** 7.270*** 2.342** 2.514** 3.279*** 2.423**
Net volatility spillover between CI and GCEI 1.229 2.847*** 1.859 1.371 3.225*** 4.717*** 6.385*** 4.920*** 2.180**

Note: This table reports the causality from economic policy uncertainty (EPU) to various linkages between cryptocurrency and financial asset markets based on the whole sample.
*** Represents the significance at 1%.
** Represents the significance at 5%.
scope by further studying the linkage of (clean and dirty) cryptocur-
rencies with a broad financial system that not only includes different
(traditional and green) assets but also various commodities. Moreover,
as another promising research directions, future research could move a
step further by focusing on determinants of the cross-market network,
and the potential dynamics of the determination process over time.
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Appendix A. Plots of causality test in quantiles

See Figs. A.1–A.3.

Appendix B. Summary of the key literature on the market linkages
of cryptocurrencies with financial assets

See Table B.1.
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Fig. A.1. Plots for the causality-in-quantiles from EPU to cross-market interactions during the whole sample period.
Note: Each of the sub-figures illustrates the causal response of the cross-market interaction in the face of a shock in EPU based on the whole data sample. 𝑋-axis stands for
different quantiles of the level of the cross-market connectedness. The red-color horizontal line is the 5% significance level. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. A.2. Plots for the causality-in-quantiles from EPU to cross-market interactions in the pre-COVID-19 period.
Note: Each of the sub-figures illustrates the causal response of the cross-market interaction in the face of a shock in the pre-COVID-19 period. 𝑋-axis stands for different quantiles
of the level of the cross-market connectedness. The red-color horizontal line is the 5% significance level. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. A.3. Plots for the causality-in-quantiles from EPU to cross-market interactions in the post-COVID-19 period.
Note: Each of the sub-figures illustrates the causal response of the cross-market interaction in the face of a shock in the post-COVID-19 period. 𝑋-axis stands for different quantiles
of the level of the cross-market connectedness. The red-color horizontal line is the 5% significance level. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Table B.1
Summary of the key literature on the market linkages of cryptocurrencies with financial assets.
Authors Method Period Cryptocurrency Main finding

Bouri et al. (2020) Wavelet coherence 2010.07.20-2018.02.22 Bitcoin (dirty) Compared to gold and commodities,
and wavelet VaR Bitcoin is the most promising safe

haven asset with diversification benefits.

Charfeddine et al. (2020) ARFIMA-FIAPARCH 2010.07.18-2018.10.01 Bitcoin and Cryptocurrencies can be applied for
models (Bitcoin) Ethereum (dirty) investment diversification.

2015.09.01-2018.10.01
(Ethereum)

Conlon et al. (2020) VaR and CVaR 2010.01–2020.04 Bitcoin, Ethereum, Bitcoin and Ethereum are not safe
method (Bitcoin) and Tether havens for the majority of international

2015.08–2020.04 (dirty) equity markets examined, while Tether
(Ethereum) acts as a safe haven investment for all
2014.10–2020.04 of the international indices examined.
(Tether)

Dutta et al. (2020) DCC-GARCH 2014.12–2020.03 Bitcoin (dirty) Gold is a safe haven asset for global
approach crude oil markets, while Bitcoin acts

only as a diversifier for crude oil.

Ghorbel and Jeribi (2021) Multivariate 2016.01.01-2020.04.01 Bitcoin, Ethereum, Ripple, Ethereum, and Monero are more
BEKK-GARCH and Monero volatile than Bitcoin and Dash
model and DCC- (dirty); Dash concerning the dynamic correlations
GARCH model and Ripple (clean) with Cboe Volatility Index (VIX).

Gil-Alana et al. (2020) Fractional 2015.05.07-2018.10.05 Bitcoin, Ethereum, Both clean and dirty cryptocurrencies
integration and Litecoin, and are decoupled from mainstream financial
cointegration Tether (dirty); and economic assets, which implies the

Ripple and role of cryptocurrencies as a diversifier.
Stellar (clean)

Hsu et al. (2021) Diagonal BEKK 2015.08.07-2020.06.15 Bitcoin and While the two types of cryptocurrencies
model Ethereum (dirty); display different co-volatility spillovers

Ripple (clean) with various financial assets, both have
hedging or safe-haven opportunities for
the traditional currency market.

Le et al. (2021) Time domain 2018.11.28-2020.06.29 Bitcoin (dirty) Bitcoin acts as a net contributor of
VAR model and volatility shocks among Fintech, green
frequency domain bonds, and itself.
spillover method

Naeem and Karim (2021) Time-varying 2013.05.01-2021.07.19 Bitcoin (dirty) There is an asymmetric and time-varying
optimal copula dependence structure between Bitcoin
approach, AGDCC- and green financial assets.
GARCH models

Pham et al. (2021) TVP-VAR 2015.08–2021.08 Bitcoin and The spillovers between cryptocurrencies
network Ethereum (dirty) and green/fossil fuel investment are
connectedness small during non-crisis periods but
model increase during crisis periods.

Rehman and Kang (2021) Partial wavelet 2012.01.01-2018.10.12 Bitcoin (dirty) There is a lead–lag price connection
coherence and exists between oil and gas with Bitcoin.
multiple wavelet
coherence

Ren and Lucey (2022) DCC-GARCH 2018.01.01-2021.09.17 Bitcoin, Ethereum, Clean energy is more likely to be a safe
model and Bitcoin Cash, haven for dirty cryptocurrencies than
VAR model Ethereum Classic, that for clean cryptocurrencies,

and Litcoin (dirty); especially in periods of high uncertainty.
Cardano, Ripple,
IOTA, Stellar,
and Nano (clean)
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