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A B S T R A C T   

The scientific assessment of tourism ecological security holds significant theoretical and practical importance in 
promoting the sustainable development of the tourism economy and the ecological environment in the region. 
This study focuses on 84 counties within Fujian Province as its research scope. By utilizing the DPSIR model and 
integrating the remote sensing ecological index (RSEI), we have established an evaluation index system for 
assessing tourism ecological security in the region. The tourism ecological security index was quantitatively 
determined using the SBM-DEA model. Subsequently, a combination of methods, including spatial autocorre-
lation, exploratory regression analysis, and the GWR model, was employed to explore the spatial and temporal 
evolution patterns, as well as driving factors affecting tourism ecological security from 2010 to 2019. The 
findings reveal the following insights: (1) Overall, the level of tourism ecological security within Fujian Province 
is low, with a decreasing disparity in the security index across different regions. The tourism ecological security 
mainly falls within the “unsafe” and “relatively unsafe” categories; however, regions with higher security levels 
are exhibiting an expanding trend. Moreover, the tourism ecological security of each county is improving, with 
Southern and Central Fujian outperforming other regions. (2) Notably, there is significant spatial correlation 
among the tourism ecological security of each county in Fujian Province, indicating pronounced agglomeration 
characteristics. (3) Key drivers contributing to the spatial–temporal disparities in tourism ecological security 
encompass tourist-related disturbances, income levels of local farmers and herders, tourism-generated income, 
and government interventions. Among these factors, higher income levels for farmers and herders, increased 
tourism income, and proactive government intervention have a positive impact on tourism ecological security, 
whereas tourist disturbances exert a negative influence. Additionally, the impact of each factor on tourism 
ecological security displays noticeable spatial heterogeneity.   

1. Introduction 

Tourism, known as the “smoke-free” and “green” industry, is char-
acterized by its dependence on the environment and resource con-
sumption (Liu and Yin, 2022), with strong links to the ecological 
environment. In recent years, tourism has grown rapidly globally, ac-
cording to the “2019 International Tourism Highlights” released by the 
United Nations World Tourism Organization (UNWTO), the number of 
international tourists increased by 5 percent in 2018, reaching 1.4 
billion, and export revenues from tourism reached $17 trillion. The 
positive impact generated by the tourism industry is undeniable. How-
ever, as the number of international tourists and revenue continue to 

rise, the negative consequences of the tourism industry has also grown. 
These adverse effects not only impact the quality of life for the residents 
in tourist destinations but also exert pressure on the local ecological 
environment, potentially posing a severe threat to the long-term sus-
tainability of the tourism industry (Ruan et al., 2019). Sustainable 
tourism development has garnered global attention, with a particular 
emphasis on the environmental impact of both short-term and long-term 
tourism expansion (Tepelus and Córdoba, 2005). A healthy ecological 
environment is essential for the development of tourism industry and 
severs as an important foundation for the sustainable economic devel-
opment of nations (Tang, 2015). 

As the world’s largest developing country, China’s tourism industry 
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is undergoing a phase of robust development, and despite the severe 
impact of the COVID-19 epidemic in recent years, tourism still plays a 
distinctive and vital role in the economic and social system in general 
(Collins-Kreiner and Ram, 2021). The 2022 report from China’s 20th 
National Congress featured tourism-related content for the first time, 
emphasizing China’s commitment to the tourism sector. The rapid 
development of tourism, driven by government policies, has heightened 
the complex interaction between tourism and the ecological environ-
ment (Xiaobin et al., 2021). Specifically, the rapid tourism growth has 
led to improved urban infrastructure, increased local employment rates, 
enhanced living standards, and fostered urban GDP growth. Conversely, 
as a result of environmental and resource consumption caused by 
tourism (e.g. expropriation of ecological land, loss of biodiversity, etc.), 
the ecological safety problems of tourist destinations have been 
increasingly highlighted (such as high emissions of waste, waste gases, 
sewage, natural disasters, and environmental degradation, etc.) (Cai 
et al., 2022; Pulido-Fernández et al., 2019). This is very detrimental to 
the sustainable development of tourist destinations. A significant strat-
egy for the construction of an ecological civilization has been estab-
lished by the Chinese government in response to the negative issues 
associated with tourism. The strategy’s implementation and refinement 
have made significant progress, and the government remains committed 
to the vision of creating a “beautiful China” with “clear water and green 
mountain”. To leverage the benefits of tourism in the development of an 
ecological civilization, local governments in China have made it the 
primary instrument for building this civilization, resulting in a rapid 
phase of tourism development. Fujian Province stands as China’s fore-
most provincial ecological civilization pilot demonstration area and 
national ecological civilization pilot zone, capitalizing on its ecological 
advantages as a competitive asset. In recent years, the province has 
successfully transformed these ecological strengths into economic as-
sets. The promotion of the “Fresh Fujian” brand and the development of 
comprehensive eco-tourism initiatives have drawn a significant number 
of tourists, leading to rapid growth in the tourism sector, albeit with 
certain challenges related to tourism and the environment. Conse-
quently, amidst China’s dynamic tourism-driven economic growth and 
the ongoing assessment of resource and environmental carrying capac-
ity, evaluating and maintaining tourism ecological security has become 
the focal point of Fujian Province’s high-quality tourism development. 

Since the 1990s, research on tourism ecological security (TES) has 
progressively gained significance within academic circles. Recent 
research has significantly advanced the conceptual interpretation, index 
system construction, research content, research subjects, and research 
methodologies related to TES. Specifically, concerning concept inter-
pretation, the TES is an extension of the concept of ecological security 
and represents a vital area for measuring eco-security of tourist sites. 
McCool and Lime (2001) initiated an in-depth exploration of TES, 
focusing on the perspective of tourism carrying capacity. As research 
progressed, scholars delved into TES from various angles and began to 
emphasize the integration of the tourism industry with the social, eco-
nomic, and ecological environmental systems (Liu and Yin, 2022), as 
well as the relationship between tourism activities and the social 
ecosystem (Gari et al., 2015), among other aspects. Currently, due to the 
lack of a standardized definition for TES, scholars have provided 
nuanced interpretations of its fundamental meaning. Generally, 
implying the preservation and non-threatening status of the tourism 
destination ecosystem, allowing for orderly and harmonious func-
tioning, thus sustaining a sound and intact state. Furthermore, it should 
cater to human survival needs and sustainable development (Ruan et al., 
2019). In constructing index systems, scholars are building indicator 
systems from the economic, social, and natural environment aspects. It 
mainly includes the classic PSR (Pressure-State-Response) Model 
(Yajuan et al., 2013), which reflects the interaction between humans and 
the environment and is often used to evaluate the health of ecosystems; 
CSAED (Carrying-Supporting-Attractive-Evolutional-Developing) model 
(Ying et al., 2022), is primarily utilized for assessing the ecosystem 

functions of tourism destinations; And the DPSEEA (Driver-Pressure- 
State-Exposure-Effect-Action) model is founded on the principle of sus-
tainability for monitoring the long-term health benefits of tourist des-
tinations and evaluating environmental protection (Waheed et al., 
2009). DPSIR (Driver-Pressure-State-Impact-Response) Model (Liu and 
Yin, 2022), which reflects the relationship between resources, the nat-
ural environment, and economics, is often used to evaluate the sus-
tainability of tourism sites. The five dimensions of Driver (D), Pressure 
(P), State (S), Impact (I), and Response (R) enable a comprehensive 
understanding of the underlying causes of the problem and facilitate the 
implementation of effective measures for its resolution (Kazuva et al., 
2018). This model has found widespread application in various assess-
ments, such as nature reserve evaluation (Liu et al., 2021), compre-
hensive water resource assessments (Borji et al., 2018; Sun et al., 2018), 
and ecosystem service evaluations (Ehara et al., 2018) and other areas. 
Recently, scholars have successfully employed this model to evaluate 
TES, yielding promising results. The research objects mainly include 
rivers, lakes, etc. (Nie et al., 2011; Xiaobin et al., 2021); The research 
scale involves multiple levels such as cities and nature reserves (Liu 
et al., 2021; Yajuan et al., 2013). In summary, the DPSIR model offers 
several advantages over other models. Firstly, it is comprehensive and 
logical (Ehara et al., 2018). In TES evaluation, this model effectively 
portrays the relationship between tourism and the environment. Sec-
ondly, the DPSIR model is characterized by “loops” with the five sub-
systems forming a “circular” relationship, including corresponding 
feedback between the systems (Lu et al., 2016). As scholars continue to 
explore the DPSIR model, it is found that the model mainly focuses on 
the developmental status of various stakeholders in regional TES, and 
cannot comprehensively evaluate the internal operational efficiency of 
tourism ecosystems or fully reflect whether the factor inputs effectively 
meet the ecological security requirements of tourist sites (Ruan et al., 
2019). Bell (2012) suggests that the model can be effectively combined 
with other models to address its limitations. Research content encom-
passes a wide array of topics, scholars have conducted research on the 
evaluation of tourism and environment (Yajuan et al., 2013), the fore-
cast analysis of TES (Tian et al., 2022), as well as analysis of the 
spatiotemporal patterns (Ma et al., 2022), driving mechanisms (Biswas 
and Rai, 2022), and dynamic early warning analysis (Bahraminejad 
et al., 2018) and other aspects. These research contents provide the 
research basis for the development of TES. In terms of research subjects, 
scholars have explored a wide range of scales, from small-scale coastal 
wetlands (Jogo and Hassan, 2010) and scenic spots (Wang et al., 2021) 
to mesoscale counties (Ruan et al., 2019), city clusters (Xiaobin et al., 
2021), and provincial regions (Liang et al., 2023). Research methodol-
ogies include the application of improved methods like the TOPSIS 
(Technique for Order Preference by Similarity to an Ideal Solution) 
method (Chen et al., 2020), fuzzy element model (Han et al., 2015), and 
other techniques for quantifying TES value. Simultaneously, spatial 
autocorrelation (Xiaobin et al., 2021), and the standard deviation ellipse 
model (Zheng et al., 2023) are employed to depict TES’s spatial evolu-
tion characteristics. In the realm of driving factors, researchers often 
employ tools like the geographical detector (Liu and Yin, 2022), obstacle 
degree model (Fan and Fang, 2020), gray correlation model (Tang et al., 
2018), and other methods to uncover the principal influences of TES. 
The utilization of these research methods enables us to comprehend the 
present state of TES in tourist destinations and offers valuable theoret-
ical guidance for the advancement of tourism. In conclusion, this study 
provides a comprehensive review of the literature on TES, revealing 
notable methodologies that integrate multiple approaches. This has 
resulted in the emergence of a complex interplay between tourism, 
ecology, geography, and other interdisciplinary domains. 

Currently, the pertinent research findings on TES provide a crucial 
foundation for subsequent studies, but several shortcomings still war-
rant further investigation: (1) Regarding the construction of the index 
system and measurement aspects, the recent integration of the DPSIR 
model into the TES index system construction has supplemented the 
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driver (D) and impact (I) subsystems of the PSR model, resulting in a 
more comprehensive framework. However, existing studies often su-
perficially characterize the ecological state (S) subsystem of the DPSIR 
model by utilizing relatively simple indicators like green garden area, 
forest coverage rate, and green coverage rate of built-up areas (Liang 
et al., 2023; Zhao and Guo, 2022). A more comprehensive approach 
should involve big data to explore more objective and scientific in-
dicators. The Remote Sensing Ecological Index (RSEI) is introduced 
based on extensive remote sensing image data, considers not only 
vegetation cover but also vital ecological elements for human survival, 
such as heat, humidity, and aridity. By comprehensively reflecting the 
evaluation outcomes (Xu et al., 2019), it more accurately portrays the 
overall status of the ecological environment within the research area. On 
the measure front, certain scholars have applied data envelope analysis 
(DEA) to gauge TES, yielding promising outcomes. Among these, the 
SBM-DEA model, in contrast to the traditional DEA model, effectively 
addresses unexpected outputs, thus advocating for the amalgamation of 
the SBM-DEA and DPSIR models for a more scientific TES measurement 
(Ruan et al., 2019). However, few studies have adopted the SPSIR and 
SBM-DEA models in a comprehensive manner. (2) In selecting research 
objects and sample units, most ongoing studies adopt provincial or 
urban areas as sample units, with a lack of investigations focusing on 
county-level or more localized units. Moreover, a limited number of 
county-level studies employ cross-sectional data from various periods 
for comparative analysis, neglecting to capture TES’s continuous 
evolutionary patterns. (3) Concerning research methods, the predomi-
nant approach to examining TES’s spatial and temporal patterns re-
volves around conventional spatial autocorrelation methods, typically 
relying on default GIS system threshold distances. These distances often 
lack the ability to delineate spatial clustering thresholds based on dis-
tance relationships between different sample units. Similarly, the pre-
vailing studies exploring TES’s driving factors frequently rely on global 
regression models like the ordinary least squares (OLS) model. However, 
the OLS model, being a “single universal” spatial regression analysis 
technique, overlooks TES’s geographical element of “spatial non-sta-
bility” (Lin et al., 2021). Alternatively, the Geographic Weighted 
Regression (GWR) model, founded on local regression principles, 
quantifies the heterogeneity of driving factors across different sample 
units while visually depicting their spatial influence levels (Lin et al., 
2019b; Lin et al., 2021). 

Based on the statement above, the specific research objectives of this 
study are as follows: (1) Innovation of TES index system and establish-
ment of TES evaluation model. (2) Exploring the spatial and temporal 
evolutionary characteristics of TES. (3) Identify key factors of TES and 
portray the driving mechanisms of TES. Moreover, the research results 
are anticipated to provide new insights for the study of TES and offer 
scientific references for the coordinated development of Fujian Prov-
ince’s tourism economy growth and ecological environment protection. 

2. Study area and data sources 

2.1. Study area 

Fujian Province is situated in the southeast of China (23◦31′N ~ 
28◦18′N, 115◦50′E ~ 120◦43′E), bordering Zhejiang Province, Jiangxi 
Province, and Guangdong Province, while also facing Taiwan Province. 
It falls under the jurisdiction of nine prefecture-level cities, including 
Fuzhou, Xiamen, and Quanzhou, encompassing 85 districts and counties 
(see Fig. 1). The total land area of Fujian Province spans 124,000 km2. 
The province boasts a distinctive Danxia landform and numerous 
islands, creating a captivating natural landscape. With its historical 
significance as the birthplace of the Maritime Silk Road, Fujian Province 
possesses a rich cultural heritage. The Mazu, Minnan, and maritime 
administration cultures have flourished here, contributing to profound 
cultural resources. Presently, Fujian Province boasts 463 A-level tourist 
attractions (as of December 31, 2022). These distinct and abundant 

tourism resources have attracted a significant influx of visitors. In the 
year 2019 alone, Fujian Province welcomed a total of 536.5536 million 
tourists, generating tourism revenue of 810.121 billion yuan. The 
remarkable tourism economy has brought about a substantial popula-
tion flow, placing immense pressure on the ecological environment of 
densely populated Fujian Province. This pressure has resulted in several 
ecological security concerns, such as deforestation, loss of biodiversity, 
accumulation of tourist waste, excessive development of scenic areas, 
and coastal erosion, and more. In the context of Fujian Province’s active 
efforts to establish comprehensive eco-tourism and amid the dual pres-
sure of the urgent need for rapid tourism economic growth and the 
constant challenge of resource and environmental carrying capacity 
concerns, it becomes imperative to thoroughly and systematically 
explore the spatial relationship of TES within Fujian Province. This 
exploration is crucial for providing a scientific foundation to achieve 
harmonious coexistence between the tourism economy and the ecolog-
ical environment. 

2.2. Data sources 

In this study, 84 counties (excluding Kinmen County) were selected 
as the sample units in Fujian Province. Due to the significant impact of 
the COVID-19 epidemic on China’s tourism industry over the past three 
years, leading to substantial fluctuations in tourism economic data, it is 
challenging to observe the general patterns of spatial and temporal 
changes in TES. Consequently, the study period was finalized as 
2010–2019. The primary sources of panel data for relevant indicators in 
the counties of Fujian Province from 2010 to 2019 are as follows: 
Tourism-related economic statistics primarily originate from the annual 
“China Environmental Statistical Yearbook”, “Fujian Statistical Year-
book”, as well as regional publications such as “Fuzhou Statistical 
Yearbook”, “Xiamen Statistical Yearbook”, “Quanzhou Statistical Year-
book”, “Zhangzhou Statistical Yearbook”, “Sanming Statistical Year-
book”, “Longyan Statistical Yearbook”, “Putian Statistical Yearbook”, 
“Ningde Statistical Yearbook”, and “Nanping Statistical Yearbook”. 

Fig. 1. Study area.  
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Additionally, official websites, such as national economic and social 
development statistical bulletins and government work summaries from 
district and county governments in Fujian Province, were consulted. For 
cases of missing data, linear interpolation was applied using existing 
data. The RSEI index was calculated using Landsat TM / OLI / TIRS 
images provided by the United States Geological Survey Center (USGS). 
High-quality remote sensing images were selected through the GEE 
platform, and image collation was completed accordingly. 

3. Methods 

3.1. Construction of theoretical framework and index system 

3.1.1. DPSIR-DEA model 
The “Driver-Pressure-State-Impact-Response” (DPSIR) model is an 

integrated model constructed by the European Environment Agency 
(EEA) on the basis of the Pressure-State-Response (PSR) model and the 
Driver-State-Response (DSR) model, with the main purpose of solving 
environmental problems (Tscherning et al., 2012). Comprising five 
distinct subsystems, each with distinct categories of indicators, the 
DPSIR model is capable of precisely describing the causal relationship 
between the environment, economy, and society as well as demon-
strating the effects of socioeconomic development on the environment 
(Ehara et al., 2018). 

Data Envelopment Analysis (DEA) is a modeling approach rooted in 
linear programming and distance functions. It serves to evaluate the 
relative efficiency of multiple comparable Decision Making Units 
(DMUs) with multiple inputs and outputs (Li and Shi, 2014). The model 
includes the radial distance function CCR and BCC models, as well as the 
non-radial Slack-Based Measure (SBM) model. In contrast to the tradi-
tional CCR and BCC models, the SBM model effectively addresses input 
relaxation and undesirable output issues in the input or output, miti-
gating deviations due to varying radial and angular selections (Cecchini 
et al., 2018). Building upon this, Tone introduced the Super-SBM model 
to further refine the SBM model. The resultant optimized model (SBM- 
DEA) offers enhanced discrimination of the efficiency among relatively 
efficient DMUs (Tone, 2001). 

In the complex system of TES, it represents a comprehensive effect of 
the inputs and outputs of the tourism economy, tourism activities, and 
the ecological environment, rather than the result of the inputs or out-
puts of a single element (Ruan et al., 2019). The efficiency evaluation 
can reflect the comprehensive effect of the input and output of the 
economic and ecological environment, along with other elements of 

tourism activities, which is the best way to measure the input and output 
of resources (Zha et al., 2019). Therefore, an extensive assessment of the 
operational effectiveness of various tourism ecological safety systems is 
necessary in order to delve further into the comprehensive situation of 
the input and output of TES. In this study, the strengths of the DPSIR and 
DEA models are synergistically harnessed to establish the theoretical 
framework for evaluating TES in Fujian Province (Fig. 2). The approach 
involves the following concepts: The DPSIR model encompasses five 
subsystems, namely Driver (D), Pressure (P), State (S), Impact (I), and 
Response (R), while the SBM-DEA model encompasses input and output 
elements. The Driver (D) and Response (R) are categorized as input el-
ements, whereas Pressure (P), State (S), and Impact (I) are considered 
output elements. Alterations in input elements influence the dynamic 
variations in output factors, and the conditions of output elements 
reciprocally impact input elements, triggering relevant responses. This 
proposed framework embodies a cyclical and sustainable system. 
Throughout this cycle, the Driver system initiates the process, with 
economic development levels and urban development status serving as 
primary drivers of TES issues. The rapid growth of tourism propels 
related industries, elevating the income levels of local inhabitants. 
Nevertheless, extensive tourism development begets challenges such as 
increased tourist density. Urban expansion also heightens the tourism 
spatial index, impinging upon residents’ living space. These pre-
dicaments exert substantial pressure on the ecosystem of tourist desti-
nations, thereby influencing the ecological quality of said areas. A-class 
tourist attractions encounter carrying capacity thresholds, and the pro-
liferation of star-rated hotels yields positive and negative impacts on 
tourist destinations. While boosting residents’ income and promoting 
tourism, this development concurrently diminishes arable and forest 
land, affecting agricultural and pastoral incomes. In response to these 
dynamics, local authorities implement affirmative measures including 
increased environmental investment and enhanced household waste 
management. As the terminal point in this cycle, the Response system 
engenders a “closed-loop” effect. This constructive response triggers a 
chain of feedback encompassing Driver, Pressure, State, and Impact 
aspects. Consequently, these factors can be adjusted and optimized 
within the system, fostering a virtuous cycle within the TES framework. 

3.1.2. Selection of the indicator system 
Building upon the previously mentioned theoretical framework for 

TES evaluation in Fujian Province, and drawing from the insights of 
prior researchers, as well as utilizing data collected from 84 counties 
within Fujian Province, a total of 20 evaluation indicators were 

Fig. 2. TES evaluation theoretical framework in Fujian Province based on DPSIR model and SBM-DEA model.  
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ultimately selected across five subsystems. The weighting for each of 
these indicators was objectively determined using the entropy method 
(refer to Table 1). 

3.1.3. Calculation of RSEI 
In the State (S) subsystem of the DPSIR model, it is essential to assess 

the ecological environment status of tourist destinations. Previous 
studies have often relied on relatively simplistic indicators, such as 
green garden area, forest coverage rate, and the green coverage rate of 
built-up areas, to represent this status. However, these indicators do not 
provide a comprehensive reflection of the ecological environment at 
tourist destinations. In this study, an innovative approach is introduced: 
The RSEI leverages remote sensing information technology to compre-
hensively gauge the ecological environment quality. This index is 
composed of four ecological elements: The vegetation index, humidity 
component, surface temperature, and soil index. These elements corre-
spond to greenness (NDVI), heat (LST), humidity (WET), and dryness 
(NDSI), respectively. These factors are intimately linked to human sur-
vival. The RSEI is integrated with each indicator by using principal 
component transformation, i.e., the effect of each indicator on RSEI is 
determined by the nature of its data itself, which overcomes the defect of 
subjectivity of artificial weighting (Xu et al., 2019). 

The study area encompasses 84 counties in Fujian Province, which is 
relatively large. This scale introduces challenges in acquiring and pro-
cessing satellite remote sensing image data. To address this, the study 
capitalizes on the capabilities of the Google Earth Engine (GEE) platform 
for remote sensing data processing. The GEE platform is used to select 

the highest quality remote sensing images within the study area. Sub-
sequent steps include image radiometric correction, cloud removal 
processing, and masking. For each year, calculations are performed for 
NDVI, LST, WET, and NDSI. Since each indicator possesses distinct units 
and value ranges, normalization is applied to these four indicators 
before performing Principal Component Analysis (PCA). Upon normal-
ization, PC1 is computed through eigen analysis on the GEE platform 
(Jing et al., 2020). Based on PC1, the formula for calculating the initial 
RSEI0 is as follows: 

RSEI0 = 1 − PC1[f (NDVI,WET,NDSI,LST) ] (1) 

In the formula: RSEI0 represents the initial remote-sensing ecological 
index; PC1 represents the first principal component in the principal 
component analysis; and f indicates that the indicator has been 
normalized. NDVI represents the level of greenery, WET signifies hu-
midity, NDSI corresponds to dryness, and LST denotes heat. 

RSEI was computed using the normalization method applied to 
RSEI0. RSEI0-min and RSEI0-max respectively refer to the minimum and 
maximum values of the remote sensing ecological index after normali-
zation, with the RSEI range being [0, 1]. 

RSEI = (RSEI0 − RSEI0-min)/(RSEI0-max − RSEI0-min) (2) 

In the formula, RSEI represents the remote sensing ecological index, 
with a range of [0, 1]. The closer the value is to 1, the better the 
ecological quality; conversely, the closer the value is to 0, the worse the 
ecological quality. 

Table 1 
Index system of TES in Fujian Province.  

Dimension Index Index meaning Weight Literature reference 

Driver D1 GDP per capita (yuan) It reflects the impact of the economic development of tourist 
destination on ecological environment of tourist destination. 

0.0005 (Xiaobin et al., 2021) 
D2 Number of visitors (ten thousand 
people) 

0.0008 

D3 Urbanization rate (%) It reflects the impact of tourist urban development and population 
growth on ecological environment. 

0.0241 (Zhao and Guo, 2022; 
Zheng et al., 2023) D4 Population at the end of the year 

(ten thousand people) 
0.0042 

Pressure Social population 
pressure 

P1 Population density (person / km2) It reflects the degree of land area occupied by residents in tourist 
destinations, the ratio of permanent resident population to land 
area is used to represent. 

0.0033 (Xiaobin et al., 2021) 

P2 Visitor density It reflects the disturbance of tourists to the residents’ life, the ratio 
of the number of tourists to the population at the end of the year is 
used to represent. 

0.0023 (Bai and Tang, 2010) 

ecosystem 
carrying capacity 

P3 Tourism space index (person / km2) It reflects the tourist carrying capacity of the tourist destination, the 
ratio of the number of tourists to the local land area is used to 
represent. 

0.0007 (Liu and Yin, 2022) 

State S1 Number of A-level scenic spots 
(amount) 

It reflects the tourist reception capacity of the tourist destination. 0.0038 (Tang et al., 2018) 

S2 Number of travel agencies (amount) 0.0075 
S3 Number of star hotels (amount) 0.0141 
S4 Remote Sensing Ecological Index 
(RSEI) 

It reflects the ecological environment quality condition of the 
tourist destination. 

0.0108 (Hu and Xu, 2018) 

S5 Tourist reception to population ratio It reflects the service supply provided by residents of tourist 
destination for tourists. 

0.0614 (Zhao and Guo, 
2022) 

Impact I1 Total asset income of agriculture, 
animal husbandry and forest (100 
million yuan) 

It reflects the income status of farmers and herdsmen in tourist 
destination. 

0.3650 (Liangjian and 
Kaijun, 2021) 

I2 Per capita tourism income (yuan) It reflects the tourism income situation of tourist destination to 
residents. 

0.1210 (Peng et al., 2017) 

I3 Social product realizion depth 
coefficient 

It reflects the influence of tourism industry in tourist destination, 
the ratio of total tourism income to total retail sales of social 
commodities is used to represent. 

0.2797 (Liangjian and 
Kaijun, 2021) 

I4 Proportion of total tourism revenue 
in GDP (%) 

It reflects the economic contribution of tourism industry in tourist 
destination. 

0.0461 (Tang et al., 2018) 

I5 Proportion of the tertiary industry in 
GDP (%) 

It reflects the macroscopic situation of tourism development in 
tourist destination. 

0.0097 (Zheng et al., 2023) 

Response R1 Domestic sewage treatment rate (%) It reflects the level of environmental pollution control in tourist 
destination. 

0.0084 (Fan and Fang, 2020) 

R2 Number of teachers per 10,000 
people (person) 

It reflects the level of education and training talents in tourist 
destination. 

0.0135 (Liangjian and 
Kaijun, 2021) 

R3 Proportion of fiscal expenditure in 
GDP (%) 

It reflects the investment strength of the tourist destination 
government to improve the ecological environment. 

0.0232 (Liang et al., 2023)  
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3.2. Measurement of the TES index 

In this study, we employed the optimized DEA (SBM-DEA) model to 
assess the relative efficiency of TES in Fujian Province. Subsequently, 
the TES index was derived based on the outcomes of the optimized DEA 
model. The mathematical expression formula is as follows: 

ρ* = minρ = min
1 −

(

1
N

∑N
n=1

Sn
x

xk′
n

)

1 +

[

1
M+1

(
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m

yk′
m

)

+
∑I

i=1
Sb

j

bk′
i

]
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⎧
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i ≥ 0, sy

m ≥ 0, sb
i ≥ 0, sx
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(3) 

In the formula: ρ represents the value of TES efficiency, where N, M, 
and I stand for the quantities of input, expected output, and undesired 
output, respectively. 

(
sy
m, sb

i , sx
n
)

refers to the input–output relaxation 
variables, 

(
zy

k, xx
k

)
refers to the weight of each input–output value, and 

(
yk

m, b
k
i , xk

n

)
refers to the input–output values of the production unit k at 

time t. ρ* represents the objective function, which strictly decreases with 
the input–output relaxation variable. It holds true that 0 < ρ* ≤ 0. When 
ρ* = 1, it indicates that the production unit is fully effective; ρ* < 1 
indicates that the production unit has an efficiency loss (Cecchini et al., 
2018). A higher value of ρ* indicates a higher level of TES. According to 
the above model framework (Fig. 2), output elements include sub-
systems of pressure, state and impact, while, output factors are further 
divided into expected output factors and undesired output factors. State 
and impact are respectively considered as expected output factors, and 
social population pressure and ecological bearing pressure are taken as 
undesired output factors. As such, the internal attributes of the SBM- 
DEA model are established, leading to a comprehensive and scientific 
measurement of TES in Fujian Province. 

3.3. Spatial autocorrelation analysis 

The method of Exploratory Spatial Data Analysis (ESDA) is primarily 
employed to investigate the spatial distribution characteristics of the 
research subjects and unveil any underlying spatial correlations or 
anomalies. The core technique involves measuring and testing spatial 
correlation using the spatial autocorrelation method (Lin et al., 2019b), 
which mainly includes global spatial autocorrelation and local spatial 
autocorrelation. In this study, global spatial autocorrelation is applied to 
analyze the spatial correlation of TES in Fujian Province. For details of 
the specific formula, please refer to (Zhao et al., 2022). To further 
enhance the accuracy of the spatial autocorrelation analysis results, this 
study introduces the variable distance strategy of incremental spatial 
autocorrelation, building upon the original spatial autocorrelation 
analysis to optimize the spatial autocorrelation analysis method. Incre-
mental Spatial Autocorrelation (ISA) refers to the changes in the degree 
of spatial autocorrelation and spatial clustering changes resulting from 
varying threshold distances. This is based on alterations in Z-scores and 
Moran’s I values. Ultimately, the optimal threshold distance is selected 
(Halls et al., 2018). Generally, Z-scores increase with escalating spatial 
distance, indicating an intensified agglomeration effect. The maximum 
peak score indicates optimal spatial agglomeration at that distance 
(Alho and de Abreu e Silva, 2014). 

3.4. Exploratory regression analysis approach 

Exploratory Regression Analysis (ERA) is a tool used to assess the 
optimal combination of influencing factors. The optimal combination of 
key factors can be determined by inputting multiple influencing factors, 
setting threshold conditions for these influencing factors, and attempt-
ing to explore suitable combinations of different influencing factors. In 
this study, the TES value was treated as the dependent variable, while 20 
indicators (as shown in Table 1) were considered as independent vari-
ables, and the exploratory regression tool within the ArcGIS software 
was introduced for screening. To enhance the explanatory power of the 
regression model and prevent multicollinearity among variables, the 
exploratory regression tool within the ArcGIS software was employed to 
identify the most influential independent variables combination. The 
main screening principles are as follows: (1) Combinations of indepen-
dent variables that yielded a substantial adjusted R-squared value of 0.6 
were assessed; (2) Maximum Variance Inflation Factor (VIF) values were 
well below 7.5; (3) The Akaike Information Criterion (AICc) value for 
the chosen combination of independent variables was minimized. 

3.5. Geographically-weighted regression model 

Unlike ordinary least squares (OLS) model, geographically weighted 
regression (GWR) model incorporate spatial relationships into the 
analysis, allowing them to describe the relationship between the 
dependent and independent variables while reflecting spatial hetero-
geneity among the variables. GWR is a spatial statistical method capable 
of exploring spatial non-stationarity (Huang et al., 2020). TES is influ-
enced by social, economic, and environmental factors, and the rela-
tionship between these influencing factors varies across different 
geographic locations, leading to a spatially non-stationary relationship. 
The GWR model is a valuable tool for exploring this relationship (Lin 
et al., 2019a). Therefore, this study used GWR model to investigate the 
spatial heterogeneity of the main influencing factors of tourism 
ecological safety in Fujian Province. Its mathematical formulation is 
presented as follows: 

yi = β0(ui, vi)+
∑p

k=1
βk(ui, vi)xik + εi (4) 

In the formula: yi represents the dependent variable, namely the TES 
index; β0(ui, vi) represents the constant term of the i-th observation 
point; ui, vi represents the geographic coordinates of the i-th observation 
point; xik represents the observed value of the independent variable xk in 
position ui, vi; βk(ui, vi)(k = 1,2,⋯, p) represents the regression param-
eter of the observation point at the center of mass in region i; εi repre-
sents the random error term of the i-th observation point. 

4. Results 

4.1. Spatio-temporal changes of TES 

4.1.1. Temporal change characteristics of TES 
The TES index of 84 counties in Fujian Province was calculated using 

the Max-DEA software for the years 2010 to 2019. The temporal trend of 
the TES index was then analyzed visually. As shown in Fig. 3, the mean 
TES value in Fujian Province exhibited minimal overall change from 
2010 to 2019, fluctuating slightly around 0.31. The disparities in TES 
among different regions within Fujian Province gradually diminished. 

To delve deeper into the temporal change characteristics of TES in 
Fujian Province, kernel density estimation analysis was performed for 
the years 2010, 2013, 2016, and 2019 (Fig. 4). The position of the kernel 
density curves shifted leftward during 2010–2016 and rightward during 
2016–2019, indicating a decreasing trend followed by a subsequent 
growth in TES. The shape of the kernel density curve’s right tail was 
characterized by concentration and extension, suggesting that TES 
values for each county in Fujian Province congregated in low-value 
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areas. Notably, the right tail of the 2019 curve was higher than that of 
the other curves, indicating an expansion of TES areas in Fujian Prov-
ince. Moreover, the peak value of the kernel density curve exhibited a 
gradual and stable increase, reflecting an overall upward trend in TES. In 
conclusion, although the TES index of Fujian Province shows less fluc-
tuation and areas with better TES are expanding in 2019, the overall 
index value remains relatively low. Even areas with excellent TES may 
face critical or unsafe conditions. Therefore, it is essential for relevant 
government officials to strengthen the monitoring and feedback of TES 
in Fujian Province. 

4.1.2. Spatial change characteristics of TES 
To explore the spatial trends of TES within Fujian Province, the TES 

data were classified using ArcGIS software. The TES in Fujian Province 
was categorized into five levels using the natural breakpoint method 
(see Fig. 5): Insecurity (0 < TES ≤ 0.140); Relative Insecurity (0.141 <
TES ≤ 0.236); Critical Security (0.237 < TES ≤ 0.405); Security (0.406 
< TES < 0.678); Extreme Security (0.679 < TES ≤ 1). The TES in Fujian 
Province was categorized into five levels using the 019. Among them, 
the count of insecurity sites remained constant at 26 places during this 
period. The number of relative insecurity sites increased from 19 in 2010 
to 22 in 2019, dispersed throughout various regions of Fujian Province. 
The count of critical security sites decreased from 16 in 2010 to 15 in 

2019, situated between relative insecurity and security areas, primarily 
found in the central region of Fujian Province. The number of security 
sites declined from 14 in 2010 to 10 in 2019. In 2010, these were pre-
dominantly concentrated in Anxi County, Yongchun County, and Dehua 
County of Quanzhou City, as well as Hanjiang District, Chengxiang 
District, and Xianyou County of Putian City, etc. In 2019, Shaxian 
County and Sanyuan District of Sanming City were additionally 
included. The count of extreme security sites increased from 9 in 2010 to 
11 in 2019. In 2010, these were mainly distributed in Wuyishan City, 
Siming District, Fengze District, Jinjiang City, Shishi City, Hui’an 
County, Gulou District, Jin’an District, Taijiang District, and Zherong 
County, among other areas. In 2019, Anxi County, Nan’an City, and 
Xiuyu District were also added. 

From the above analysis, it is evident that the TES of Fujian Province 
exhibited a gradual positive development trend from 2010 to 2019. 
Specifically, in 2010, the tourism economy of Fujian Province primarily 
followed an extensive development path. As the tourism economy 
expanded, an increase in tourist density and a high tourism space index 
led to pressures on the tourism ecosystem, potentially resulting in 
deteriorating TES. By 2016, the TES in Fujian Province had improved, 
largely attributed to the coordinated growth of the tourism economy and 
the ecological environment, guided by government policies. For 
instance, in March 2014, the State Council released Several Opinions on 
Supporting Fujian Province to Further Implement the Ecological Pro-
vincial Strategy and Accelerate the Construction of Ecological Civiliza-
tion Pilot Demonstration Zones, elevating the development of Fujian’s 
Ecological Province from local decision-making to a national strategy. 
This offered a robust foundation for the development of the ecological 
civilization pilot demonstration zone in Fujian Province. In April 2016, 
the Fujian Provincial Government issued the “13th Five-Year Plan for 
the Construction of Fujian Ecological Province,” further advancing the 
comprehensive implementation of the Fujian Ecological Province 
strategy. By 2019, the TES situation had improved, and the ecological 
security of tourism in very secure and secure surrounding areas has 
gradually gotten better, but several counties still exhibited unsafe and 
less safe levels, accounting for 31 % and 26 %, respectively. It indicates 
that TES has a radiating effect, though the scope is not large, and there is 
still a risk of TES deterioration in Fujian Province. Relevant government 
departments should focus on counties with unsafe and less safe levels 
and should not overlook county areas with critically safe levels. Simul-
taneously, advocating the implementation of a green tourism develop-
ment model in these regions is essential to minimize the negative impact 
on the ecological environment. In summary, the process of upgrading 
the ecological safety level of tourism in Fujian Province’s counties is 
characterized by twists and turns and gradualism. It is not an overnight 
accomplishment but requires continuity and persistence. It also reflects 

Fig. 3. Box map for TES in Fujian Province from 2010 to 2019.  

Fig. 4. Kernel density estimation for TES in Fujian Province from 2010 to 2019.  
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the evolutionary law of the development of things with waves and 
spirals. 

Considering the spatial distribution of TES, noticeable disparities 
have emerged among various counties in Fujian Province. To compre-
hensively observe changes in the TES index across different regions from 
2010 to 2019, Fujian Province was divided into five areas: Eastern 
Fujian (Ningde City), Western Fujian (Longyan City, Sanming City), 
Southern Fujian (Xiamen City, Zhangzhou City, Quanzhou City), 
Northern Fujian (Nanping City), and Central Fujian (Fuzhou City, Putian 
City) (Fig. 6). Generally, substantial differences in TES were observed 

among these five regions, with the TES index rankings as follows: 
Southern Fujian > Central Fujian > Western Fujian > Northern Fujian >
Eastern Fujian. When considering changing trends, Northern Fujian, 
Central Fujian, and Eastern Fujian displayed initial downward trends 
followed by upward trends, while Southern Fujian showed an initial 
upward trend followed by a downward trend. Western Fujian displayed 
a continuous upward trend. After 2018, all five regions demonstrated 
improved TES. The TES is higher in southern and central Fujian than in 
other regions can be attributed to the relatively developed economy of 
Southern Fujian, where Xiamen, Zhangzhou, and Quanzhou collectively 

Fig. 5. Spatial pattern of TES in Fujian Province from 2010 to 2019.  

Fig. 6. Change of regional TES index in Fujian Province from 2010 to 2019.  
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form the Golden Triangle of Fujian Province. Additionally, Southern 
Fujian possesses rich cultural heritage and abundant cultural tourism 
resources. Xiamen City, relying on its advantageous location, has 
vigorously developed its tourism industry, attracting a significant 
number of visitors to the city and driving economic development in the 
local and surrounding areas. In response, the government needs to pay 
greater attention to the ecological aspects of the environment. Mean-
while, the central Fujian region, with Fuzhou as the capital city of Fujian 
Province, serves as the economic and cultural center of the province. It 
boasts richer tourism resources and more developed transportation 
hubs, leading to higher TES levels compared to other regions. 

4.2. Spatial autocorrelation analysis of TES 

The spatial autocorrelation analysis method was employed to 
conduct a spatial exploratory analysis of TES in Fujian Province, and its 
spatial correlation was tested using GeoDa software (Table 2). As shown 
in Table 2, the Z-values were all greater than 1.96, and the P-values were 
all less than 0.05 from 2010 to 2019, thereby passing the significance 
test (Ruan et al., 2019). This demonstrates the clear spatial correlation 
characteristics of TES across various regions in Fujian Province. The 
Moran’s I index increased from 0.194 in 2010 to 0.228 in 2019, indi-
cating a pronounced tendency of agglomeration for TES in Fujian 
Province. Thus, coordination among the counties within the province is 
recommended for the management of TES and for collectively advancing 
the development of TES in Fujian Province. 

Utilizing the ISA tool, we further explored the optimal threshold 
distance for spatial autocorrelation of TES in Fujian Province (Fig. 7 and 
Fig. 8). As depicted in Fig. 7, the Moran’s I index for each year exhibits a 
rapid downward trend within the 53–72 km threshold distance range, 
while it fluctuates within the range of 72 to 110 km, with a slower 
decline observed beyond 110 km. This suggests that the spatial corre-
lation of TES in Fujian Province decreases with increasing spatial dis-
tances. Additionally, the Moran’s I index for each year shows peak 
values at 82 km and 110 km, as well as lower peak values at 72 km and 
91 km. This fluctuating pattern suggests that the TES in Fujian province 
is characterized by “large gathering” and “small gathering”. Fig. 8 il-
lustrates that the Z-score values are positive for each year, following a 
trend similar to that of the Moran’s I index. In 2010, 2018, and 2019, the 
Z-score values are lower; in other years, however, they are all greater 
than 1.5 (P < 0.05). This indicates that the spatial distribution of TES in 
Fujian Province exhibits spatial autocorrelation at a 95 % confidence 
level, with notable clustered distribution characteristics. To conclude, 
based on the ISA analysis results, the Moran’s I index and Z-score values 
reached their peaks at 82 km and 110 km between 2010 and 2019, with 
the highest Z-score value recorded at 110 km. From this, we can see the 
optimal threshold distance for TES in Fujian Province is 110 km, signi-
fying substantial spatial autocorrelation and distinct distribution ag-
gregation characteristics. It indicates that the influence range of TES in 
Fujian Province is limited, and its impact varies as different peaks 
emerge with increasing distance. Therefore, government stakeholders 
should continually monitor the degree of TES influence, expand the 
scope of positive influence, and strive to reach the optimal peak in order 
to fully leverage the spillover effect of TES. 

4.3. Driving patterns of TES 

4.3.1. Identification of key drivers 
Based on the analysis of the temporal and spatial changes in TES in 

Fujian Province, there is a noticeable trend of deterioration in TES. 
Therefore, to address the risks associated with TES in Fujian Province, it 
is essential to implement appropriate measures to control the ecological 
risk level. This involves analyzing the relevant factors affecting TES and 
subsequently establishing the driving mechanism of TES in Fujian 
Province. To avoid redundancy among factors and enhance the 
explanatory power of influencing factors, this study utilizes exploratory 
regression analysis to identify the most significant key driving factors 
(Table 3). As observed in Table 3, the R2

adj of various combinations of 
drivers is above 0.5, and the VIF value is less than 7.5, indicating that the 
combined effect of all factors is good and there is no multicollinearity 
issue. 

Following the filtering principle mentioned in section 3.4, threshold 
conditions were established for the indicators, and explanatory 

Table 2 
Overall Moran’s I index of TES in Fujian Province from 2010 to 2019.  

Year Moran’s I Z P Year Moran’s I Z P 

2010  0.194  3.1075  0.02 2015  0.283  3.7184  0.01 
2011  0.27  3.756  0.01 2016  0.276  3.9062  0.01 
2012  0.273  3.3471  0.01 2017  0.273  3.8998  0.01 
2013  0.337  4.1401  0.01 2018  0.231  3.7016  0.01 
2014  0.302  3.9403  0.01 2019  0.228  3.9011  0.01  

Fig. 7. The Moran’s I result of incremental spatial auto-correlation analysis 
about TES in Fujian Province from 2010 to 2019. 

Fig. 8. The Z-score values result of incremental spatial auto-correlation anal-
ysis about TES in Fujian Province from 2010 to 2019. 

Table 3 
Results of exploratory regression analysis of drivers.  

Combination of drivers R2
adj AICc VIF 

P2、I1、I2、R3  0.591  125.36  0.072 
P2、I1、I3、R3  0.548  125.71  0.619 
S5、I1、I3、R3  0.527  137.36  0.001  
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regression analysis was conducted to identify four independent variables 
with the most significant explanatory power: P2 (visitor density), I1 
(total asset income of agriculture, animal husbandry, and forests), I2 
(per capita tourism income), and R3 (the proportion of fiscal expendi-
ture to GDP). According to the framework of the DPSIR model, it can be 
observed that tourist density represents the level of interference caused 
by tourists on the tourist site. The greater the interference, the higher the 
pressure on the ecosystem of the tourist site, which, in turn, affects the 
quality of the ecological environment at the tourist site, subsequently 
impacting the income of local residents engaged in agriculture, animal 
husbandry, and forestry, as well as tourism income. The protection level 
of TES and the quality of its supporting infrastructure are also affected 
by changes in resident income levels. Additionally, the percentage of 
government spending relative to GDP reflects the degree of government 
intervention in TES. Higher investment indicates the region’s govern-
ment’s commitment to TES and the eco-security level of tourist sites. 
Consequently, further analysis of this indicator portfolio is warranted. 
Building on the results of exploratory regression analysis and consid-
ering the specific circumstances of the study area, this research explores 
the spatial and temporal evolution of TES in Fujian Province. The 
investigation encompasses several aspects: The impact of tourist dis-
turbances (DT), income levels of farmers and herders (FHIL), tourism 
income levels (TIL), and government intervention (GI) (Table 4). 

4.3.2. Comparison of OLS and GWR model 
To capture temporal changes and spatial heterogeneity in the impact 

of various key factors on TES, the same variables (as shown in Table 4) 
were selected for constructing both OLS and GWR models. These models 
were then compared for the years 2010 and 2019. The results of the 
fitting parameters are presented in Table 5. The GWR model demon-
strates a smaller Sigma value in comparison to the OLS model, and its 
goodness of fit (R2) surpasses that of the OLS model. Furthermore the 
difference in AICc values between the two models exceeds 3, with the 
AICc value of the GWR model being lower. These outcomes from the 
parameter comparison outcomes collectively indicate the superior 
fitting performance of the GWR model over the OLS model. Conse-
quently, this study employs the GWR model to conduct for conducting 
an in-depth analysis of the driving factors behind TES. 

4.3.3. Spatial variations in driving patterns of TES 
Based on the results of the GWR model, ArcGIS’s natural disconti-

nuity method visualized spatial distribution of regression coefficients 
(Fig. 9). Tourist disturbance exhibited a northeast-to-southwest 
decreasing trend in both 2010 and 2019. The income level of farmers 
and herdsmen displayed a shifting impact from negative to positive, 
indicating a growing influence on TES. Tourism income level had a 
positive effect on TES, with a stable impact over time. Government 
intervention showed an increasing effect with spatial heterogeneity. In 
2010, the eastern region experienced greater intervention, while in 
2019, this effect diminished due to effective government policies.  

(1) Tourist Disturbance: As shown in Fig. 9a and 9e, in terms of 
concerning spatial distribution, tourist disturbance exhibited a 
decreasing trend with a “northeast-southwest” orientation in 

both 2010 and 2019. Regarding temporal patterns, the minimum 
regression coefficient value in 2019 exceeded the maximum 
value in 2010, indicating a gradual increase in the degree of 
tourist interference. This escalation can be attributed to the early 
stage of tourism destination development. At this stage, the 
immature tourism industry attracted fewer tourists, resulting in a 
limited impact on the ecological environment. However, as 
tourism destinations matured, their appeal grew, leading to a 
substantial influx of visitors and subsequently heightened 
disruptive effects. Consequently, managing tourist numbers and 
reducing their interference becomes imperative to enhance TES.  

(2) Farmers and Herdsmen Income Levels: Illustrated in Fig. 9b and 
9f, the regression coefficients for farmers’ and herdsmen’s in-
come levels displayed both positive and negative values, initially 
present in northeast Fujian Province and shifting to the northwest 
in 2010. However, by 2019, all coefficients had turned positive. 
This shift from mixed polarization to positive correlation suggests 
an amplified influence of farmers’ and herdsmen’s income levels 
on TES in Fujian Province. This transformation can be attributed 
to changes in their income sources. Historically, income was 
earned through tree felling, which compromised the ecological 
environment. However, with the increasing awareness of 
ecological civilization and government initiatives in forest pro-
tection and management, along with the integration of forestry 
and tourism, emerging models like eco-tourism have attracted 
more tourists and boosted the income of local residents.  

(3) Tourism Income Levels: Observing Fig. 9c and 9 g, the regression 
coefficients for tourism income exhibited a decreasing trend from 
southeast to northwest in 2010 and from northeast to southwest 
in 2019, both indicating positive correlations. This pattern un-
derscores the positive effect of tourism income on TES. Early on, 
the coastal regions of Fujian Province showcased a more devel-
oped economy, robust tourism infrastructure, and higher attrac-
tion ratings for tourist sites, resulting in higher local tourism 
income compared to other areas. As each county’s economy 
improved, ecological consciousness grew, and tourism resources 
were protected and promoted vigorously, more tourists were 
drawn, leading to increased tourism income at the county level 
and consequently, a heightened impact on TES. The relatively 
consistent regression coefficient values between the two periods 
suggest a stable influence of tourism income levels on TES.  

(4) Government Intervention: Referring to Fig. 9d and 9 h, the 
regression coefficients for government intervention exhibited an 
ascending trend in both periods. In 2010, the trend was from west 
to east, whereas in 2019, it was reversed, indicating spatial 

Table 4 
Main variables and variable interpretation.  

Type of variable Variable name Variable interpretation Average 
value 

Standard 
deviation 

Minimum 
value 

Maximum 
value 

Dependent 
variable 

Tourism Ecological Security 
(TES) 

The SBM-DEA model is used to calculate and reflect the 
ecological security level of tourism  

0.31  0.27 0 1 

Independent 
variable 

Disturbance of Tourists (DT) Visitor density (P2)  17.41  15.76 2.70 84.09 
Farmers and Herdsmen 
Income Level (FHIL) 

Total asset income of agriculture, animal husbandry 
and forests (I1)  

46389.70  151152.09 1 880,619 

Tourism Income Level (TIL) Per capita tourism income (I2)  3083.38  6123.79 103.83 42867.49 
Government Intervention (GI) Share of government expenditure in GDP (R3)  10.37  5.71 1.98 33.69  

Table 5 
Comparison of fitting parameters of OLS and GWR models.  

Fitted model Dependent variable Sigma value R2 AICc value 

OLS TES in 2010  0.598  0.426  156.378 
TES in 2019  0.514  0.579  131.837 

GWR TES in 2010  0.531  0.604  142.616 
TES in 2019  0.501  0.616  128.073  

Y. Lin et al.                                                                                                                                                                                                                                      



Ecological Indicators 157 (2023) 111255

11

heterogeneity in the impact of government intervention on TES. 
This divergence can be attributed to geographical advantages, 
economic development, and rich tourism resources in the eastern 
coastal areas, leading to rapid but problematic tourism growth. 
Consequently, government intervention was crucial in improving 
TES in the eastern region in 2010. With the introduction of 
ecological and environmental protection policies and the concept 
of “all-for-one tourism”, every county experienced tourism 
development, causing the previous high intervention in the east 
to be effective, resulting in a decreased impact on TES in the east 
by 2019. Hence, government intervention functions as an 
external regulatory force in TES evolution, with increased capital 
investment in ecological protection and environmental gover-
nance enhancing TES levels. 

5. Discussions 

Fujian Province, as the first provincial ecological civilization 
demonstration zone and national ecological civilization pilot zone in 
China, grapples with the rapid growth of the tourism industry and 
ongoing challenges related to the carrying capacity of the natural 
environment. This study delves deeply into the spatiotemporal patterns 
and the driving forces behind TES within Fujian Province. Its primary 
objective is to provide a scientific foundation for advancing the sus-
tainable development of tourism, a goal that carries significant theo-
retical value and practical significance. 

5.1. Theoretical contributions 

This study constructs a theoretical framework and an index system 
for evaluating TES evaluation in Fujian Province, drawing on the DPSIR 
and SBM-DEA models. It conducts a comprehensive and scientifically- 
based evaluation of TES, considering a wide range of relevant in-
dicators, including social, economic, and environmental factors, which 
vividly illustrate the intricate relationship between tourism and the 
environment (Ehara et al., 2018). Additionally, it addresses aspects that 
have been neglected in prior research regarding the internal dynamics 
and dynamic operation of the tourism ecosystem (Ehara et al., 2018). 
This methodology forms a fundamental and critical parts of TES research 
(Ruan et al., 2019) and serves as a key criterion for ensuring the sus-
tainable development of the tourism industry. In previous studies, the 
majority of scholars utilized methods like improved TOPSIS and 
ecological footprint analysis to evaluate TES (Castellani and Sala, 2012; 
Chen et al., 2020). These studies predominantly adopted a “quantita-
tive” perspective, often overlooking the “input-output” dynamics within 
tourism ecosystem (Ruan et al., 2019). Consequently, the principles of 
coordinated development within tourist ecosystems were not 
adequately reflected, and their dynamic changes were not accurately 
mapped. From an efficiency perspective, this study combines the prac-
tical realities of the various counties in Fujian Province, creating a more 
scientifically comprehensive evaluation method. Ultimately, it assesses 
the quality of TES in Fujian Province, providing essential theoretical 
references for subsequent studies related to urban development, land 
security, water ecological security, and more. Furthermore, in contrast 

Fig. 9. Spatial distribution of TES and regression coefficients in Fujian Province in 2010 and 2019.  
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to other provinces in China, such as Guangxi Province (Liang et al., 
2023), the indexes of TES are different, even though both regions are 
located in the southern region of China and both are experiencing an 
increase in TES. Therefore, planning and management departments 
should consider local conditions and strike a balance between theory 
and practice when formulating strategies. 

The construction of the TES evaluation indicator system is a complex 
undertaking that encompasses a wide array of factors. These factors 
include not only social and economic elements external to the tourism 
ecosystem but also elements related to the tourism economy, tourism 
resources, and other factors within the tourism ecosystem (Zheng et al., 
2023). Drawing from the five subsystems of the DPSIR model, this study 
has selected the corresponding factors to establish a TES evaluation 
indicator system in Fujian Province. Building on this foundation, the 
study incorporates RSEI into the state subsystem of the DPSIR frame-
work, which can provide a more objective and comprehensive charac-
terization of the ecological environment in the study area (Xu et al., 
2019). In earlier studies, Liang et al. (2023) and Zhao and Guo (2022) 
utilized indicators like forest coverage and urban green space area, 
which lacked effective integration with scientific indicators such as big 
data and failed to adequately reflect the ecological condition of the study 
area. Furthermore, this study agrees with Liu and Yin (2022) that a 
single indicator cannot accurately depict the status of TES. Therefore, in 
this study, remote sensing image data is combined with the RSEI index 
and introduced into the state subsystem to characterize the overall 
ecological environment of the study area. This represents an innovative 
approach that combines satellite remote sensing image data to enhance 
the existing TES evaluation index system effectively. 

5.2. Practical implications 

In this study, the sample module was refined to the county level, and 
the spatial characteristics of TES were analyzed using the spatial auto-
correlation method, confirming the existence of spatial correlation of 
TES within Fujian Province. On this basis, the agglomeration effect of 
TES in Fujian Province was further analyzed using the ISA analysis 
method. In comparison to previous studies (Lin et al., 2019b), most of 
which utilized default threshold values for spatial autocorrelation and 
did not further optimize the distance parameters, under different scales 
of study, such as provinces, municipalities, and county areas, there are 
large differences in spatial relevance, and this different scale of spatial 
relevance may produce contradictory results, the result of which will 
affect the scope of application and credibility of TES (Alho and de Abreu 
e Silva, 2014; Halls et al., 2018). This study uses the ISA analysis method 
to determine the optimal threshold distance for TES, improving the ra-
tionality and interpretation of the results of the spatial autocorrelation 
analysis, providing valuable reference for other scales of research. 

Finally, this study employs the GWR model to reveal the spatial 
heterogeneity of the driving factors impacting TES in Fujian Province. 
This approach aims to address the issues associated with spatial insta-
bility in traditional methods, making it more conducive to understand-
ing the mechanisms influencing TES (Zheng et al., 2023). Furthermore, 
this study enables the spatial visualization of the regression coefficients 
of the GWR model at the county level. These visualizations can be uti-
lized by relevant department managers to implement measures for 
achieving the sustainable development of the tourism industry based on 
the sensitivity of TES in each county’s location. This study provides a 
new methodology and approach (Chen et al., 2022; Yuying et al., 2022). 

5.3. Policy implications 

The coordination of tourism development with ecological environ-
mental conservation aims to enhance the sustainable growth of tourism 
in Fujian Province. This research presents several feasible policy rec-
ommendations that have practical reference value for local govern-
ments, tourists and other subjects. Firstly, the provincial governments of 

Fujian should jointly promote the construction and development of an 
ecological province while reinforcing and continue to strengthen envi-
ronmental governance and ecological protection efforts. Currently, as 
one of China’s ecological provinces, Fujian Province still faces risks 
associated with both artificial and natural ecological factors (Cai et al., 
2023; Huang et al., 2023). Decision makers should develop corre-
sponding measures based on the status of TES and the vulnerability and 
sensitivity of the ecosystem in Fujian Province, and the regional synergy 
of tourism development cooperation in different regions (Jiang et al., 
2018). Grounded in the DPSIR framework, this approach involves 
balancing the subsystems by not only imposing conditional restrictions 
on the stress system elements but also fostering the healthy development 
of the drivers, responses, and other system elements (Cernat and 
Gourdon, 2012). For instance, this can include reducing the impact of 
energy-intensive enterprises, promoting the development of eco- 
friendly businesses, and advocating for ecotourism activities. 

Secondly, in areas characterized by a high level of TES and economic 
development along the coastal regions of Fujian Province, there should 
be optimization of tourism activities and improvements in tourist safety 
level. Enhancing the overall tourist experience and maintaining a stable 
source of guests is crucial. In regions where TES is low and the economy 
is weak, such as the southwestern and northeastern regions of Fujian 
Province, policies should be tilted to add and improve public tourism 
facilities, elevate the quality of tourist services, and attract more tourists 
to visit (Zheng et al., 2023). Ultimately, it will be possible to reduce the 
spatial differences in the level of TES with the region. The policy of fa-
voring less developed regions has been a practice endorsed by the Chi-
nese government and has been more effectively implemented in some 
other regions. This serves as a reference point for other countries and 
regions dealing with unbalanced development (Liu and Yin, 2022). At 
the same time, whether the government policy is in line with the situ-
ation in each region requires field visits by relevant personnel. Only by 
implementing policies according to local conditions can we strengthen 
exchanges and cooperation among counties and promote the drainage of 
passenger flow. 

Finally, the results have shown that factors such as the incomes of 
farmers and herdsmen, the level of tourism income, and government 
intervention have a positive impact on TES in Fujian Province, whereas 
traveler disturbances have a negative impact. Therefore, in order to 
improve the positive effects of TES, while increasing the income of 
residents from tourism, the regional governments must take appropriate 
measures to safeguard the incomes of farmers and herdsmen, improve 
the tourism industry structure in tourist destinations. According to Joun 
and Kim (2020), the results of the study suggest that investment-based 
tourism may be more effective than other industries in terms of total 
production and employment. Therefore, tourism serves as an effective 
and sustainable strategy for regional economic revitalization in areas 
with low levels of economic development, as it mobilizes and balances 
the local industrial structure. In response to the negative impacts of 
tourist interference, the government should monitor tourist traffic dur-
ing holidays and other periods, divert tourists from crowded areas, 
reduce the ecological pressure on tourist destinations, and maintain the 
ecological health of these sites (Xiaobin et al., 2021). Tourists can also 
plan their travel itineraries and routes rationally using big data plat-
forms to avoid peak tourism times. Tourists play a crucial role in the TES 
cycle system, and the ecological pressure on tourist destinations should 
not be underestimated. Therefore, this study promotes green travel and 
ecotourism for tourists, which is of great significance in maintaining the 
safety and well-being of tourism destinations. 

5.4. Limitations and future directions 

The TES system epitomizes a dynamic entity. This study endeavors to 
unearth the spatial and temporal dynamics of TES over a span of ten 
years—from 2010 to 2019, and to some extent reflects the general laws 
of its continuous evolution. However, this study still has several 
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limitations. Firstly, there are restrictions on data access. The statistics 
yearbooks of county governments at all levels have provided as much 
relevant indicator data as possible. However, due to the limitations of 
current county-level statistics, it was not possible to obtain data for 
longer time sequences. Secondly, to further enhance the index system for 
TES assessment, it will be necessary to incorporate more big data, such 
as tourism flows, satellite remote sensing images, and point-of-interest 
data for landscapes, even though representative indicator data have 
already been selected for the system, and how to use advanced tech-
nologies such as artificial intelligence (AI) for real-time monitoring and 
data acquisition of TES. Lastly, while this research establishes the 
essential components of TES, it does not fully consider cultural and 
influencing factors. For example, it doesn’t thoroughly examine the 
extent to which festival tourism, such as that associated with Mazu and 
Hakka culture, affects the ecological security of local tourism. Future 
research should place more emphasis on these variables. Furthermore, 
bolstered by the establishment of a robust tourism ecological monitoring 
system, research can be broadened to include dynamic early warning 
systems and predictive analyses of future trends. This enables the con-
current development of a responsive regulatory framework for TES—a 
crucial element in our ongoing endeavor to delve deeper into the 
exploration of TES within Fujian Province. 

6. Conclusion 

This study employed the DPSIR model to develop a comprehensive 
index framework for TES in Fujian Province. The TES index was quan-
titatively evaluated for the period from 2010 to 2019 by incorporating 
the SBM-DEA model. Building upon this foundation, exploratory spatial 
analysis was employed to uncover the spatiotemporal evolution patterns 
of TES across each county within Fujian Province. Subsequently, 
exploratory regression analysis and a geographically weighted regres-
sion model were utilized to elucidate the underlying driving forces. The 
principal findings are outlined below:  

(1) The TES index in Fujian Province exhibited a relatively modest 
average value from 2010 to 2019, displaying a trend of initial 
decline followed by resurgence. Additionally, the disparity in TES 
levels among counties exhibited a gradual reduction. TES levels 
within Fujian Province were primarily categorized as insecurity 
or relatively insecurity, although the count of regions deemed 
extreme security witnessed an increase. Overall, a positive tra-
jectory was observed in TES development.  

(2) Spatial autocorrelation analysis, indicated by the Moran’s I index, 
exhibited an ascending trend from 2010 to 2019 for the TES index 
in Fujian Province. The TES in Fujian Province exhibits clear 
spatial correlation and clustering characteristics. The influence 
range of TES is limited, and as the distance increases, different 
peaks emerge, each with its own unique influence. 

(3) In the realm of influencing factors, the results showed that in-
come levels of farmers and herders, tourism income levels, and 
government interventions had a positive impact on TES in Fujian 
Province, while tourist disturbances negatively affected it. 
Notably, the degree of influence exerted by each factor on TES 
displayed spatial heterogeneity. 
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