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Abstract 

The use of partial least squares path modelling (PLSPM) has escalated in the areas 

of marketing, management, information systems, and organizational behaviour. 

Researchers in tourism and hospitality have to date been reluctant to use this approach, 

instead, focusing on covariance-based structural equation modelling (CBSEM) techniques 

conducted in Lisrel or AMOS. This article highlights the main differences between 

CBSEM and PLSPM and describes the advantages of PLSPM with regard to (1) testing 

theories and analyzing structural relationships among latent constructs; (2) dealing with 

sample size limitations and non-normal data; (3) analyzing complex models that have 

‘formative’ and ‘reflective’ latent constructs; and (4) analyzing models with higher-order 

molar and molecular constructs. These advantages are put into practice using examples 

from a tourism context. The paper demonstrates the application of PLSPM in the case of 

destination competitiveness, and illustrates how this approach could enhance the theoretical 

and practical usefulness of tourism modelling. This paper also presents a step-by -step 

guide to  PLSPM analysis,  providing directions for future research designs in tourism. This 

presents valuable knowledge for researchers, editors, and reviewers with recommendations, 

rules of thumb, and corresponding references for appropriately applying and assessing 

structural models.   

Keywords: Quantitative methods, structural equation modelling, partial least 

squares, tourism, rormative indicators. 

 
 

Introduction 

 

Structural equation modelling (SEM) is now widely used in business and tourism 

research (e.g., Babin et al., 2008; Assaker et al., 2010; Hallak et al., 2012). SEM allows for 

the analysis of latent variable(s) at the observation level (measurement/outer model), and to 

also test simultaneous relationships between latent variables at the theoretical level 

(structural/inner model) (Bollen, 1989).  It can be used to examine research questions 

related to causal relationships among a set of latent factors each measured by one or more 
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manifest [observed] variables within a single comprehensive method. There are two main 

approaches to SEM analysis 1) covariance-based SEM analysis (CBSEM)(Jöreskog, 1978, 

1993), and 2) component-based, or partial least squares SEM (also referred as partial least 

squares path modelling- PLSPM) (Wold, 1982, Esposito Vinzi et al., 2010).  

The two approaches serve different research purposes. CBSEM typically employs a 

full information maximum likelihood estimation process that yields parameter estimates 

that minimize the discrepancy between the implied and the observed covariance matrices. 

This approach examines the ‘goodness-of-fit’ of the computed covariance matrix from the 

model compared to the observed matrix from the data sample (Nunkoo and Ramkissoon, 

2012). Partial Least Square Path Modelling (PLSPM) is an alternative SEM method that 

examines a network of relationships among latent variables (Wold, 1979). It is a partial 

information method that maximizes the explained variance of all dependent variables based 

on how they relate to their neighbouring constructs with a predictive purpose (Tenenhaus et 

al., 2005). 

Tourism studies have mostly favoured CBSEM, using programs such as AMOS or 

LISREL, when dealing with structural models (e.g., Hallak et al., 2012).  A review of 

papers published in the Journal of Tourism Management, Tourism Analysis, and Journal of 

Travel Research over the past five years yielded 196 studies that used SEM.  Of those 

studies, only 29 used PLSPM, and this had only been in recent years (2011-2013); while 

the remaining 167 (85%) reviewed studies relied on CB-SEM. However, the CBSEM 

approach requires that the following assumptions to be met before the results can be 

validated:  1) multivariate normality of the data, 2) a large sample size, 3) the latent 

constructs are reflective (i.e., directional arrows progress from the constructs to the 

indicators), 4) the model is relatively simple with a limited number of latent variables, and 

5) there is a strong theoretical basis for the model. Thus, the composition of the latent 

constructs, and the causal relationships among them must be theoretically derived 

(Diamantopoulos and Siguaw, 2006). Violations of these assumptions are problematic and 

may compromise the validity of any results.  

Tourism researchers utilising CBSEM have adopted a ‘relaxed’ approach to 

addressing the required assumptions. For example, research on tourism competitiveness and 

supply-side demand models (e.g., Mazanec, 2011; Assaker et al., 2011) grouped indicators 

into pillars and indices on an empirical (versus theoretical) basis. CBSEM models in 

tourism have also overlooked the reflective versus formative specification of the constructs 

being examined. Construct misspecification occurs when the constructs are assumed to be 

reflective (the observed indicators are correlated and their scores are reflected by the latent 

variable) when they should have been specified as formative (the observed indicators are 

not correlated, but they contribute to forming the underlying latent construct). Typical 

examples of construct misspecifications include the operationalization of ‘customer/visitor 

loyalty’ in tourism research. Loyalty is often operationlized as a reflective, latent factor 

with three observed indicators: complaints to acquaintances and the public, revisit 

intention, and recommendations to acquaintances (Song et al., 2011). However, this 

assumes that loyalty indicators are correlated with each other, which might not be the case 

in reality. For example, a visitor to a hotel might make an official complaint to hotel 

managers and also spread negative word of mouth to others, but this does not necessarily 

imply that the guest will not return to the hotel. He/she could revisit due for convenience or 
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financial reasons. Thus, construct misspecification can affect the veracity of the SEM 

results (Song et al., 2011).  

CBSEM also requires a large sample size to validate the model. The more complex 

the model, the larger the sample needed to achieve model fit (Kline, 2004). Complex 

models, such as those examined in the tourism literature, become less stable without a 

substantially large sample; consequently, they might fail to converge. A typical example of 

complex models includes the operationalization of destination image in tourism research 

(e.g., Kim and Yoon, 2003), where image is often considered to be a second/higher-order 

factor that includes several first-order attribute factors, each measured by a set of directly 

observed items (or (see Kim and Yoon, 2003). In the operationalization of destination 

image as a second-order factor, authors often have to use a large datasets and impose 

additional constraints on the complex (higher-order) destination image model to achieve 

identification and ensure the convergence of results under CBSEM. In addition, the issue of 

model complexity and higher-order model specification is evident in the operationalization 

of several other constructs in tourism research, such as service quality (Howat and Assaker, 

2012) and service evaluation (Huang et al., 2013). Specifically, the quality construct is 

often thought of as a second-order factor that includes four first-order dimensions (i.e., core 

services, staff, general facility, and secondary services) that influence customers’ overall 

quality. Each dimension is measured by a set of directly observed items (Howat et al., 

1996). Service evaluation is also perceived as second-order factor that includes two first-

order dimensions (i.e., affective and cognitive evaluation), each measured by a set of 

directly observed items. In such cases, PLSPM presents a more comprehensive approach 

relative to CBSEM.  

Thus, in this paper we discuss the use of PLSPM as an alternative approach to 

CBSEM in cases where covariance-based assumptions are violated. PLSPM provides 

greater flexibility in analysing complex models with a limited sample size, as well as 

models with formative and reflective constructs. Despite gaining popularity across various 

disciplines, including strategic management (e.g., Hulland, 1999), management information 

systems (e.g., Urbrach and Ahlemann, 2010) and marketing (e.g., Reinartz et al., 2004), the 

use of PLSPM in tourism research remains limited (Assaker et al., 2010). In addressing this 

gap, this paper aims to 1) illustrate the application and use of PLSPM in the context of 

tourism research, 2) demonstrate the main differences between CBSEM and PLSPM, and 

3) identify research areas in tourism where PLSPM could be advantageous. This technical 

paper advances the knowledge of quantitative methodologies in tourism research. It 

presents valuable knowledge for researchers, editors, and reviewers with recommendations, 

rules of thumb, and corresponding references for appropriately applying and assessing 

structural models. 

   

PLS Path Modelling: Basic Concepts and Algorithm 

 

PLSPM uses an iterative algorithm in which the parameters are calculated with a 

series of least squares regressions after explicitly creating construct scores by weighting the 

sums of items underlying each construct (Chin et al., 2008). The term ‘partial’ thus 

emanates from the fact that the iterative procedure involves separating the parameters rather 

than estimating them simultaneously (Hulland, 1999). This differs from CBSEM which 
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uses the model to explain covariations among the indicators and the measurement errors. 

PLSPM analysis is accomplished using a two-step process. The algorithm begins with 

arbitrary initial weights used to calculate an outside approximation of the latent variables. 

Then, the inner relations among latent variables (LVs) are considered in order to calculate 

the inside approximations. Here, the researcher has the option of choosing among three 

scenarios (called weighting schemes): (1) centroid, (2) factor, or (3) path, based, 

respectively, on the sign of the correlation between neighbour latent variables, on the 

correlations themselves and the regression coefficients. Once inside approximations are 

obtained, the algorithm turns to the outer relationships when new weights are calculated. It 

considers how the indicators are related to their constructs by Mode A (usually associated 

to reflective constructs by applied researchers) or by Mode B (usually associated to 

formative constructs by applied researchers). Mode A implies simple linear regressions 

between construct and reflecting indicators as the construct is assumed to affect each 

indicator separately. Mode B implies multiple linear regressions between the construct and 

the set of indicators as these are assumed to affect the construct on a collective basis. The 

simple or multiple regression coefficients are then used as new weights for outside 

approximation. The process continues iteratively until the weights converge. 

After the latent variable (LV) scores are estimated, the second step of the process 

involves obtaining the parameters of the structural and the measurement models. The 

structural (path) coefficients are calculated by ordinary least squares regression between 

LVs according to the structural equations. There are as many regressions as there are 

endogenous latent variables. The parameters of the measurement model, known as the 

loading coefficients, are also estimated by least squares regressions. PLSPM estimates the 

latent variables as linear combinations of the observed measures, this avoids the 

indeterminacy (i.e. the arbitrariness of the component scores) and improper solution 

problems encountered under CBSEM (see Tenenhaus et al., 2005). Structural models 

examined using CBSEM also require a strong theoretical basis. Thus, misspecified models 

caused by unsubstantiated structural paths or measurement items can affect the results of 

the entire model.  PLSPM offer greater flexibility in addressing these issues as the 

estimates are limited to the immediate ‘blocks’ (factors) to which a particular construct is 

structurally connected. The PLS estimation process separates the parameters rather than 

estimating them simultaneously. This has proven to be particularly beneficial for 

prediction-oriented models that are highly complex but lack a strong theoretical foundation 

(Jöreskog and Wold, 1982) as well as for models in which the stringent CBSEM constraints 

cannot be met (Haenlein and Kaplan, 2004). 

 

PLS Path Modelling: Methodological Characteristics 

CBSEM is a confirmatory approach that tests existing theories (Joreskog and Wold, 

1982; Hulland, 1999). PLSPM is best suited when the phenomenon under investigation is 

relatively new with limited knowledge about construct compositions or the structural 

relationships (Wold, 1975). Furthermore, PLSPM enables the unrestricted computation of 

cause–effect relationship models that employ both reflective and formative measurement 

models (Diamantopoulos and Winklhofer, 2001). It is also possible to accurately estimate 

path models when sample sizes are small and data distribution is not normal (Chin and 

Newsted, 1999). Finally, it can examine complex models that consist of many latent and 
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manifest variables, as well as analysing hierarchical models that consist of higher and lower 

order latent variables (Wold, 1982). Therefore, ‘Heywood case’ problems that are 

associated with CBSEM (Krijnen et al., 1998) can be overcome with the PLS approach. 

This approach would be of particular value to research on destination satisfaction, loyalty, 

quality, and competitiveness.  

 

Exploratory/Predictive Nature of the Study 

As we stated earlier, CBSEM is based on full information procedure. Thus, models 

that contain poorly developed constructs where the measurement items are weak or cross-

load on other latent variables are problematic as they can bias other estimates in the model. 

PLSPM, on the other hand, is less affected by misspecifications as the weights developed 

for each construct take into account only neighbouring constructs to which they are 

structurally connected. As such, PLSPM is best suited to examine models where the 

phenomenon under investigation is relatively new, this is often the case in the tourism field.  

Furthermore, PLSPM estimates typically represent good proxies of CBSEM results and can 

represent a reasonable methodological alternative to test, not just predict, theory 

(Rindskopf, 1984). Although testing theories through PLSPM should be treated with 

caution as the analysis does not calculate goodness-of-fit indices for the model. 

 

Formative Measurement Models 

A default assumption for CBSEM analysis is that the indicators used to measure a 

latent variable are reflective in nature. This is based on the classic theory assumption where 

the latent construct causes observed variations in its measurement items (i.e., directional, 

causal arrows progress from the construct to the indictors) (Bollen, 1989; Nunnally, 1978). 

However, this is not always the case; applying reflective measurement as a default may 

result in model misspecification (Bollen, 2007). Some constructs are formed through a 

combination of the respective measures where changes in the indicators cause changes in 

the construct rather than vice versa (Jarvis et al., 2003).  In such cases, a formative rather 

than a reflective scheme for latent constructs is required. 

For example, let’s consider the latent construct of ‘Customer Complaints’ as it applies 

in tourism research (Jarvis et al., 2003). Measuring complaints includes 1) the frequency of 

complaining to a store manager; 2) incidence of telling friends and relatives about a bad 

service experience; 3) likelihood of reporting the supplier to a consumer complaint agency; 

4) likelihood of pursuing legal action against the supplier.  In such cases, the Customer 

Complaints latent variable should be specified as a formative rather than a reflective 

construct. It is formative since a high score on one measurement item would affect the 

latent construct, but would not necessarily affect the other items. Thus, customer 

complaints should be modelled as a (typically linear) combination of its indicators plus a 

disturbance term (Diamantopoulos and Siguaw, 2006). This is where the correct 

specification of a construct (i.e. formative or reflective) becomes crucial.  Misspecifications 

can bias estimations of inner model parameters and lead to inaccurate assessment of 

relationships (Jarvis et al., 2003). A latent variable/construct (LV) should be specified as 

formative when:  

 The indicators are viewed as defining characteristics of the LV; 
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 Changes in the indicators are expected to cause changes in the LV; 

 Changes in the LV are not expected to cause changes in the indicators;  

 A change in the value of one of the indicators is not necessarily expected to be 

associated with a change in all of the other indicators (i.e. measurement items are 

not necessary correlated to each other); and, 

 Eliminating an indicator may alter the conceptual domain of the LV (Jarvis et al., 

2003). 

A possible explanation as to why many models in tourism are misspecified as 

reflective is because of the limitations associated with SEM softwares including AMOS 

and LISREL (MacCallum and Browne, 1993). Formative constructs cause identification 

issues and computation problems in CBSEM softwares. PLSPM, however, can accurately 

analyse structural models that incorporate both formative and reflective latent constructs. 

 

Small Sample Size and Non-Normal (Skewed) Data 

CBSEM is recognised as a large sample size method. Some suggest that a minimum 

of 200 cases is required, however the greater the complexity of the model the larger the 

sample size is required for the model to converge (Boomsma and Hoogland, 2001).  Sample 

size is less of a problem in PLSPM. A rule of thumb for robust PLSPM estimations 

suggests that the sample size should be at least (1) 10 times the number of indicators of the 

scale with the largest number of formative indicators, or (2) 10 times the largest number of 

structural paths directed at a particular construct in the inner path model (Barclay et al. 

1995). Because this represents the largest regression performed during the PLSPM iterative 

process, this would be the logical starting point for choosing an adequate sample to ensure 

the accuracy and statistical power of the model.  PLSPM can also overcome the problems 

associated with analysing non-normal data. Specifically, in cases where the data is skewed, 

evidence suggests that PLS estimates are better than maximum likelihood (ML) estimates 

in terms of both bias and precision. The ML estimators seem to be more sensitive to the 

potential deficiencies in the data and model specification (see Babakus et al., 1987; 

Reinartz et al., 2009; Vilares et al., 2009). 

 

Complex Models and Higher Order Molar and Molecular Constructs 

Structural models analysed using CBSEM are limited with regard to their 

complexity and hierarchical structures. The more complex the model with regard to the 

number of observed variables included, the greater the likelihood that it will fail to 

converge or fail to achieve good fit using CBSEM (Boomsma and Hoogland, 2001). 

PLSPM is not subjected to such constraints, thus, complex models capturing many factors 

related to attitudes, opinions, and behaviours over time could be examined.  PLSPM is also 

more robust when dealing with hierarchical model comprising higher-order constructs.  The 

algorithm explicitly weights measurement indicators to create construct scores which 

enables the analysis of both molar and molecular higher-order models (Chin and Gopal, 

1995). 

Molecular constructs represent a higher (second-order) level of abstraction with 

arrows pointing to its respective first-order constructs. A second-order molar model would 

have the arrow in the opposite direction, going from the first-order constructs to the higher 
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second-order construct. PLSPM can analyse both molar and molecular models. CBSEM, on 

the other hand, is limited to molecular models, but even these models are subjected to a 

number of constraints. For example, uncorrelated higher-order factors need at least three 

lower-order factors, correlated higher order factors require at least two lower-order factors, 

and at least two manifest variables (indicators) are desired for each lower order factor 

(Rindskopf and Rose, 1988). (see Table 1) 
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Table 1: Guidelines for the appropriate use of PLSPM 

 
Criterion Description / Recommendation Suggested References 

Objective: Prediction oriented 
PLSPM is appropriate when theory is weak regarding the composition of the 

constructs and how constructs are related. 

Henseler et al., 2009 

Albers, 2010 

 
Scores on latent constructs/variables need to be calculated. 

 

Sample Size and Data Characteristics 
 

Chin et al., 2008 

Hulland, 1999 

Small samples 
PLSPM is robust when minimal sample size ranges from 30 to 100 cases; also 

use “ten times” rule as a rough guideline for minimum sample size.  

Distribution of the Sample data 
PLSPM is robust when applied to highly skewed data or when data is severely 

non-normal.  

Formative Relationship between LVs 

and its Measures 

PLSPM is appropriate to model formative constructs when the following 

conditions are not met: 

Diamantopoulos and 

Siguaw, 2006 

Jarvis et al., 2003 

 

1. Formative construct emits paths to at least two unrelated latent constructs with 

reflective indicators, or  

 

2. Formative construct emits paths to at least two (theoretically appropriate) 

reflective indicators, or  

 

3. Formative construct emits paths to at least one reflective indicator and at least 

one latent construct with reflective indicators.  

Model Complexity 
PLSPM is appropriate to model models with significant complexity (i.e., 100 

constructs and/or 1,000 indicators). 

Chin et al., 2008 

Hair et al., 2011 

 
Molar hierarchical models are being assessed. 

 

 
Models where sample size is small compared to the number of indicators. 
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Applications of PLSPM in Tourism 

 

A typical example from the tourism literature highlighting how PLSPM was found 

to be superior to traditional CBSEM can be found in Assaker et al. (2011) and Assaker and 

Hallak (2012). Assaker et al. (2011) examined a theoretical structure model for destination 

competitiveness using CBSEM. They looked at how supply-side tourism factors (including 

economic, social, and environmental factors) affect tourism demand at the country level. In 

order to examine these structural relationships in CBSEM, each of the latent constructs had 

to be specified as reflective in nature. However, the measurement items for the ‘economy’ 

latent factor were not highly correlated to each other; therefore, they could potentially 

represent different relevant dimensions of latent variables (see Fig. 1a). Furthermore, 

Assaker et al. (2011) relied on the competitiveness indicators proposed by the World Travel 

and Tourism Council (WTTC) to build their measurement models.   Strictly speaking, this 

represents an exploratory, rather than confirmatory approach to structural modelling. In a 

subsequent paper, Assaker and Hallak (2012) tested a structural model of destination 

competitiveness through PLSPM.  The examined that predictive relationships between 

tourism supply factors and tourism demand. In this model, the latent construct of 

‘economy’ was operatinalosed as a formative, as opposed to reflective, construct (see 

Figure 1b).  

As evident from the results of the two models (Figure 1a using CBSEM, and Figure 

1b using PLSPM), the composition of the economy construct changed across the two 

estimation processes. In particular, when the economy construct was correctly specified as 

a formative construct and tested using PLSPM, the measurement items of purchasing power 

parity (PPP), industry value added (IVA), and foreign direct investment (FDI) were found 

to be strong predictors of the economy. In addition, the standardized regression coefficient 

of the path between economy and infrastructure was lower when the economy was 

specified as formative. The overall predictive power of the model improved under PLSPM 

as the R-square for the tourism demand construct was greater.  

 

 

 
 

Figure 1a: Destination competitiveness model: Reflective economy indicators using 

CBSEM 

 

Infrastructure 

Tourism 

Environment 

Economy 

Trade e3 0.25 
    1 

PPP e2 -0.57     1 
CPI e1 -0.22 

1 0.83 

0.54 

0.68 

0.38 
R2=0.86 
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Figure 1b: Destination competitiveness model: Formative economy indicators 

using PLSPM 

 

PLS Path Modelling: Model Assessment and Evaluation of Results 

 

The previous sections of this paper have explained the differences between CBSEM 

and PLSPM and illustrated how the two modelling approaches can be used to achieve 

different purposes. The following section presents a series of guidelines on how to conduct 

PLSPM. In particular we discuss the process of examining reflective measurement models, 

formative measurement models, as well as determining the validity of the structural model 

in the absence of goodness-of-fit indicators.   

 

Assessing the Reflective Measurement (Outer) Models 

Validation of PLSPM models involves a two-step process: 1) assessing the outer 

(measurement) model and (2) assessing the inner (path) model. The reliability and validity 

of the outer-model need to be established before the inner-model is examined (Chin, 1998; 

Henseler et al., 2009). As discussed earlier, measurement models can be either reflective or 

formative in their specification. Different approaches are used to validate these 

measurement models in PLSPM.  Reflective measurement models are examined for their 

unidimensionality, internal consistency, reliability, convergent validity, and discriminant 

validity (Straub et al. 2004; Lewis et al. 2005). 

Unidimensionality refers to how well the indicators of the same latent variable relate 

to each other (Gerbing and Anderson, 1993). This can be assessed using exploratory factor 

analysis (EFA) to establish whether the measurement items load with a high coefficient on 

only one factor; and whether this factor is the same for all items that are supposed to 

measure it. The number of selected factors is determined by the number of factors with an 

eigenvalue > 1.0 (when EFA is applied to standardized data). An item loading is usually 

considered high if the loading coefficient is above .600 and considered low if the 

coefficient is below .400 (Gefen and Straub, 2005).  

The reliability (internal consistency) of the measurement models is determined 

through a number of indices. This includes the Cronbach’s alpha and the composite 

reliability tests. The composite reliability is preferred as it draws on the standardized 

loadings and measurement error for each item to measure reliability (Werts et al., 1974; 

Infrastructure 

Tourism 

Environment 

Economy 

FDI 

IVA 

PPP 
.35 

.62 

.66 

.31 -.48 

.78 

-.28 

R2=0.89 
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Chin 1998). As a rule of thumb, values below .60 suggest poor reliability (Nunnally and 

Bernstein, 1994). 

Convergent validity is the degree to which individual items reflecting a construct 

converge (or explain that construct well), compared to items measuring different constructs. 

This is examined by using the average variance extracted (AVE) index (Fornell and 

Larcker, 1981). The AVE should exceed .50 for a valid construct (Fornell and Larcker, 

1981). This indicates that a latent construct is, on average, able to explain more than half of 

the variance of its indicators (Chin, 1998). Higher AVE occurs when indicators are truly 

representative of the latent construct.  Moreover, the significance of the indicator loadings 

can also be used to test convergent validity. Significance can be tested using resampling 

methods, such as bootstrapping (Efron and Tibshirani, 1993) or jackknifing (Miller, 1974).  

Discriminant validity represents the extent to which measures of a given construct 

differ from measures of other constructs in the same model. This is determined by 

calculating the shared variance between two constructs and verifying that the result is lower 

than the AVE for each individual construct (Fornell and Larcker, 1981). Each latent 

construct should share greater variance with its assigned indicators than with any other 

latent constructs.  Discriminant validity can be determined by examining cross-loadings of 

each latent construct’s indicators with all the other constructs (Chin, 1998). If each 

indicator’s loading is higher for its designated construct than it is for any of the other 

constructs, and each construct loads highest with its assigned items, the discriminant 

validity of the model is supported (see Table 2).  
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Table 2: Guidelines for assessing reflective measurement models 

 

Validity Type Criterion Description Suggested Literature 

Unidimensionality Exploratory Factor 

Analysis (EFA) 

Measurement items should load with a high coefficient on only one factor, 

and this factor is the same for all items that are supposed to measure it. The 

number of selected factors is determined by the numbers of factors with an 

Eigenvalue exceeding 1.0. Loading is usually considered high if the loading 

coefficient is above 0.600. 

Gefen and Straub, 2005 

Gerbing and Anderson, 1988 

Internal consistency 

reliability 

Cronbach’s alpha Measures the degree to which the indicators belong together. Alpha values 

ranges from 0 (completely unreliable internal consistency) to 1 (perfectly 

reliable consistency). For confirmative research: CA > 0.700. 

Cronbach, 1951 

Nunnally and Bernstein, 

1994 Werts et al., 1974 

  Composite 

reliability (CR) 

Alternative to Cronbach’s alpha, allows indicators to be unequally 

weighted. Proposed threshold value for confirmative research: CR > 0.700. 

         

Convergent Validity Indicator Loadings Measures how well the indicators explain their corresponding LV. Values 

should be significant at the .050 level and higher than .0.70. The 

significance can be tested using bootstrapping or jackknifing. 

Chin, 1998 

Gerbing and Anderson, 1988 

  Average variance 

extracted (AVE) 

Attempts to measure the amount of variance that an LV component captures 

from its indicators relative to the amount due to measurement error. 

Proposed threshold value: AVE > 0.500. 

  

Discriminant Validity Cross-loadings Cross-loadings are obtained by correlating the loadings of each item with 

all latent variables. If the loading of each indicator is higher for its 

designated construct than for any of the other constructs, it can be inferred 

that the models’ constructs differ sufficiently from one another. 

Chin, 1998 

Chin et al., 2008 

Fornell and Larcker, 1981 

  Fornell-Larcker 

criterion 

Requires an LV to share more variance with its assigned indicators than 

with any other LV. Accordingly, the AVE of each LV should be greater 

than the LV’s highest squared correlation with any other LV. 
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Assessing Formative Measurement Models 

The procedure for establishing the validity and reliability of formative measurement 

models is slightly different. Formative indicators are not necessary correlated with one 

another. Thus, the traditional approaches to examining internal consistency and validity for 

reflective models are redundant (Bollen, 1989; 2011). Alternatively, formative constructs 

are assessed in terms of content validity at the indicator and construct levels (Henseler et 

al., 2009). 

Indicator level. The estimated weights of formative measurement models should be 

significant at p <.05. These can be computed in PLSPM by using bootstrapping (Efron and 

Tibshirani, 1993) or jackknifing (Miller, 1974). The recommended standardized path 

coefficients should be greater than .100 (Lohmöller, 1989) or .200 (Chin, 1998). In 

addition, the degree of multicollinearity among the formative indicators is assessed through 

the variance inflation factor (VIF) (Cassel and Hackl, 2000; Fornell and Bookstein, 1982). 

This indicates how much of an indicator’s variance is explained by the other indicators of 

the same construct. VIF values should be below the accepted threshold of 10 

(Diamantopoulos and Siguaw, 2006) 

Construct level. The content validity of the formative construct is established 

through nomological validity. This determines whether the formative construct behaves as 

it should (as initially hypothesized) within a system of related constructs. The hypothesized 

relationships between the formative construct and other constructs in the path model should 

be strong and significant (Henseler et al., 2009; Straub et al., 2004). The achieved 

explained variance (R
2
) of the endogenous constructs is primarily used to determine 

whether a theoretically sound formative factor was appropriately operationalized 

(Diamantopoulos and Winkholfer, 2001) (see Table 3).  
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Table 3: Guidelines for assessing formative measurement model validity 

 

Validty Type Criterion Description Suggested Literature 

Indicators content validity Indicator weights Significance at the .050 level suggests that an indicator is 

relevant for constructing the formative index and, thus 

demonstrates a sufficient level of validity. Some authors also 

recommend path coefficients greater than .100 or .200. 

Chin, 1998 

Lohmöller, 1989 

Constructs content validity Nomological validity Means that relationships between the formative construct and 

other models’ constructs, which are well known through prior 

literature, should be strong and significant. 

Henseler et al., 2009  

Straub et al., 2004 

  Multicollinearity / 

Variance inflation 

factor (VIF) 

Variance inflation factor can be used to test for 

multicollinearity among manifest variables in a formative 

block. As a rule of thumb, VIF < 10 indicates the absence of 

harmful collinearity among indicators, suggesting that each 

indicator contribute significantly to its formative block. 

Mackenzie et al., 2005 
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Assessing the Structural (Inner) Model 

Once the validity of the measurement (outer) models are established, the structural 

(inner) model can be analyzed.  The primary criterion for inner model assessment is the 

coefficient of determination (R²), which represents the amount of an LV’s explained 

variance to its total variance, for each endogenous latent variable. Chin (1998) describes R
2
 

values of 0.670, 0.333, and 0.190 in PLSPM as substantial, moderate, and weak, 

respectively. In cases where the path model is relatively simple and includes a limited 

number (i.e one or two) exogenous latent variables then a ‘moderate’ R
2
 may be acceptable. 

However, more complex models require the R
2
 value to be substantial (i.e. .670) in order to 

establish validity. 

A second approach to testing model validity concerns the standardized path 

coefficients between the latent constructs. For each path coefficient, the algebraic sign, 

magnitude, and significance need to be scrutinised. Paths between latent constructs should 

be both statistically significant (p<.05) and theoretically sound. Standardized path 

coefficients should also exceed .100 to account for a certain impact within the model (e.g., 

Huber et al., 2007). The significance of the path coefficients may be calculated using 

resampling techniques such as bootstrapping or jackknifing, 

The effect size of each path in the inner model can be calculated through the 

Cohen’s f2 (Cohen, 1988). the effect size is  the increase in R
2
 of the latent construct to 

which the path is connected, relative to the latent construct’s proportion of unexplained 

variance (that is, relative to the proportion of variance of the endogenous latent variable 

that remains unconsidered) (Chin, 1998). Cohen’s f2 values of 0.02, 0.15, and 0.35 signify 

small, medium, and large effects, respectively, on endogenous latent constructs (Chin, 

1998; Cohen, 1988).  

 The Goodness-of –Fit (GOF) Index (Tenenhaus et al. 2004) can also be used to 

establish model validity. However, this is applicable to PLSPM models with reflective 

constructs only. Nonetheless, the GOF can be used to compare different models in terms of 

their predictive performance as it presents the percentage of explained variance in the 

model as a whole. Finally, validity of the inner model can be determined through the cross-

validated redundancy measure (Wold, 1982) – the model’s ability to predict the 

endogenous latent variable’s indicators. To this end, the Stone Geisser’s Q2  (Stone, 1974; 

Geisser, 1975) can be computed using blindfolding procedures (Tenenhaus et al., 2005) to 

create estimates of residual variances. Positive Q2 values confirm the model’s strength in 

predicting the endogenous constructs.  

The abovementioned tests and indices are necessary in order to establish the validity 

of the inner model. Once validated, the parameter estimates can be interpreted on the basis 

of theoretical foundations of the model. Consequently, the hypotheses expressed in a model 

can be confirmed or rejected based on the analysis.  The criteria for assessing a PLSPM 

model at the structural (inner) level are summarized in Table 4.  
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Table 4: Guidelines for assessing inner structure/structural models 

 

Validty Type Criterion Description Suggested Literature 

Structural Predictive Hypothesis Path coefficients Path coefficients between the LVs should be 

analyzed in terms of their algebraic sign, 

magnitude, and significance. The significance 

can be tested using bootstrapping or 

jackknifing. 

Chin, 1998 

Ringle, 2006 

Model Validity Coefficient of determination 

(R2) 

R
2
 Measure the explained variance of an LV 

relative to its total variance. Values of 0.67, 

0.33,or 0.19 for endogenous latent variables in 

the inner path model are described as 

substantial ,moderate, or weak. 

Cohen, 1988 

Stone, 1974 

Geisser, 1975 

Fornell and Cha, 1994 

  Effect size ( f2 ) Measures if an independent LV has by itself a 

substantial impact on a dependent LV. Values 

of .020, .150, .350 indicate the predictor 

variable’s weak, medium, or large effect in the 

structural model. 

 Cohen, 1988 

Stone, 1974 

Geisser, 1975 

 

  Predictive relevance (Q2) The Q2 statistic measures the predictive 

relevance of the model in terms of manifest 

variables. A tested model has more predictive 

relevance the higher Q2 is. The proposed 

threshold value is Q2 > 0.  

 Cohen, 1988 

Stone, 1974 

Geisser, 1975 

 

 

 

 

 



Assaker, Hallak, O’Connor & Vinzi, JTTR –Spring & Fall 2013 
 

174 
 

Conclusion and Future Directions 

 

In this methodology paper, we have discussed the component-based procedure of 

SEM known as Partial Least Squares Path Modelling (PLSPM).  Despite its popularity in 

mainstream business research, its application in tourism remains limited. We have 

compared PLSPM to the more popular CBSEM and have explained its advantages in 

tourism studies when the assumptions for applying traditional the CBSEM approach cannot 

be met. PLSPM, can open the doors to new and innovative types of causal modelling. 

We have demonstrated that PLSPM works best when: (1) the aim of the study is 

prediction; (2) the phenomenon to be investigated is relatively new; (3) measurement 

models need further development; (4) the model incorporates both reflective and formative 

constructs (5) the model is hierarchical in nature and involves first and second order 

constructs; (6) the sample size is relatively small; (7) there is non-normality in the dataset; 

and (8) the proposed structural model is complex with several observed and latent 

variables.. Previous literature on tourism research modelling (Mazanec, 2011) suggests that 

researchers in most cases/most often tend to not explicitly discuss their justification for 

their method of analysis.  Future studies in tourism need to be more explicit in the method 

of analysis that is used. In particular, the specification of measurement models within the 

structural model (i.e. reflective or formative) requires greater attention. This paper has 

presented important guidelines for tourism researchers to follow when conducting structural 

equation modelling. We presented examples of how PLSPM is used to model destination 

competitiveness. Such an approach would enable researchers to re-examine the 

specification of the measurement models, which, consequently could produce more 

effective and valid results for the structural model. 

It is our objective that this paper will enhance the quality of future studies in 

tourism utilising structural equation modelling.  In particular, the use of the PLSPM method 

could expand our understanding of many tourism phenomena including destination 

competitiveness, satisfaction, and customer loyalty. PLSPM can overcome the difficulties 

associated with non-normal datasets, complex models, and relatively small sample sizes. 

These issues are common in tourism research and we believe that this paper has identified 

ways to address these problems.  

Although this paper has presented a detailed discussion of PLSPM and its 

application, it is important to note that some of the more advanced PLSPM techniques were 

beyond the scope of our discussion. These include response-based segmentation techniques, 

such as finite mixture partial least squares to deal with heterogeneous datasets (Sarstedt et 

al., 2011), or techniques to analyze moderating effects and conduct multi-group analysis in 

PLSPM (e.g., Henseler and Chin, 2010). These recent advancements are integrated in PLS-

based softwares such as SmartPLS (www.smartpls.de) and XLSTAT-PLSPM (XLSTAT, 

2011) and can expand PLSPM’s application to tourism research. Advances in PLSPM, and 

structural modelling in general, have the potential to advance the quality of tourism studies 

as they enable researchers to examine more complex problems requiring sophisticated 

levels of quantitative analysis.  
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