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ARTICLE

Predicting ordinary objects into the world
Arthur C. Schwaninger

Department of Philosophy, Theoretical Philosophy, University of Zurich, Zurich, Switzerland

ABSTRACT
Ordinary objects are experienced to endure over space and 
time, to not be collocated with each other, to be composed 
of proper parts, and to survive the loss of some of their parts. 
These qualities are on the one hand difficult to reconcile for 
theorists of perception and on the other hand pose a variety 
of problems when considered in isolation. Relying on the 
theoretical framework of predictive processing, this paper 
argues that we can use the category of a robust predictive 
process to conceptualize qualities such as persistence and 
compositionality in a unified manner. Traditional problems 
concerning the structural properties of ordinary objects, such 
as the question of when two objects compose, can then be 
reformulated using this new category.
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1 Introduction

Humans experience ordinary objects (OOs), such as chairs and tables, as 
things that endure over space and time, that are not collocated with each 
other, that are composed of proper parts, and that survive the loss of some of 
their parts. Multiple articles in the theory of perception try to make sense of 
how our visual representations generate the ‘visual ontology’ (Skrzypulec, 
2016, p. 261) of our experiences (e.g., Green, 2019, 2021; O’Callaghan, 2016; 
Skrzypulec, 2016, 2018). By turning to findings in the cognitive sciences, 
they explain why it is that we see certain parts of our visual field to compose 
to single objects with the properties we experience them to have. These 
approaches are reminiscent of Gestalt psychology that tries to detect rules 
that the mind employs to generate perceptual units (Jäkel et al., 2016).

Based on recent developments in the neurosciences, this paper makes two 
contributions to this field of research by turning toward predictive proces
sing (PP)—a novel theory of brain functioning. First, it explains how the 
category of robust predictive processes (RPPs) allows us to unify classical 
concepts employed to characterize the objects in our visual ontology such as 
compositionality and persistence under a single umbrella term. Second, 
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using this new concept the paper explains why it is that the sensory data are 
interpreted by the brain to have the structure the way we experience it.

The paper first discusses the problem of underdetermination and why 
there is reason to believe that certain structural qualities of OOs are the 
result of our cognitive processes (Sec. 2). The paper then introduces our 
modern understanding of cognition and how it differs from traditional 
approaches that have been employed in philosophical discussions (Sec. 3). 
Section 4 presents the core idea of this paper and elaborates how the 
category of RPPs allows us to unify different aspects of OOs in our visual 
ontology. Finally, I explain the advantages of employing RPPs in our 
theorizing (Sec. 5).

2 Imposing structure onto the visual image

When information about the external world is received through our eyes, it 
is further projected to a region in the thalamus called the lateral geniculate 
nucleus (LGN) and from there continues its path to the visual cortex where 
the information gets further processed. While traditional neuroscience has 
mostly investigated the computations in the visual cortex (see, e.g., Hubel & 
Wiesel, 1962), it is today a well-known fact that only roughly 20% of the 
information entering the LGN comes from the senses; the remaining 80% 
comes from other parts of the brain that convolute the sensory information 
before it continues to the visual cortex (Churchland & Sejnowski, 1988; 
Varela et al., 1991, p. 94–95).

But why would the brain add new information to the visual input? The 
reason is that it has no other feasible choice. It is a universal fact that the 
stimulations onto the senses of any cognizing system are underdetermined 
by their causes. The resulting problem is sometimes referred as the inverse 
problem of perception and suggests that any cognitive system is required 
to find a way to invert the mapping from external causes to sensory 
effects – a difficult task, given that different causes can result in having 
the same effects. This means that the information about the shapes of 
objects and their relations to one another as well as their parts ‘must be 
derived from the sum of retinal information together with various 
assumptions about the structure of the world’ (Shapiro, 2011, p. 29)— 
assumptions about objecthood that are not necessarily veridical or amount 
to primary properties but might merely be improving the fitness of the 
cognizing system. The information entailed in the sensory data allows in 
principle for many possibilities as to how OOs could be experienced. 
Given a cognizer that receives sensory data, there is a multiplicity of 
possibilities of what the experienced qualities of OOs could be and how 
the visual ontology is structured. Using feedback loops that add informa
tion from different parts of the brain to the information coming from the 
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senses, the lacking structural information in the data is complemented by 
assumptions made by the brain about the world. What is investigated in 
this paper are these additional structural aspects that our brains impose on 
the sensory data for the purpose of seeing objects in a way that is beneficial 
to our needs but, due to underdetermination, are not necessarily veridical. 
Thus, given our visual sensory input this paper suggests that the structural 
aspects of our visual ontology are a product of how the brain computes 
sensory information. For instance, whether the universe consists of parti
cles in motion that persist over space and time or whether we occupy 
a universe of cellular automata that are motionless (see, e.g., Wolfram, 
2002) is a question for physicists or metaphysicians to decide. Our sensory 
data simply cannot provide us with an answer to this question. However, it 
is clearly the case that we experience OOs to persist over space and time, 
and this paper offers an explanation of how the brain adds this structural 
element to the given visual sensory data.1

It is important to note that much of the cognitive science literature does 
not clearly state that certain aspects of our visual ontology are not features of 
the world independent from us. The inverse problem is typically explained 
in a way that implies that the brain has the ability to reconstruct the 
‘properties of external objects’ (Wiese & Metzinger, 2017, p. 4), although 
in fact much of our visual ontology is not at all a reconstruction of how the 
world is. This does not mean that no aspect of our visual ontology is 
veridically reconstructed as sometimes suggested (see, e.g., Hoffman, 
2019), but it does mean that at least certain structural aspects of OOs are 
added by our perceptual processes without there being any corresponding 
mind-independent structure in the world.

3 Two views on cognition

According to traditional views in the neurosciences, the perceptual part of 
the brain is mostly concerned with extracting information from proximal 
stimulation to obtain accurate representations of the world. This view was 
not confined to neuroscientists but was also generally accepted amongst 
philosophers working on perception and the nature of OOs. Consider, for 
instance, Quine (1995), according to whom we have an innate feature- 
detection machinery that allows us to identify OOs:

. . . [T]here is a harbinger of [the positing of objects] already in our innate propensity, 
and that of our animals, to confer salience on those components of a neural intake 
that transmit corporeal patches of the visual field.              (p. 254, emphasis added)

These innate feature detectors have, according to the classical view, evolved 
to accurately detect what there is in the world. Perception is thus seen to 
largely depend on universally shared mechanisms that detect specific 
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features in the perceptive field. This view was, for instance, reinforced by 
Hubel and Wiesel in their work on the visual cortex for which they both 
received the Nobel Prize in 1981. According to Quine, their work shows 
that the

. . . overall traits of the scene are selected and communicated as wholes. One bank of 
brain cells responds exclusively to scenes in which there are some conspicuous 
diagonals from upper right to lower left. Other banks of cells specialize in other 
broad traits. Various traits thus abstracted get superimposed to kick off the appro
priate response. (Quine, 1993, p. 114, emphasis added)

A consequence of thinking that the brain possesses an innate feature- 
detection machinery that responds in a universally shared determinate 
manner to the features of the stimulus is that perception becomes charac
terized as a one-directional causal process. It assumes a dominating one- 
directional causal chain between a physical object, its neural representation, 
and the utterance made by the speaker. Quine made the following 
elaboration:

Causal continuity is the fact of the matter: the causal chain from Mama or the rabbit 
to utterance of the observation sentence ‘Mama’ or ‘Lo, a rabbit.’ Psychologists fix 
upon one or another point on this causal chain and call it the stimulus, to which the 
response is conditioned.                                                  (Quine, 1993, p. 113–114)

Since Quine’s writings, the belief that the receptive fields of feature detectors 
are specified innately has been discarded by many neuroscientists and 
theoreticians working on machine learning (Hinton, 2007; Karni et al., 
1994; Sharma et al., 2000). Perception is not a passive process by which 
the features of an object are detected by innate specialized modules of 
encoding. The new perspective is most prominently included in predictive 
processing (PP), a novel framework from neuroscience research that offers 
nothing less than a unified theory of cognition. PP is relevant for us since it 
can be understood as an ‘intermediate-level model.’ That is to say, it is 
unspecific about precise neurophysiological details but aims to explain the 
most general computational methods that are in operation across different 
brain structures and length scales (Spratling, 2013). It is especially relevant 
for our purposes as it bridges some of the gaps between understanding the 
general purpose of individual neural activity and first-person human 
experiences:

The PP schema is especially attractive because it deeply illuminates the nesting of the 
neural economy within the much larger nexus of embodied, world-involving action . . . 
. PP suggests new ways of making sense of the form and structure of human 
experience . . . . (Clark, 2016, p. 2–3)2

Replacing our traditional understanding of cognition, PP suggests that the 
brain is hierarchically structured and that higher cortical regions actively 
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generate percepts, trying to predict the sensory data in a robust way on the 
basis of prior probabilities and likelihood estimates. This is realized by 
a hierarchical network with a two-directional information flow where the 
so-called recognition network runs ‘bottom-up’ from the incoming signals to 
the higher cortical regions while the generative network runs ‘top-down’ in 
the opposite direction. This structure allows lower cortical regions to send 
information about false predictions upstream and allows higher cortical 
layers to communicate the needed feature-detection adjustments to the 
lower levels. The features to which neurons respond are not innately 
determined. Rather, these features are constantly reevaluated and adapted, 
depending on the current needs for making successful predictions (Clark, 
2016; Friston, 2005; Hohwy, 2013; Kersten et al., 2004).3 Contrary to the 
classical view, such as the one Quine was relying on above, our visual 
experiences are shaped by the brain’s needs to make robust predictions on 
the activity of lower regions in the visual cortex. Whenever a prediction is 
inaccurate, the brain’s inner model is updated – it ‘learns’ and adapts in the 
form of synaptic and possibly structural plasticity. According to PP, the 
problem of underdetermination is not solved by an innate hardwired 
feature-detection machinery but rather by a kind of approximation of 
Bayesian inference. Prior beliefs are encoded by generative networks and 
are used to generate percepts that predict the neural activations in lower 
cortical regions – ultimately the activity of those neurons that is directly 
caused by the sensory data.

The advantage of a cognitive system that does not rely on an innate 
feature-detection machinery is that it is fully adaptive to a continuously 
changing environment in using its resources most effectively. This is 
because the complexity of the world is far greater than the complexity of 
the brain such that the brain is forced to compress sensory data to make 
probabilistic rather than determinate models of the world. Due to its limited 
resources, the brain cannot keep track of everything that is going on in the 
world but constructs an internal model of the world that is most likely to 
predict future events. For this, the model must be highly adaptive and 
cannot rely on innate feature detectors. Constructing relevant feature detec
tors rather than having them innately engrained is one of the essential 
techniques employed in PP to build an internal model of the world.

If it were, theoretically, not the case that the world surrounding us had 
a much greater complexity than our brains—, thus, if it were not the case 
that there would be constant unforeseen changes in the environment – then 
the PP strategy of cognizing the world would be far from optimal. For 
instance, a probabilistic approach to cognition would make little sense in 
a universe with only a handful of possible states and a simple rule determin
ing the upcoming state if the cognizer had more than enough resources to 
process these states.4 Thus, there is an implicit ontological assumption 
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about the world surrounding us toward which PP is adjusted: that the world 
surrounding the cognizer is much more complex than the cognizing system 
itself and is constantly changing, making innate feature detectors pointless. 
In such a highly complex world, the cognizing system by definition has 
limited resources to grasp the full complexity of the world surrounding it. 
As a consequence, much of what is going on cannot be comprehended by 
the cognizing system and is perceived as noise. Living in a complex world 
therefore necessitates cognition to deal with noise, if it ought to be 
successful.

This is where the significance of robustness comes into play. In 
a complex world, the cognizer is surrounded by noise and must therefore 
have an internal model of the world that is largely unaffected by this in 
order to maximize the average prediction error. For a predictive cognitive 
process to be qualified as making good predictions, the process must not 
only have high accuracy and precision when predictions are made on 
some generic sensory data. It must also make correct predictions when 
environmental changes occur or when the sensory data are convoluted 
with noise due to the cognizer’s biological constitution. Such predictive 
processes are then said to be robust.5 For instance, predictions of neural 
activity should not be completely different whenever the shapes in the 
perceptual data are rotated or when luminance changes. In the case of 
visual perception, the perceptual capacity of being robust results in 
having perceptual constancies. Shape constancy is for instance the capacity 
of seeing the same shape under a variety of different perspectival condi
tions. Location constancy is the capacity to detect the same object at 
varying distances.6 Perceptual constancies are to be understood as 
a consequence of minimizing prediction errors in a robust way. In the 
PP framework, this robustness is ensured by the hierarchical structure of 
the network in which higher cortical regions predict the activity of lower 
regions.

4 Predicting the essential qualities of ordinary objects into the world

In this section, I show how certain structural properties of our visual 
ontology cannot be derived from the visual sensory data alone but are to 
some extent the result of our predictive cognitive processes. While there 
exist numerous ways how our visual data could be interpreted, it will be 
shown that the discussed structural qualities of OOs can be derived from the 
category of a robust predictive process (RPP) given our ordinary sensory 
input. The category of RPPs is therefore argued to unify certain concepts 
within our visual ontology.
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The postulated principle governing the visual ontology of a system 
A which has a cognitive system that operates by the principles of PP is the 
following:

Principle of Predicted Structure: A’s visual ontology is structured in 
a way that robustly maximizes the probability of a minimal average 
prediction error for future sensory input.7

In the following, different principles are presented that are derived from the 
Principle of Predicted Structure and concern a specific aspect of our visual 
ontology.

4.1. Object individuation by categorization

Whether or not OOs exist in the world is a subject of dispute amongst 
metaphysicians (see, e.g., French, 2019). Some say that there exist no tables 
but only particles arranged tablewise, generating the same experience as if 
tables existed (Merricks, 2001; Unger, 1979; van Inwagen, 1990). While the 
existence of OOs might be controversial, it is generally accepted that there is 
nothing within the visual data themselves that determines whether OOs 
exist.8 Although this paper takes no position on metaphysical matters, it is 
without any doubt that we ordinarily have the impression that the material 
world consists of individual objects possessing certain properties. It is thus 
a question of why and how this sensation of seeing individuals of a certain 
kind comes about, given our ordinary sensory data.

Early accounts of perception tend to treat object detection and categor
ization as two separate issues. Seeing an object x of kind F is thereby a two- 
step process of first detecting objects in the visual data and then categor
izing them. An early proposal concerning the first step of segmenting 
objects from the background was, for instance, given by the Gestalt 
theorist Wertheimer (1923). According to him, there exists a cognitive 
mechanism that groups together ‘elements’ of the visual field resulting in 
perception of discrete, individual objects. The cognitive principles guiding 
this grouping behavior consist of various factors such as similarity and 
relative proximity.

As Palmer and Rock (1994) correctly pointed out, Wertheimer falsely 
presupposed ‘elements’ in the visual field when formulating grouping prin
ciples: “[T]here are no independent ‘elements’ or ‘units’ to be grouped; there 
is simply an unstructured image” (Palmer & Rock, 1994, p. 39). For this 
reason, Palmer and Rock formulated an alternative grouping principle 
called the uniform connectedness principle according to which a connected 
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region of uniform visual properties is grouped as one perceptual unit. 
A computational realization of the uniform connectedness principle is 
said to be feasible by first locating the boundary of an object as described 
by Hubel and Wiesel (1968) and then distinguishing the bounded domain 
from the background, resulting in the individuation of the object that can 
later be categorized.

Palmer and Rock admitted that the uniform connectedness principle has 
difficulties in explaining how disconnected regions in the visual field can 
belong to one and the same object if the object is partially covered by 
another object. The principle also has difficulties explaining how similar 
surfaces can still be distinguished as in the case of animals with camouflage.

PP resolves these problems by challenging the assumption that individua
tion and categorization occur separately. Instead, PP relies on the idea that 
the features by which objects are individuated and distinguished from the 
background (as determined by the recognition network) are defined by their 
categoric membership (as determined by the generative network). This 
seems paradoxical: One would expect that in order to learn a category it is 
necessary that one has already detected objects having similar features. 
Thus, how can categories be taken as a criterion for object detection? 
Hinton (2007) discovered an algorithm that makes it possible to simulta
neously detect and categorize an object by treating individuation and 
categorization as a single process of tiny, incremental representational 
improvements in a continuous space. This algorithm was inspirational for 
PP and overcame the ‘chicken-and-egg problem: Given the generative 
weights we can learn the recognition weights and given the recognition 
weights we can learn the generative weights’ (p. 5).

In the case of the brain’s cortex, ‘predictor neurons code information 
about object category; error neurons signal mismatches in predicted and 
observed object category’ (Koster-Hale & Saxe, 2013, p. 838). Higher cortical 
regions encode models of the environment that generate hypotheses in the 
form of perceptions that try to predict the structural characteristics of the 
world such as categoric membership. For instance, given a certain stimulus, 
the cognitive system computes the category F that it finds most likely to be 
present in the stimulus. Conceptually similar to Hinton’s algorithm, when 
the brain selects the category F for the purpose of minimizing prediction 
error, it also determines the object and its boundary in the stimulus.

This can be generalized to any cognizing system with finite resources that 
has the objective of minimizing prediction error. Such a system must have 
some representation that encodes information about categoric membership 
because sensory data are only predictable when they are considered as an 
instance of a category that generalizes certain features in the data for 
compression purposes.9 A system can roughly be said to impose the mental 
category F it has learned from earlier experiences onto images. Imposing 
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a category onto an image successfully (i.e., with little prediction error) 
allows the system to individuate objects in the visual field, for instance, by 
computing for all parts in the image the probabilities for belonging to an 
instance of a certain mental category.10 Not imposing or being able to 
impose any category leads to the maximum prediction error since no visual 
object is individuated for the purpose of tracking it and predicting its 
behavior. For a cognizer A to minimize prediction errors, it is essential to 
individuate objects in the visual image provided over the visual system:

Principle of Individuation: A region in the visual image is individ
uated and tracked as an object x if this robustly maximizes the prob
ability of minimizing A’s average prediction error.

The visual image refers to the information that is received at the retina and 
structured in the form of a 2-D grid corresponding to the physical arrange
ment of the photoreceptors. From the retina, this information is passed 
forward to the LGN and the visual cortex.

Figure 1 illustrates how the theoretical insights of PP about perception 
exemplify themselves at the level of our conscious experiences. Figure 1a 
shows an image that is at first glance unrecognizable, but eventually the 
Dalmatian dog can be seen. Once the dog is detected, it is typically impos
sible to experience the image the same way as before – as an assemblage of 
unorganized black spots. According to PP, the category of the dog is 
imposed onto the image because this is the assumption with the highest 
probability of resulting in small prediction errors when tracking the spots in 
the image over time. Without already possessing the right category, it is 
impossible to detect the dog in the image, and methods like those proposed 
by Wertheimer or Palmer and Rock would clearly fail.

Figure 1. Image (a) depicts a Dalmatian dog and was taken from Gregory (1970). Image (b) is 
reproduced from Clark (2015).
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How prior perceptions affect the outcome of the category imposed onto 
the sensory data can be illustrated by looking at Figure 1b. When our eyes 
move from top to bottom, we first see the letter A followed by the letter 
B since the latter is the most probable category to be displayed after the 
former, given the sensory input. For analogous reasons, when we move our 
eyes from left to right, we see the shape in the center as the number 13. 
Whatever category is imposed, corresponding regions of the visual field are 
then treated as composing to a single object.

To determine the category of an object in the visual field one might 
naively believe that the brain computes “‘comparisons’ of a presented 
[visual] patch with some sort of standard or prototype in memory” 
(Raffman, 1994, p. 48) in order to evaluate the category F of an object x. 
Thus, if the perceived object x is similar to an image of type F or a set 
of well-defined, static features associated with F, then x is also of type F. 
This intuition reflects itself in early computational models of object 
recognition where a large number of categorized images are stored in 
memory and compared to the sensory input image (see, e.g., Abu- 
Mostafa & Psaltis, 1987; Hopfield, 1982; Huberman & Hogg, 1984; 
Kohonen, 1978; Willshaw et al., 1969). Many theorists of perception 
have rejected the idea of the brain storing a large number of picture-like 
representations in order to determine an object’s category (see, e.g., 
Biederman, 1987; Ullman, 1989). As I discuss above, the PP framework 
opposes this naive view by suggesting that minimizing prediction error 
is what determines categorization and with this the individuation of 
visual objects. Not only does PP reject the idea of the brain comparing 
features in the sensory input to some pictorial representation in the 
brain, it also suggests that there is no comparison to statically, prede
termined features. Rather, the features against which the sensory input 
is evaluated are always evolving and changing.

This does not mean that according to PP the cognitive system does 
not make any sort of comparison. When the cognizing system generates 
its predictions of the input, it relies on the generative network that 
models the joint distribution over both the input and the approximated 
‘hidden causes,’ which allows it to generate instances of predicted input 
data. The cognitive system learns and adapts according to the similarity 
between this joint distribution and the distribution over causes given 
the input data expressed by the recognition model (Kiefer & Hohwy, 
2020).11 In contrast to the naive view on cognition that imagines some 
comparison between external features and fixed, possibly innate features 
stored in the brain, the generative network encodes for changing struc
tures. The brain makes a comparison between the sensory data and the 
self-generated predicting image that is context dependent and not static 
but under constant change in accordance with the always-evolving 
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features defining the respective category. When the self-generated image 
is a bad prediction, the neural network model adapts in order to achieve 
better prediction results in the future.

4.2. Object persistence

It is clear from introspection that, within our visual ontology, objects persist 
over time and space, and we expect them not to disappear from one moment 
to another without any reason.12 This means that the corresponding parts in 
the visual field do not become a new object from one moment to another but 
persist to be the same object. In Figure 2, an example of the visual image 
over a short amount of time is presented. Due to the underdetermination of 
perception there is no empirical fact of the matter that necessitates the 
connection between the ball in one image with the ball in the next image, 
since our senses receive sequences of sensory data that do not determine 
whether the objects at one moment in time are the same as those in the next. 
Yet, we clearly have the impression that the ball remains the same ball – the 
same object.

The Principle of Individuation explains how an object x comes about in 
our visual ontology. Assuming that we have at least one such object, then, 
according to the postulated Principle of Predicted Structure, the following 
principle must hold for any predicting cognitive system A, since persistence 
is a structural property:

Principle of Object Persistence: An object x that is located at the 
spatial-temporal position (r1, t1) continues to be perceived by A as the 
same object at (r2, t2), if this robustly maximizes the probability of 
minimizing A’s average prediction error.

The important question is whether the Principle of Object Persistence cor
rectly captures our intuitions concerning object persistence, namely that 
OOs generally persist through space and time, given the visual images we 
receive over our retina. Thus, with regard to Figure 2, the question is 
whether the Principle of Object Persistence provides reasons as to why we 
see the ball at one point in time to be the same ball at the next point in time.

Giving an affirmative answer to this question is almost trivial. When one 
considers the opposite scenario of a cognizer that experiences OOs as 
constantly coming into and going out of existence, the cognizer would be 
unable to make any useful predictions about upcoming sensory inputs. In 
the case of the ball in Figure 2, after times t1 and t2, the best prediction that 
minimizes prediction error at t3 is not that the ball at t1 and t2 suddenly 
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disappears and a new ball appears at t3. Instead, a trajectory of what the 
cognitive system identifies as a single object is computed and predictions are 
made on where the ball lands at t3. Therefore, according to the interpreta
tion of PP presented here, OOs persist within our visual ontology whenever 
the visual data allow the brain to make predictions.

4.3. Parthood and compositionality

The different aspects concerning parthood and compositionality extend the 
case of object persistence. The central question that we are concerned with 
here regarding our visual ontology is how we account for the fact that some 
parts of our visual image compose to one unified object while some parts do 
not compose. For instance, how can it be that my arm composes an object 
with the rest of my body, but my nose and the Eiffel Tower do not 
compose?13

Within the metaphysics literature, van Inwagen (1990) was the first to ask 
under what conditions two objects, x and y, jointly compose an object, z, 
and called this the ‘special composition question’ (SCQ). Considering sev
eral initially promising answers to the SCQ, van Inwagen showed that none 
results in plausible implications. For instance, one plausible answer to the 
SCQ that van Inwagen considered was contact. So, one might suggest that 
any contact between x and y will result in the new composite object z. 
Drawing evidence from ordinary experiences, he concluded that if contact 
were to be a criterion of composition, then this would lead to very undesir
able consequences, such as that whenever two people shake hands, they 
briefly constitute a single object. He argued that there seems to be a tension 
between the prospect of a universal answer to the SCQ and the adoption of 
an ontology that is in line with our ordinary beliefs about, and experiences 
with, OOs.

Clearly, being a metaphysician, van Inwagen was seeking something 
different than what we are interested in here. He sought an account for 
compositionality for a ‘mind-independent, discourse-independent world’ 
(Horgan & van Inwagen, 1993, p. 695). Our interest here is the visual 
ontology of humans and not what metaphysicians have in mind when 
talking about compositionality concerning a mind-independent world. 
Nevertheless, famous puzzles concerning compositionality in metaphysics 
are also puzzles for any account of compositionality within the visual 
ontology for given sensory data. This might be the case because these 
puzzles are only mistakenly conceived as metaphysical puzzles rather than 
puzzles concerning our visual ontology; however, this paper does not take 
sides on this subject.

One such famous puzzle is Unger’s (1980) ‘problem of the many.’ 
According to this problem, a multiplicity of possible subsets of an object’s 
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basic composing elements seem to constitute a new object, leading to 
a population explosion. Take, for example, a cloud consisting of 
N droplets. Then it seems that any subset of N-1 droplets also forms 
a cloud which is different to the one consisting of N droplets. A complete 
account of the visual ontology must also provide an answer to this problem, 
even if visual ontology is not the concern of metaphysicians.

Sider (2001) introduced the technical term of maximality that is useful for 
addressing this problem. The property of maximality is a second-order 
property that can be attributed to a property, F, such as being a cloud. F is 
maximal if and only if large proper parts of an F are not themselves Fs; for 
instance, a part of a cloud is not itself a cloud. What I intend to illustrate 
now is that the Principle of Predicted Structure implies maximality when the 
cognizer is exposed to our ordinary sensory data. It is for this reason that 
our brain avoids Unger’s problem and that we have the experience of only 
seeing a small number of clouds rather than millions of clouds when looking 
into the sky.

Notice that the Principle of Predicted Structure implies the following 
corollary about the structure of our visual ontology:

Principle of Compositionality: The visual objects x and y compose 
to z if z is expected to be on average easier to predict than x and 
y independently.

Thus, categories are selected and imposed onto the data such that regions in 
the visual image turn into individuated objects we perceive as single stand
ing objects. The important thing to notice about this principle is that it 
entails Sider’s maximality property for the objects of our visual ontology 
when we assume that sensory data are noisy and come from a complex, 
changing environment as presupposed by PP (see end of Sec. 3).

To see this, consider Figure 3. A black square is depicted which is moving 
around in front of a cat, thereby only allowing the cognizer to garner a small 
number of visual cues about there being a cat in the data. Such a lack of 
information and noise in the data is commonplace in ordinary, everyday 
perception. Every time we walk around or move our eyes, there is 
a ‘dramatic change of sensation’ (Frith, 2007, p. 201) and yet the world 
appears to be stable.

Let us first assume a cognizer with a cognition process that assigns 
categories merely by making a comparison of the visual image with some 
static features or prototypical image in memory as in the naive approach to 
cognition discussed above. In this case, at time t2, the object in the image 
could just as well be interpreted to be a dog because at that moment in time 
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the relevant information that makes a distinction between dogs and cats (the 
head) is unavailable, and the body of the animal might just as well be a dog’s 
body. (For simplicity, I am assuming that the sole relevant visual character
istic distinguishing the animals is given by the shape of the head.) This type 
of cognizing system will have a visual experience of seeing a cat, then a dog, 
and then a cat again. Or in general, the system will have an unstable visual 
experience of a world in which categories as well as the boundaries of objects 
alter from one moment to the next.

In contrast, a cognizing system that has experiences by minimizing 
prediction error will experience a visual ontology of stable rather than 
abruptly altering objects and object kinds. It will impose the category onto 
the data that is the most robust toward possible future noise in the sensory 
data because this makes the data predictable. The cognizer’s category would, 
for instance, not change at time t2 to ‘dog’ because this would not be a robust 
prediction over time. Any categoric change leads to a high prediction error 
since a category is needed in the first place to make a prediction about an 
upcoming sensory event.

This so far extends to what we have already seen when we were looking at 
object persistence, but now the important point is that our findings general
ize to the parts of the object. To see this, let us again first assume a cognizer 
with a cognition process that assigns categories by comparing the visual 
image with some prototype in memory. This cognizer is confronted with the 
sequence of images in Figure 3. As we have seen, the object in the image 
could, at time t2, just as well be interpreted to be a dog. But furthermore, 
some small parts – for example, the tip of the cat’s claw – might not be well 
in line with the prototype of a cat and would thus be treated as separate 
objects. Or the whole region of the cat minus some small part A could look 
equally alike to the prototype as the cat minus some small part B. Therefore, 
the cognizer might interpret there to be two cats at hand or randomly select 
one possible instance over the other.

Furthermore, imagine that the cognizing system were, for instance, not to 
select the category of the cat as a whole at time t1 but, instead, were to 
impose the categories of cat-head, cat-body, and cat-tail separately. In this 
case there would be a great amount of prediction error at time t2, when the 
square overlaps the head, as the activated category of cat-head would have to 
be turned off completely (including any further encoding for the spatial 
connection between the cat’s head and all its other body parts). At t3, the 
representation of the head would have to be reactivated, generating further 
prediction error due to the sudden reappearance of the object. If, on the 
other hand, the cognizing system were to impose the category of a whole cat 
at t1 and maintain this categorical assumption for as long as it is a reasonable 
option, then no great prediction error would be expected at t2 or t3, making 
this the category of choice. A selected category that is not robust against 
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such noise is not reliable to minimize prediction error, because in daily 
perception we often only receive a glimpse of an object.

Contrary to a cognizer that selects categories by naive comparisons, 
a cognizer operating by making robust predictions will always see the 
maximal number of jointly predictable parts in the visual field to compose 
as one object because this increases the chances of making good predictions 
from prior experiences. Such a cognizer will look into the sky and see one 
cloud rather than each part of a cloud forming an additional cloud as 
considered in the problem of the many. In contrast, a naive categorization 
by similarity analysis leads to a multitude of possible categories where 
different parts of the visual image might match the category well and the 
boundary of the object would not be well determined.

To be sure, a cognizer’s perceptive system that categorizes to make robust 
predictions will on the one hand see objects as composing wholes (e.g., one 
cloud rather than millions of clouds) but will nonetheless not see objects 
composing arbitrarily. My nose and the Eiffel Tower do not compose 
because the mental category needed to individuate such an object does 
not lead to robust predictions. There is no connection between my nose 
and the Eiffel Tower that would minimize prediction error, were they to 
compose to a single object.

4.4 Collocation

From the Principle of Individuation, the following must hold: One and the 
same region in the visual field is simultaneously individuated as two 
different objects x and y if this robustly maximizes the probability of 
minimizing A’s average prediction error. Clearly, we humans never experi
ence objects to be precisely collocated. This becomes most apparent when 
we think of the famous duck – rabbit illusion (Jastrow, 1899) in which we 
are unable to see both a duck and a rabbit at the same time at the same 
location.

The fact that visual objects are never seen to precisely coincide does not 
follow trivially from the above-mentioned principle for our sensory input. 
As we have seen in Section 3, for a PP approach to operate successfully, the 
ontological assumption must be made that the environment is complex and 
in flux. It is sometimes suggested that additional ontological factors deter
mine the fact that we do not see OOs to coincide. For instance, in the 
context of explaining binocular rivalry,14 which arguably also applies to the 
duck – rabbit illusion, Hohwy et al. (2008) suggested that our generative 
top-down model has learned that ‘only one object can exist in the same place 
at the same time’ (p. 691). According to them, our experiences of the world 
shape our brain’s prior expectations to the extent that, by Bayesian 
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inference, the brain computes a much lower probability for the image to be 
both a duck and a rabbit rather than a duck or a rabbit.15

The problem with Hohwy et al.’s analysis is that they only maximized 
probabilities for a given moment in time that is case specific rather than 
general and thereby failed to account for general robustness over time. In 
accordance with PP, the cognizing system A has no innate categories of 
perception but is, rather, constantly in the process of constructing these 
categories to account for the many small changes of the environment. As we 
have seen in the case of compositionality and persistence, if A were to alter 
its hypothesis every time some other hypothesis seems more probable, it 
would have an extremely high prediction error in a changing and noisy 
environment. It would look at a cloud and suddenly see a huge horse appear, 
and then in the next moment a huge unicorn due to constant formation 
changes of the cloud. This is what any system based on PP tries to avoid, 
and, given that categories are not innate or predetermined, any indecisive
ness where the cognizing system begins to perceive a multiplicity of possible 
objects for the same visual input generates complete instability of the 
system.

Minimizing prediction error in the long run comes at the cost of not 
being considerate about alternative possibilities in the moment. For this 
reason, the brain must occasionally disregard hypotheses even if they have 
a very high probability of being the optimal choice for the specific point in 
time. The first consequence of this is that the following principle about 
collocation must hold:

Principle of Object Collocation: One and the same region in the 
visual image is never simultaneously individuated as two different 
objects.

The second consequence is that having a discomforting visual experience 
like the duck – rabbit illusion is ‘something any organism with a predictive 
engine will to an extent experience’ (Kaaronen, 2018, p. 11).

It might seem that our not seeing OOs coincide with each other results 
from the physical fact that the subatomic particles constituting OOs also do 
not coincide. Therefore, one might try to argue that OOs do not coincide in 
our experience because of how the world really is rather than being 
a consequence of how our cognition works. However, this again misses 
the point that the empirical data are underdetermined and there is 
a multiplicity of possibilities to interpret the world. For instance, all empiri
cal data in physics are also compatible with the assumption that each 
particle in the world precisely coincides with a massless ‘dummy’ particle 
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that does not causally interact with anything in the world. The data might 
also be compatible with each particle in the world having half its mass but 
being always collocated with another particle of equal mass. In any case, our 
cognition decides on one of many possibilities, and our experience of OOs 
as necessarily non-collocated can be derived from how cognition works 
rather than from the empirical data.

5 Reformulating questions about ordinary objects and conclusion

The analysis shows that any system that receives our ordinary visual input 
and experiences the world through RPPs will perceive the world to be 
structured in the following way: it consists of individuals that tend to persist 
over space and time, that are not collocated with each other, and for which 
maximality is guaranteed despite compositionality not happening arbitra
rily. Problems such as the problem of the many are, within our visual 
ontology, an immediate consequence of a simplistic view on cognition 
that relies on the intuitive assumption that categories must be applied to 
objects based on the similarity in the arrangement of their parts. But this is 
not how the brain subconsciously categorizes objects.

We notice that the notion of an RPP allows us to unite several aspects of 
what it means to be an OO under one umbrella term. This provides a more 
unified understanding of the object concept which is to be preferred over 
other accounts of our visual ontology that depend on numerous, indepen
dent principles (cf. Green, 2019, 2021; Skrzypulec, 2016). Questions con
cerning our visual ontology that are ordinarily formulated in terms of 
standard metaphysical concepts can now be formulated in terms of RPPs 
by taking a subjectivist position and moving from metaphysics to episte
mology or perception. For instance, instead of asking, ‘Do x and 
y compose?’ we can ask, ‘Are x and y jointly easier to predict on average 
than independently?’ Or instead of raising the question, ‘Does x persist 
through space and time?’ we might ask, ‘Does the individuation of x also 
lead to good average predictions if x is located at some other location in 
space and time?’ Or ‘Does x survive the loss of its part y?’ can be replaced 
with ‘Does x without y still lead to small average prediction errors?’ While 
the traditional questions have no straightforward answers and seem to be 
not directly related or at least hard to connect, the new formulation relies on 
the unifying category of RPPs and offers a straightforward answer. This is 
not to say that no implicit ontological assumptions were presupposed in our 
analysis, since we presupposed the visual input we already ordinarily have. 
However, due to underdetermination, certain cognitive import is required 
to give structure to our visual ontology. The concept of RPPs unifies the 
missing structural aspects and also allows us to explain in a unified manner 
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how our intuitions about our visual ontology come about, given our ordin
ary sensory input.

Notes

1. Some of the qualities we associate with OOs are not only underdetermined by 
perception but even inconsistent with physical reality (e.g., the inseparability of 
individuals due to quantum entanglement) (Schwaninger, 2019).

2. Notice that this is not an uncontroversial issue. See, e.g., the exchange between 
Hohwy and Seth (2020) and Schlicht and Dolega (2021).

3. Note that the notion of prediction is a technical notion and refers to mechanisms we 
are not consciously aware of.

4. For simplicity, the cognizer is implicitly assumed to not be part of the world.
5. In the machine learning literature, the lack of robustness is characterized by and 

related to the concept of “overfitting.” A learning algorithm that tries to take too 
many possible instances of a hypothesis class into account does not generalize the 
data well but is instead overfitting the data, resulting in a lack of robustness toward 
new data.

6. See Burge (2014) for a discussion on how perceptual constancies relate to the mind.
7. In a noisy world, robustness is in the generic case already implicitly entailed in 

minimizing the average prediction error. However, for the purpose of emphasis and 
generality, it was made explicit.

8. Hofweber (2019) is an exception amongst metaphysicians in these regards as he does 
claim that existence questions can be answered empirically.

9. Despite us having the ordinary impression of there being a qualitative difference 
between concepts as general mental categories and percepts, this difference is only 
gradual in PP: “Percepts are . . . basically shorter-term expectations and concepts 
longer-term expectations” (Hohwy, 2013, p. 72).

10. As Rescher correctly points out, concepts or general mental categories are required 
for individuation and identification: “The fact is that ideation is an indispensable 
preliminary and requisite for individuation . . . . To be an identifiable item, that is to 
say, is to answer to the idea of a certain sort: identification is not possible without 
sortification and sortification is not possible without recourse the corresponding 
ideas” (Rescher, 2016, p. 10). Although some scholars avoid the use of the term 
“category” in favor of “representation” or “hypothesis,” I maintain “category” as it 
reminds us of the bridging character of PP between the personal and sub-personal 
level, and it is also in line with some of the neo-Kantian literature that closely relates 
to Gestalt psychology.

11. This similarity between distributions can be quantified in terms of the Kullback- 
Leibler divergence (Cover & Thomas, 2006, ch. 2.3).

12. Studies show that infants already expect objects to move along continuous trajectories 
and are surprised if they do not do so and disappear (Spelke et al., 1995).

13. Note that the following properties under investigation are similar to those of a system 
that operates by optimally compressing sensory data (Petersen, 2019). Merely taking 
data compression into account does not, however, succeed in recreating all the 
structural principles of our visual ontology. This is because prior experiences are 
not considered when only taking the notion of compression rather than prediction 
into account. The account presented here consequently suggests that a sensory input 
might deliver different objects at one point in time than in another. For instance, 
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objects that were not composing at time t1 might be composing at another time t2, 
depending on the experiences the cognizer has made previously. This is exemplified 
by Figure 1b, where the sensory input remains constant but our experience varies, 
depending on what we had previously experienced.

14. This is the phenomenon that, when the left and the right eye are presented with 
a different image, the subject alternately sees only one image at a time rather than two.

15. Notice that I do not equate “seeing a duck and a rabbit at the same time” with “seeing 
a duck-rabbit” since this might be misinterpreted to refer to a single object, a duck- 
rabbit, rather than two coinciding objects.
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